Mathematios. - "The equivalence in R_{n} of the n-dimensional simplex star and the spherical neighbourhood." By Wilfrid Wirson. (Communicated by Prof. L. E. J. Brouwer.)
(Communicated at the meeting of December 27, 1924).
The object of this paper is to prove the theorems I and II stated beneath. So far as the writer is aware these theorems have not yet been explicitly stated and proved, but have been implicitly used in several topological investigations. Some related theorems are stated and proved by H. Kneser in a paper in these Proceedings, the proof sheets of which I have seen through the intermediation of Prof. Brouwer. ${ }^{1}$)

The Simplex star.
In the m-dimensional number space R_{m} consider a finite number of n-dimensional simplexes, $(n \leqslant m)$ of common vertex A_{0} and such that:
(a). Any ($n-1$)-dimensional face of vertex A_{1} is common to two and only two n-dimensional simplexes;
(b). Any two n-dimensional simplexes have in common either (1) no point other than A_{0}, or (2) one p-dimensional face and all its ($p-k$)-dimensional faces, $(p \leqslant n-1 ; k=1,2, \ldots, p$).

The set of points constituting these simplexes and their boundaries is called an n-dimensional simplex star of centre A_{0}; those ($n-p$)dimensional faces, $(p=1,2, \ldots, n)$, of which A_{0} is not a vertex are called the boundary of the star while the remaining points are called the interior.

Regular subdivision of a simplex star. ${ }^{2}$)
Let α_{i} be the number of i-dimensional simplexes, $(i=0,1, \ldots, n)$, of the n-dimensional star S_{n}, so that any simplex of S_{n} may be written $a_{j}^{i},\left(i=0,1, \ldots, n ; j=1,2, \ldots, a_{i}\right)$, the $a_{j}^{0},\left(j=1,2, \ldots, \alpha_{0}\right)$, being the vertices. In the interior of a_{j}^{i} take an arbitrary point P_{j}^{i}, P_{j}^{0} being the vertex a_{j}^{0}, and subdivide S_{n} into a set \bar{S} of n dimensional simplexes, in the following way:

[^0](0) The vertices of \bar{S} are the points $P_{j}^{i},\left(i=0,1, \ldots, n ; j=1,2, \ldots, a_{i}\right)$.
(1) The 1 -dimensional simplexes of \bar{S} are the segments which join the point P_{j}^{i} to each vertex of \bar{S} in the boundary of a_{j}^{i}, ($i=1,2, \ldots, n ; j=1,2, \ldots, \alpha i$).
(k) A k-dimensional simplex of \bar{S} is the set of points on all segments joining a point P_{j}^{i} to the points of a $(k-1)$-dimensional simplex of \bar{S} in the boundary of $a_{j}^{i},\left(i=k, k+1, \ldots, n ; j=1,2, \ldots, a_{i}\right)$.
(n) An n-dimensional simplex of \bar{S} is the set of points on all segments joining a point P_{j}^{n} to the points of an ($n-1$)-dimensional simplex of \bar{S} in the boundary of $a_{j}^{n},\left(j=1,2, \ldots, \alpha_{n}\right)$.

It follows from these definitions that any n-dimensional simplex of \bar{S} has the form $P_{q}^{0} P_{r}^{1} \ldots P_{s}^{n}$ and that the number of simplexes in \bar{S} is finite (being $(n+1)$! times the number in S_{n}).

Theorem 1. Any point P of the interior of an n-dimensional star S_{n} is the centre of an n-dimensional star S_{n}^{\prime} composed of simplexes of a regular subdivision \bar{S} of S_{n}.

Let P be in the k-dimensional simplex a_{s}^{k} of $S_{n},(0 \leqslant k \leqslant n)$. Choose the subdivision \bar{S} so that $P_{s}^{k}=P$, and let

$$
P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{\eta}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{v}^{u-1} P_{v v}^{n}=\bar{a}_{v v}^{n}
$$

be any u-dimensional simplex of \bar{S} of vertex P_{s}^{k}.
From the definitions (0), (1), $\ldots,(n)$ it follows that
$P_{l}^{0} P_{n}^{1} P_{n}^{2} \ldots P_{r}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{n}^{n-1} P_{v}^{n}$ is in the simplex $a_{v 0}^{n}$ of S_{n}, $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{v}^{n-1}$ is in the ($n-1$)-dimensional face a_{v}^{n-1} of a_{w}^{n}, $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{\mu}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k}$ is in the k-dimensional face a_{s}^{k} of a_{v}^{n-1}, $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1}$ is in the $(j+1)$-dimensional face a_{r}^{j+1} of a_{s}^{k}, $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{q}^{j}$ is in the j-dimensional face a_{q}^{j} of a_{r}^{j+1}, $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{\mu}^{j-1}$ is in the $(j-1)$-dimensional face a_{μ}^{j-1} of a_{q}^{j}, $P_{l}^{0} P_{m}^{1} P_{n}^{2}$ is in the 2 -dimensional face a_{n}^{2} of a_{n}^{j-1}
$P_{l}^{0} P_{m}^{1}$ is in the edge a_{m}^{1} of a_{n}^{2} and
P_{l}^{0} is the vertex a_{l}^{0} of a_{m}^{1}.

Since P_{s}^{k} is an interior point of S_{n}, the ($n-1$)-dimensional face a_{n}^{n-1} containing it, must have the centre of S_{n} as a vertex and therefore by (a) of the definition of a star, a_{v}^{n-1} is common to two and only two n-dimensional simplexes a_{w}^{n} and $a_{w^{\prime}}^{n}$ of S_{n}.

By the concluding remark of the previous paragraph the number of the simplexes \bar{a}_{w}^{n} is finite. We require to prove that they satisfy conditions (a) and (b) of the definition of a simplex star.
(a) The (n-1)-dimensional faces of \bar{a}_{w}^{n} of vertex P_{s}^{k} are
(1) $P_{m}^{1} P_{n}^{2} \ldots, P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{n}^{n-1} P_{w}^{n}$
(2) $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} p_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{v}^{n-1} P_{w}^{n}$,

$$
(j=1,2, \ldots k-1, k+1, \ldots, n-1), \text { and }
$$

(3) $P_{l}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{v}^{n-1}$.
(1) Let P_{l}^{0} and $P_{l^{\prime}}^{0}$ be the vertices of a_{m}^{1}. Then:

By definition (1) of Subdivision, $P_{l^{\prime}}^{0} P_{m}^{1}$ is an edge of \bar{S}, hence by definition (2) of subdivison, $P_{l^{\prime}}^{0} P_{m}^{1} P_{n}^{2}$ is a 2-dimensional simplex of \bar{S}. Applying definitions (3), (4), $\ldots,(n-1)$ and (n) in succession we prove that $P_{l^{\prime}}^{0} P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{v}^{n-1} P_{w}^{n}$ is an n-dimensional simplex of $\overline{S .}$. Thus $P_{m}^{1} P_{n}^{2} \ldots P_{p}^{i-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{s}^{k} \ldots P_{v}^{n-1} P_{w}^{n}$ is common to two n-dimensional simplexes of \bar{S}. Any other n-dimensional simplex having the face $P_{m}^{1} P_{n}^{2} \ldots P_{w}^{n}$ must be of the form $P_{l^{\prime \prime}}^{0} P_{m}^{1} \ldots P_{w}^{n}$ and by definition (1) of the regular subdivision, $P_{l}^{0} P_{m}^{1}$ and $P_{l^{\prime}}^{0} P_{m}^{1}$ are the only edges of \bar{S} of the form $P_{l^{\prime \prime}}^{0} P_{m}^{1}$ incident with P_{n}^{1}. Therefore $l^{\prime \prime}$ must be l or l^{\prime}. Thus

$$
P_{m}^{1} P_{n}^{2} \ldots P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1} P_{s}^{k} P_{v}^{n-1} P_{w}^{n}
$$

is incident with two and only two n-dimensional simplexes of \bar{S}.
(2) The ($j-1$)-dimensional face a_{p}^{j-1} is incident with two j-dimensional faces a_{q}^{j} and $a_{q^{\prime}}^{j}$ of a_{r}^{j+1}. Therefore by definition (j) of regular subdivision there are two j-dimensional simplexes $P_{l}^{0} \ldots P_{p}^{j-1} P_{q}^{j}$ and $P_{l}^{0} \ldots P_{p}^{j-1} P_{q^{\prime}}^{j}$ of \bar{S} and by applying successively the definitions $(j),(j+1), \ldots,(n)$ of regular subdivision we obtain two simplexes $P_{l}^{0} \ldots P_{p}^{j-1} P_{q}^{j} P_{r}^{j+1} \ldots P_{w}^{n}$ and $P_{l}^{0} \ldots P_{p}^{j-1} P_{q^{\prime}}^{j} P_{r}^{j+1} \ldots P_{w}^{n}$ of \bar{S} having $P_{l}^{0} \ldots P_{p}^{j-1} P_{r}^{j+1} \ldots P_{v v}^{n}$ as common ($n-1$)-dimensional face. Any other n-dimensional simplex having this face must be of the form :
$P_{l}^{0} \ldots P_{p}^{j-1} P_{q^{\prime \prime}}^{j} P_{r}^{j+1} \ldots P_{w}^{n}$, where by detinition $(j+1)$ of regular subdivision $a_{q^{\prime \prime}}^{j}$ is a j-dimensional face of a_{r}^{j+1} incident with a_{p}^{j-1}, that is, $a_{q^{\prime \prime}}^{j}$ is either a_{q}^{j} or $a_{q^{\prime}}^{j}$ and thus $P_{q^{\prime \prime}}^{j}$ is either P_{q}^{j} or $P_{q^{\prime}}^{j}$. Thus $P_{l}^{0} \ldots P_{p}^{j-1} P_{r}^{j+1} \ldots P_{w}^{n}$ is an ($n-1$)-dimensional face of two and only two n-dimensional simplexes of \bar{S}.
(3) The ($n-1$)-dimensional face a_{n}^{n-1} being common to two and only two n-dimensional simplexes a_{w}^{n} and $a_{w^{\prime}}^{n}$ of S_{n}, it follows from definition (n) of regular subdivision that the ($n-1$)-dimensional face $P_{l}^{0} P_{m}^{1} \ldots P_{v}^{n-1}$ of \bar{S} is common to two and only two simplexes $P_{l}^{0} P_{m}^{1} \ldots P_{v}^{n-1} P_{v}^{n}$ and $P_{l}^{0} P_{m}^{1} \ldots P_{v}^{n-1} P_{w^{\prime}}^{n}$ of \bar{S}. Thus the simplexes of \bar{S} of vertex P_{s}^{k} satisfy condition (a) of the definition of a star.
(b) Consider first the simplexes of \bar{S} in a_{w}^{n}.

By definition (1) of regular subdivision any two edges of the subdivision of a_{w}^{n} have either no point or a vertex in common. Hence by definition (2) any two 2-dimensional faces of the subdivision of a_{w}^{n} have either no point or one vertex or one edge in common. Hence by definitions (3), (4), .., ($n-1$) any two ($n-1$). dimensional faces of the subdivision of $a_{w}^{\prime \prime}$ have either no point or one p-dimensional face in common, $(0 \leqslant p \leqslant n-2)$. Finally by definition (n), any two n-dimensional simplexes of vertex P_{w}^{n} of the subdivision of a_{v}^{n} have one p-dimensional face in common, $(0 \leqslant p \leqslant n-1)$.

Consider now two n-dimensional simplexes \bar{a}_{1}^{n} and \bar{a}_{2}^{n} of \bar{S} in the simpleses a_{1}^{n} and a_{2}^{n} of S_{n}. Then if a_{1}^{n} and a_{2}^{n} have no common point, \bar{a}_{1}^{n} and \bar{a}_{2}^{n} have no common point. If a_{1}^{n} and a_{2}^{n} have in common a p-dimensional face, $(0 \leqslant p \leqslant n-1)$, then by definition (n), \bar{a}_{1}^{n} and \bar{a}_{2}^{n} have either no point or a q-dimensional face in common, $(0 \leqslant q \leqslant p)$ that is $(0 \leqslant q \leqslant p \leqslant n-1)$.

Thus any two n-dimensional simplexes of \bar{S} have either no point or a p-dimensional face in common, $(0 \leqslant p \leqslant n-1)$ and in particular any two n-dimensional simplexes of \bar{S} of vertex P_{s}^{k} have either no point other than P_{s}^{k} or a p-dimensional face, $(1 \leqslant p \leqslant n-1)$, in common.

Thus the simplexes \bar{a}_{w}^{n} of vertex P_{s}^{k} constitute a simplex star of centre P_{s}^{k}.

Theorem II. In R_{n}, any n-dimensional simples star of centre $A_{\text {. contains }}$ an n-dimensional spherical region of centre A_{0}.

The proof falls into two parts:
(1) If the theorem is true for $n=(p-1)$, it is true for $n=p$.
(2) The theorem is true for $n=1$.
(1) We assume then that in R_{p-1}, any ($p-1$)-dimensional simplex star of centre P_{n}^{k} contains a ($\mu-1$)-dimensional spherical region of centre P_{n}^{k}. Consider in R_{p}, a p-dimensional star S_{p} of centre A_{0} and let $U\left(A_{0}\right)$ be a p-dimensional spherical neighbourhood of centre A_{0}, and radius r, where r is less than the distance of A_{0} from any point of the boundary of S_{μ}. Let P_{1} be any point of $U\left(A_{0}\right)$ in the simplex a^{p} of S_{p}, and P_{z} any point of $U\left(A_{0}\right)$ not in a^{p} and not in the line $P_{1} A_{0}$. We require to prove that P, is in S_{p}.

Let $a_{l}^{i}, a_{m}^{j}, \ldots, a_{n}^{k},(i, j, \ldots, k \leqslant p-1)$, be the set of all simplexes, finite in number each of which contains one and only one point of the segment $P_{1} P_{1}$. Let $P_{1} P_{\text {, intersect }} a_{l}^{i}, a_{m}^{j}, \ldots, a_{n}^{k}$ in the points $P_{l}^{i}, P_{m}^{j}, \ldots, P_{n}^{k}$ respectively and let P_{n}^{k} be the nearest of these points to P_{2}. (Assume P_{n}^{k} to be different from P_{2}, for if $P_{n}^{k}=P_{3}$, then P, is in $\left.S_{p}\right)$. Since $U\left(A_{0}\right)$ contains no boundary points of S_{p} the simplex a_{n}^{k} containing $P_{n}^{c c}$ must be of the form $A_{0} A_{1} \ldots A_{k}$. Let $a_{n}^{k}=A_{0} A_{1} \ldots A_{k}$ be a k-dimensional tace of the simplex $A_{0} \ldots A_{k} \ldots A_{p}$ of S_{p} and let $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{p-1}^{\prime}$ be points of $A_{0} A_{1}, A_{0} A_{2}, \ldots, A_{0} A_{p-1}$ respectively such that the simplex $A_{1}^{\prime} A_{2}^{\prime} \ldots A_{k}^{\prime}$ contains P_{n}^{k} but such that the R_{p-2} determined by $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{p-1}^{\prime}$, does not contain P_{z}. Then the R_{p-1} determined by $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{d-1}^{\prime}, P$, contains the segment $P_{n}^{k} P_{2}$ and intersects $A_{0} A_{1}$ in one point A_{1}^{\prime} only, so that A_{0}, and A_{1} are on opposite sides of R_{p-1} in R_{p}.

Consider now the intersection of R_{p-1} and any p-dimensional simplex $A_{0} A_{1} A_{s_{2}} \ldots A_{s_{p}}$ of S_{p} of edge $A_{0} A_{1}$. Then R_{p-1} intersects one of the edges $A_{0} A_{s_{i}}, A_{s_{i}} A_{1}$ in a point $A_{s_{i}}$. Thus R_{p-1} intersects the simplex $A_{0} A_{1} A_{s_{3}} \ldots A_{s_{p}}$ in a ($p-1$)-dimensional simplex $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p}}^{\prime}$ of vertex A_{1}^{\prime}. The set of such simplexes as $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p}}^{\prime}$ form a $(p-1)$ dimensional star S_{p-1}^{\prime} of centre A_{1}^{\prime} in R_{p-1}, for they are finite in number and satisfy the conditions (a) and (b) in the definition of a star. Thus:
(a) Because S_{p} is a simplex star of centre A_{0}, the ($p-1$)-dimensional face $A_{0} A_{1} A_{s_{2}} \ldots A_{s_{p-1}}$ is common to two and only two
p-dimensional simplexes $A_{0} A_{1} A_{s_{2}} \ldots A_{s p-1} A_{s_{q}}$ and $A_{0} A_{1} A_{s_{2}} \ldots$ $A_{s_{p-1}} A_{s_{p}}$ and thus the ($p-2$)-dimensional face $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p-1}}^{\prime}$ is common to two and only two ($p-1$)-dimensional simplexes $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p-1}}^{\prime} A_{s_{p}}^{\prime}$ and $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p-1}}^{\prime} A_{s_{q}}^{\prime}$. Thus the simplexes $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p}}^{\prime}$ satisfy condition (a).
(b) Any two simplexes of S_{p} of edge $A_{0} A_{1}$ have in common either no point other than the edge $A_{0} A_{1}$, or one k-dimensional face, $(k=2,3, \ldots, p-1)$. Therefore any two of the ($p-1$)-dimensional simplexes $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p}}^{\prime}$ have in common either no point other than A_{1}^{\prime}, or one k-dimensional face, $(k=1,2, \ldots, p-2)$, for if $A_{0} A_{1} A_{s_{2}} \ldots A_{s_{k}}$ is common to two simplexes of S_{p}, then $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{k}}^{\prime}$ is common to the two corresponding simplexes' in R_{p-1}.

Thus, from (a) and (b) the simplexes $A_{1}^{\prime} A_{s_{2}}^{\prime} \ldots A_{s_{p}}^{\prime}$ form a $(p-1)$. dimensional star S_{p-1} in R_{p-1} of centre A_{1}^{\prime}, and we have seen that P_{n}^{k} is in the simplex $A_{1}^{\prime} A_{2}^{\prime} \ldots A_{k}^{\prime}$ of S_{p-1}. Therefore by Theorem I, P_{n}^{k} is the centre of a $(p-1)$-dimensional star S_{p-1}^{\prime} in S_{p-1}. Therefore by hypothesis, S_{p-1}^{\prime} being in R_{p-1}, there is a ($p-1$). dimensional spherical neigbourhood $U\left(P_{n}^{k}\right)$ of centre P_{n}^{k} in S_{p-1}^{\prime}.

If P_{2} be in $U\left(P_{n}^{k}\right)$ it is in S_{μ} and our theorem is proved. Consider the case when P_{2} not in $U\left(P_{n}^{k}\right)$. Since $P_{n}^{k} P_{2}$ and $U\left(P_{k}^{n}\right)$ are in R_{p-1}, the segment $P_{n}^{k} P$, intersects the boundary of $U\left(P_{n}^{k}\right)$ in a point Q and the segment $P_{n}^{k} Q$ is in $U\left(P_{n}^{k}\right)$ and thus in S_{p}. Let Q be in the simplex a^{q} of S_{p}, and note that $P_{2} Q$ contains none of the points $P_{l}^{i}, P_{m}^{i}, \ldots, P_{n}^{k}$. Since P_{2} is in the R_{q} containing a^{q}, and Q is in a^{q}, P_{2} must be in a^{q} for otherwise $P_{2} Q$ would intersect the boundary of a^{q} in one point which is impossible (since $P_{2} Q$ contains none of the points $\left.P_{l}^{i}, P_{m}^{j}, \ldots, P_{n}^{k}\right)$.

Thus P, is in S_{ρ}. Therefore $U\left(A_{0}\right)$ is in S_{μ} and the Theorem II is true for $n=p$, if it is true for $n=(p-\mathbf{1})$.
(2) The Theorem is true for $n=1$, for a 1-dimensional star of centre A_{0} in R_{1}, is a segment of R_{1}, and A_{0} is an inner point of the segment.

Thus Theorem II is true for any finite n.

[^0]: ${ }^{1}$) H. Kneser, "Ein topologischer Zerlegungssatz", § 1, Satz 3 (m) and 4 (m), these Proceedings 27, p. 603.
 ${ }^{2}$) Veblen, Cambridge Colloquium, Analysis Situs, p. 85-86.

