
Physics. - "On t!te Equation of State of [,iquids and Solid Bodies 
at High and at Low '1.'e1njJemtu1'es" . By Dl'. J. J. VAN LAAR. 

(Communicated by Prof. H. A. LORF.NTZ). 

(Communicated at the meeting of December 27, 1924). 

1. Introduction. 
Some five years ago I) I showed, that when ill VAN DER WAALS' 

equation of state fOl' liquids and gases, viz. 

a RT 
p + - = -----.-, . 

V S v-b. 
(1 ) 

b is considered as a fllnction of v (which VAN DER W AH8 ·had 
ah'eady dOlle in allother way), and whell tile simple relatioll 

b= bf/ 
bg-bO 1+--

v 

(2) 

is assllmeo rol' this, a perfect agl'eemellt - not only a qllalitative, 
but a180 a quantitati\'e one - is reached between the valnes fol' 
different quantities del'ived from tile equation of state, and the 
expel'imental reslllts; which so fa I' had either IIOt been the case, 
Ol' in a much smallel' degree, All this has been set fOl,th more at 
length and more systematically in my book 011 tlle eqllation of 
state S), to which I I'efel' Ihe illtel'ested reader. (Cf. in particulal' 
p. 74-79, 91 et seq., and fm'ther tlle Chapters 11 aud llI). I will 
only mentioll tile following points here. 

1. Fl'Om (2) in connectioll with (1) follows the almost-1'ectilinem'ity 
of Ihe locus lis (DI + Di) =/('1'), in whicli DI and Ds represent 
resp. the densities of the coexisting liqnid and gas phas6s. 

2. The values derived e.g. fol' the coefficient ' of compr6ssibility fJJ;' 

now' become more than three times gl'eater thall on assumption of 

1) Compare inter alia my lwo papers in the Recueil des Trav. Chim, des P. B. 39, 
215-242 and 371-410 (1920). 

') • Die Zustandsgleichung von Gasen und Flüssigkeiten, usw.", Leipzig L. Voss 
(1924), Compare aJso a paper published recently: ·Ueber die Flüssigkeitsdichten 
bei verschiedenen Temperaturen" in the Zeitschr. f. anofg. u. aUg. Chemie 140, 
62-60 (1924). 
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b eonstaJlt, in pel-fed hal'lnoJly willa the "alues found experimentally 
for t his coe/licien t. 

3. The critical qnantities, e. g. l' = Vk : bk, S = Rl'k : Pk Vk, the 
vapollr-pressure l'oefficient f, are JlOW iJl ped'ect agreement with 
the "alues fOllnd experimentally for them. Thus for ordinary snb­
stallces l' now becomes = 2,1 instead of 3, S oecomes = 3,8 instead 
of 2'/" ;' becomes 7 instead of 4. 

4 . The coefficien ts ot' the genel'al vapour-pl'essu 1'6 eq uatioll 

log /1 = - ~ - B toy l' + C- D T. which may he calculated by 

'means of tbe eqllatioll of state cOl"l'eeted hy means ot' (2). agree 
again pel'fectly with !.he valnes fonno experimentally for them. 
Comrllue in the hook ('iteo pal,ticularly p. 296- 304 (He. R" Ar', CsRs), 
p. 287- 296 '(mereIlI') and carbon), and [1,31'1-326 (the mollell 
metals). 

111 Ihis way I fOlllld in 1920 fOl' solid clll'bon the theoretical 
vapour-pressul'e e4 l1at.ion 1): 

47120 
loglO patm, = - -1'- -+ 9,4, 

while in 1923 fOl' the tit'st time by 11\1 experimental way (method 
LANGMUJR) the eqnation 

was fouJld by WERTF.NSTEIN aJld JEDRZF.JEWSKI '). 

A hettel' agreement with theoreticall'alculatioJl - which accol'ding 
to the formulae derived by me was only based 011 the coe/licient of 
expansion of graphite extl'apolated to 4000°, in eonnection with the 
value of V a fOl ' cnrboll fouJld from the additive fnnoamental values 
- cOllld hardly be expected '). 

And th is was also found fol' the othel' above-mentioned substanc68, 
and whel'evel' in other cases the eqnatioll of state snpplemented by 
(2 ) was applied. 

Probably a and b" are 
foulld that these two 
entil'ely lIell tl'alize eael! 

still functions of T; I have, howevel', 
tempel'atwl'e-dependellces al ways al most 
othel', so Ihal the simple assumption 

I) Recueil 891 64.7-655 (1920 ). 
'J C.R. 177, 316-319 (1923). 
3) Compare also Recueil 43, 598-599 (1924.), C.R. !a June 19'4, p. ~250-

2~52. Further VAN LIEMPT , • Het toestandsdiagram van koolstof", Chem. Week bI. 
21, N0. 45 (1924), in particulat" . the last two pages. 
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thai onZl! b is a function of the volume (fol' al80 the depend~nce of 
a on the volume may be neglected), which is I'endered by (2), 
suftiee!! in practica, 

2. Significanee of the found dependenee on the volume of b. 
When t2) is su bstituted in (1), I he equation: 

p+ - =-- 1+ -'-- , a RT ( bq-b.) 
v' v-b. v 

(3) 

is obtained aftel' some reductioll (Znslalldsgl. p, 91), 111 this bg 
I'epresent!! the limitillg value of b at v = 00, and b. that at v = VI' 

lf 1,35 m is assumed for b. (m = real dimensioll of the molec.ule 
imagined sphel'ical; 1,35 = 1/, V2 : l/e :r = coefficient ill case of 
densest packing) alld lhe lheol'etical value 4m for bq , th en b!1 beco­
mes = 3b., so that it is also allowed to write: 

a RT ( 2b,) p+ - = -- I+ -
v' t'-b, v 

(3a) 

The dependence of b on the volume I'epresented by (2) is of 
cOllrse ollly all apparent one, ensuing from the necessity of applying 

R'1' 
a, corl'ection to the faulty equution of state ]I + ~ = --b with b 

v' 1)-

cou8tallt. ~'Ol' instead , of the Virial equalion 

a b 
pv + - - RT--= RT, 

v v-b 

Rl' IJ 
which leads to p + ~ = --b' and in which R'1' --b l'epresents 

v' v- v-
the 80-called Virial ofl'epulsioll (b = 4m), strictly speaking the equation 

a b 
pv+ - - R1, - q-=Rl' . 

v v-b, 
{Sb) 

ought to ha,'e been drawIl up, which, with bq = 4rn = 3b" leads 
to the eorl'ect equalioll of state (3), which has been experimentally 
confirmed in evel'y respect. 

~ R· rJ' b" R1,4m' JO lt is known that LORRNTZ has lound .1."':'" = - ' lor the 
v v 

Virial of repnIsion at v = 00; it now appeal's that when v is no 

longer = 00, the expl'essioll R T b,gb satisties t.o the smallest volu mes. 
v- 11 

In th is b,g = 4m rnight he ealled the "kinetic" co-volume, b, = 1,35 m 
ths true co-volume. 
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It is I'emal'kable. thaI when il is tl'ied 1.0 derive the equalion of 
state by all elltil'ely diffel'ent way (see ; 4), viz, from certain thermo­
dynamic l'elations ill connection with the assllrnptioll that at. higher 
tempel'atlll'eS also fOl' liquids (nud gases) the qllantity 1/, RT lIlay 
be cOllsidel'ed as the limiting value of the genen!.1 expl'essioll fOl' 
the kinetec enel'gy. which has beeJl del'ived quanta-theoretically e. g. 
hy DEBYE - that tlte same expI'essioJl (:3") is thell obtained, though 
i 11 this dtH'i vatio11 thel'e has been 110 q lIestion of any dependallce 
of b on the volume. 

Putting· genal'ally for liqllids: 

a L 
p + - = À-, 

v' II-C 

lil whidl C is all Rrbilral'y constant, /tlld . L l'epI'esents the gellet'al 
expression fol' the pI'ogt'essive ellel'gy of the molecules, the followillg 
vaille is fOlllld i 11 the way mell liolled (see ~ 4) : 

2 ( 2C) À=s 1+-;, 

thl'Oug'h which the equatioJl of stnte for liquids (alld gases) at higher 
temperatlll'es (L= D/. RT) immediately passes into (3"), when 
c = bo is taken . It will appeal' iJl the followiJlg pal'agl'aph from a 
single exarnple thaI t.his eqnatioJl of slate is in perfect agTeement 
with the experimental data. 

3. Experimental con6rmation of (3) or (3a) for Iiquids at ordi .. 
nary temperatures (T -- 112 T .). 

We will derive fl'om (3) the valne of Ihe l'oefficient ofcoinpl'essibility 

1 (dv) D'fr . . . I l' ld {l'l = - - -t . IlIel'entJatloll WIt I respect 10 11 ( constant) yie s, 
v (p I . 

whell b,,-b, = (p is put ill (3), ft'om 

a Rl' ( fP) p+ - = - - I+ -
v· v - be t' 

the equation: 

1 - :: (~;} = [ .- (t,Rl~.r ( 1 + ;) - (V~:'~v,J (:;)t' 
from which follow8: 

1 (dV) [2a RTv ( (") RTf/' ] 
{jp = -- ;; dp 1= 1: - - ;;0 + (v-bo)' I + -;; + (v-bo)v ' 

a 
Whell ael'ol'dil1g 10 lile eqllutioll of state is substituted in this 

v' 
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fol' R 1
b
' (1+ ~) , iJl whieh, thel'efol'e, Ihe exte l'JI al pl'eSSlIl'e is 

v- u v 
neglected, the followillg fOl'ln l'esults: 

1 2a a v a 'f/,. a v 2a l + 1/, '?I" - =- - +-- -- + ---- = --- - - , 
fll , v· v·v - b. 1)'1+ 1'/" v'v-b. v' I +'f/" 

Now 
v-ó. 

v (I/l' ( lP) is ag'aill = 8T: 1 +:;; ; henee finally: 

Ol' 

1 a I I" a 1 + I/I 1'/ v' 
- -2 - , 
fJp R 1'( lP) Vi 1 + 'fiv - 1+ -

a/I' V 

- ] + -Rl'( (P) 
uI" v 

- 1 + -m ( (I') 
f v 

fl= 
}J a [ Rl' ( 1 (P)] - 1-2 - 1+ -

v I "/" 2 v 
a [ m ( 1 lP)1 ' - 1-2 - 1+ --
Vi f 2 v 

, . (4) 

as "/ " = fR l'k Cl = VapOlll'-pl'eSSI\I'e factor I\t 1') and 1n = T : l'k. 

1 

m 
SiJlee fol' o1'dina/'y substflnces f = ,7 at m = 1/ .. f 

I ' I' I (P 2 - lelll'e appl'oxlllIale J WIl I - = : 
14' v 

fl 
- '/14 0,3 

/'-
I a/l!~(I-·/I4) "/ ", 

becomes 

Without Ihe factor 1 + 'f/" ill (3), i. e . if h" = b. had been plll 
(b cOllslant), the coefficiellt. of compl'e~sihility would have thel'efol'e 
been a,1 least 1 + 'f/" tillles, i. e, 3 times ,mudltil'. Alld 1I0W it actually 
appeal's from the followillg examples that. vallles are found fol' j'jlJ> 

whil'h a.gl'ee wilh (4); 1:I,lId not with Ihe eqllatioll wilholll 1 + 'f/" , 
hence with h ('olislalll, which equalioll wOlild have had the simple 

"' /r forlll fl / = . 
I (I / ,,~(1-2711/j ) 

a. Mel'clwy. (Cf. Zustandsgl. p. 114). ' Here 111 = T: T" = 
= 295 : 1750 = 1 : 5,9 al 22° C., the valIIe 4.1 being found fol' j 
fl'om the vapoul'-tension at this tempel'atlll'e. so thaI "'/1 is = 1/ .. . 
We assume the vallIe 3 fol' 1 + 'fIv =1 + (b,,-ho)/ v = 1 + 2b~/ ,. , so 
thnt we oblaill, when 106 a = 17140 is asslIllIed al 22° for a (from 
,'npOIlI'-pl'OSSlIl'e ohsen'nt.iolls; el'. ZuSl.gl. p. 101) ILnd 106 17 = 661 
(evel'ythillg expressed ilJ so-called "normal" ullils): 

1/ .. X 3 1 
rtl' = 39250 ( l-= ï/~- 2) = 2617ÖO = 3,82 . 10-

6 
(per 111111 / '''112). 



!lO2 

The value foulld was 3,9. 10-6 (per kg/ cm')' SO t11at the agreement 
may be considered good . (lt follows really from BRIDGMAN'S obeel'­
vations, that 1 + fiv is somewhat greatel' than 3). But without the 

1/ 1 
factor 1 + fiv tlle vaille 39250 (~~I ) = 863500 = 1,16 . 10-6 

/ IS 
would have been calculated, hen ce 3,3 times too smalt! 

2 0 5 7 1 
b. Ethe1'. (Znst.gl. p. 115). At 0 "8: = 11 is fOllnd fOI' "'/ f · 

(RT: a/v gives 1,073 : (2413 X 4618 . 10-- 6), as al". is = 2413 (Ioc. eit. 
p. 103), i. e. 1 : 10,4. From BRIDGMAN'S experimeuts I calculated 
8405.10' : 4618 . '10' = 1,82 fol' 'fiv, 80 that 1 + 'fi v becomes = 2,82. 
Hence we have : 

1/ X 2 82 
fJ = --~-'-- =178.l0-6 

I' 2413(1-1/ •.•. 1,91) , 

while fl'om 176 to 185 has beell fOIHld (avel'age 180), which is 
again in excellent hal'mony with the caleulated value. The ullcor-

I .1/ 10,4. Id lb ' rected va ne -~-- - - - wou lave eeu = 49.10- 6, hence 
2413 (1-1/ 5,2) 

3,6 times too small! 
c. Ethylchlo/'ide (Zust.gl. p. 115). We refer to the book cited, and 

will only meutioll that tlle caleulated valne of (lp is 135.10-6, while 
AMAGAT likewise - found 135.10-6. The ullcol'l'ected vaille wonld 
have been 34 . 10-6, i. e. 4 times too smaJl! 

4. Derivation of the equation of state from thermodynamic 
rel.tionl. 

~"'l'om the well-krlOwn thermodyllamic formula 

T (~:\ (~:v}. . . . . . . . (5) 

follows: 

(dP) J~ (de,,) dt - tp (v), . 
dt v T dv t 

(a) 

in which the meauiug of tp(v) will appeal' from what. follow8. 
111 order to be able to integrate the above equation quite generaJly 

at all temperatures, we apply tlle fol1owing expedieut. According to 
DEBU'S well-kuown expression CL' is only a fnllction of :t m = hvm\ : 

kT = () : 7', ilJ ""hieh the charactel'istic tempel'atUl'e (J will , in general, 
still be a fllllction of v aud 1'. FOI' according to tile well-known 

expression 



903 

111 wllieh w is a lIumel'ieal factor I'elnted to POISSON'S coeftieient (J 

(whieh is absent with liquids), (} can be repl'esented by 

(} = Av1/a {lp-!-l = Av'/. tl- I". 

whell tlla coeftieient fJ = - (~;:} is illtt'Odlleed instead of 

fJ,,= - t (~;)}, whieh will prove to he 1II0l'e eOllvelliellt. Hence 

.1: 111 = AV'/3fJ-"l T --l 

is obtained for x'" = () : 1'. 
Prom this follows, as ïl is still a functiOIl both of v and 1' : 

1 (d.1:TII 
) 2 1 1 1 (dfJ ) 1 [ 2 1 v (dfJ) ] 

.1:", dv t= 3 -; - 2 ~ dv t = - -; _ - 3 + 2 P dv I ; 

In eonseqllenee of this we get: 

(dmlll)= ~ (dX",) X - "/I -I 1/, fJ' " = Y X T (dXm), 
dv t v dt 11 1 + 1/, (l'l V dt ° 

in whieh y is a nurnel'ieal coeffieient, which will in general still 

be a fllnction of v alltl 1'; I~' " ueing substituted fol' ~ (~~) and 

1'(dfJ ) .'~'I for (i dl v for brevity's sake. 

Tha abova equation (a) now passes into 

( dP) J 1 (dCo) J 1 dc" (diC lII
) }Y dcv (dJJin) - = -;-;- - == -;-;- - - = - - - dt - tI' (v), 

dt" .I dv I 1 d:r:1II dv I v dXm dt v 

i. e. 

(dP) JY (dCo) - = - - dt-tp( v), . 
dt v v dt v 

(b) 

. . . (dC ,,) (dCo) Ulrough willeh - lil conseqllell('e of the slIbstution of -do by -,- , 
1'" (t I 

whieh has beelt etfeeted by the aid of XIII alld lhe intl'odllced 
coefficient j ' - - the integration witl! respect to l' has heen relldel'ed 
possible; since the dependence of Y 011 the temperature will praet-
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ically entit'ely disappeal' fl'om the I'esult, as will be shown in ; 5, 
The integl'atioll of (h) gives: 

- = - C" - '" (v), (dP) 1'1 
dt v v 

(c) 

whieh, onee 1I10l'e illtegl'ated with I'espeet to 7'( C,; being = (~~I ).,), 
leads to 

(d) 

lIJ whieh according to ; 5 1'1 and 1', will differ ollly exceedingly 
little fl'om the limiting valueat 7' = 00 of' tlle coeffieiellt I' above 
intl'odueed, viz, from 

(6) 

v 
whieh limiting ,'alue will appeal' to contain the faetol' fOl' 

v-bo 
liqu ids, 

The integl'ation constallt f(v) remains thermodynamically undetel'­
milled, Rnd cau be detet'mined Ollly by considel'at,ions of a killetic 
nature, (is = R/V' fol' liquids), 

With regard to Tl/'(v) it may be stated that this is evidently = 

!! <t,-I/,)RT, as in the equation 1'01' p aecol'ding to the IIsual killetic 
v 
de1'Ïvation (e, g, by means of I,he Vil'ial theol'em) not the whole 
enel'gy will occllr in the second member, hut ollly (he pro,qressive 
pal't of the enel'gy of the molecules (L) - i. e, with exclusion of 
the potential enel'g,Y of Ihe fOl'ces aeting between tlle atoms in the 
molecnle, Hence (1-'_1 /,) RT, which l'elates to the saiJ potential 
enel'gy, mllst he snhtracted fl'om EI, FOI' mon-atomie substances I-' 

is therefol'e = 1/" fOl' 'di-atomie substallces = i / 2' etc, Rence we 
may write instead of (d): 

p + f(v) = y, L . . . (7) 
v 

The eOllsidet'ations given in (ltis pal'Rgl'aJ)h al'e namely not ollly 
valid fOl' solid substanees, bilt aillo fOl' liquids and gaS6i:!; when it is ol1ly 
assumed, that the value of L then depends 011 XIII = {} : T (aecording 
to the I'elation of DEBYE) in quite the same way as fol' solid bodies, 
But aeco!,ding to the fOl'lllUla holding rOl' {} this qllRntity has then 
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a lOuch smaller value than fOl' solid bodies, Thai the degeneration 
of Ihe . progressive enel'gy L llIay be assumed 10 take plaee in all 
entirely analogous way iJl liquids and in gases as in solid bodies, 
has, indeed, all'eady been assumed by lIl/wy physicists (among othel's 
by KEESOM in many of lIis papers), 

S. Determination of 1'2 (or 1) for liquid8 and ga8e8. 
We shall now pl'oceed to the detel'llIiJlatioJl of I.he value ot' 1'1' 

Ol' t'athel' - stlil'ting from the known fOt'm of the equatioll of state 

COl' liquida and gases. viz. 

a ). 
p+-=-- L, 

Vi v-ba 
(8) 

v-I> 
of the val ne of the ql1alllity 1 = Y. __ 0, in which 1 will be in the 

v 
neighbolll'hood of 2, and in which the qllantity v: (v-h.) will no 
longel' occur dil·eetl.y as a factor. 

At not too low tempel'atlll'es the expansion into sedes 

S ( I f)' 1 f}4 1 f}1 ) 
/, = 2" RT . 1 + ~O TI - 1680 1'4 + 90720 T' - etc. (a) 

holds fOl' L, al least whell the zero-poiJlt ~Jlel'gJ is also takelI into 
account in the expression 

Xm '/ R1'~( 1 1) L=~- - +-- ,'C'd •. 
:IJ. 2 ex-l 

In 0 

(i ,cli/x undel' Ihe iJlIegral sign). For othenvise L wOllld hecome 

3 , ( 3 f) 1 f}1 ) . = 2 R 1 1 -- 8' l' + 20 T' - etc. , wlilch wOllld lIot appl'Oach 

to I/ I Rl' evell al Ihe highest temperatul'es, blll which wOllld alwaya 
remain tbe jinite vall1e of '/11 Rf}. dislanl frolll it. 

The quantity (J can be I'epl'esellted as fUllction of l' b,v 

(JI = (J. I (1 + 'PI l' + ~~ + ... ) , 
in which (Jo, 'Pil PI etc. at'e still fllJlctions of v. FOl' in (JI = A 1"'/1 tl-1 

(see ~ 4) /i-1 will have the form a + b l' + ~,+ ... (see ~ 6). With 

regard to À we may write : 

À = 1, (1 + ;, + ... ), 
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in which terms with '/1' alld 'fT. must be omitted, as it will at 
onee appear, thai when the axpallsioll info series of Lis 1101 pnl'sued 
flll'lher than f)8 !T6, the expansion illto series of Ä must he eontinued 
10 "h'B, Bul since ollly two eqnRliolls will Iltell be obtained fOl' the 
two uIlkIlOWIl qllalltities ).0 alld one eoefficiellt, there ean O('CUl' ollly 
olle coefficient in Ihe expallsion into series of.i., If the expansion of L 
is cal'l'ied up to f)8 / 1'8, thaI. of ;. must go to (1.' / 7<, and thel'e will 
be one eqnation 1II00'e fOl' the detel'minatioll of the /lew coefiicient 
a', Etc, . It is, tlterefol'e, deal' that ill the expam~ion into series of .i. 

tlle terms witlt '/1' alla '/J" will he absellt. 
Like ).. Ihe eoefficiellt u is agaill a fllllClioll of v, 
~'inally, as will appeal' in ; 6, the quanlily y in (6) will be 

represented by 

1 + d, T 
1=1'1 + dJ' 

in ' which furthel' terms witlt 1/'1' may be omitted, alld III whiel. 
1., dl' and dl will still be fUllctions of v, 

We lIIay now write: 

f)1 (rPI 1 (I' ,) f) 4 (//'1 I 2YlI) 8 1 
'1'1 I 

TI = f). I T + 'J" + 'J" ; 1'4 = (). 4 -;i ~ + -ra ; TI = 8 0
8 

TI ' 

wItelI in wltat follows ona I'estricl.s oliesel!' 10 ferms witlt I/TI, This 
lowerillg of the degree wijlt respeel 10 T has of cOllrse been hrougltl 
about by the t,erm wilh l' in the above eXlJl'ession fOl' 8', Heuce 
we have according to (a): 

L -~ R[l'+ ~_ f) '(I" + ~ +(11,) _ _ 1 ~ f) 4 (YlII + 21JlI) + 
- 2 20 0 I 'f' T' 1680' 'f' TI 

+ 90~20 8. I C~I) ] = ~ R , Q, 

hellce: 
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With). = Á.( 1+ ;1) we get: 

3 ( a Q) 3 ( a( l' + ... )) 
).L=Á·· 2R Q+TI =)"'2 R Q+ 1" ' 

from which it appeal's that Ihe expansioll into series for À naed not 
go furthel' than rx/,J'I, when Q is not continued fllrlhel' than '/7'1 (see 

ahove), (4'l'om the equation of state (8) follows, as ~;I ( ~ RQ ) v 

(d
2 L) (deu) , = J-; = -{- , accordlIlg 10 the above: 

(ft u (t" 

Now aecordillg to the thermody"amic l'elatioJl. (5J, in connection 

, I "f (den) . (deu) b WIt 1 OUl' transtol'mallon 0 dv t 1111,0 dl" y mean!:! of y, which 

we developed in t 4, the following equation eJlSlles: 

so that 

~ [(de,,) -+ ~ Il 6:J = ~ (de,,) = re 1 + ri.1: (de,,) . 
v- b. dt" 2 . 1 v dt v v 1 + ri.1 dt " 

AccOl'ding to the above, the following form may be written fOl' 

(de,,) : 
dt v 

or aleo 

(d;;), =~ R(:'I + :'4} 
Rence, when both members of Ihe above equation are divided hy 

3 2' R, and multiplied by 1 + ó. T, the following equation is obtained : 

À -- 1 . - () - ---- - 1 ó 1 - -v ,[ A B + 6a] (A B) 
I v-bi ( -I • T) TI + 1'4 - ro ( + I ) 1" + 1'4 ' 
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i.e. 

v [dsA A d, (B + 6«)J [(~1.A A dl BJ 
).. tl-b. Tt + '1" + - 1-'1 - - - = Y. '1" + 1'1 + 1'1 . 

Equalizing the terms with 1/1" and I/TI in the two membel's 
now gives the two conditional equatiolls for .1. 0 and a, whieh were 
refened to above, viz. 

The former lead8 immediately to 

v --- b~ (fl 
).0 =--Yo - ' 

V d, 
. . (9) 

while then from 

ensIles: 

i.e . . 

Yg 6
1 [A + rf, (B t-6a)] = Y. (A + dlB) 

d, 

dl.rf, . 6a = (d,-dl ) A, 

the whole teml with B disappearing, alld with it the coefficient 'I'. 
iJl the expressioll for ()! (see above). Alld we get: 

1 d,-dl 1 (f,-dl ( 1 1 ) 
a == 6-dd- A =6dd- 10(}.'-S40(}.4(PI' ,. 

1 I 1 , 

by which the two coefficients .1. 0 and a in ). = l. (1 + ;.) 
therefore, expressed in ft simple way ill 10' (Y I and (), of 

1 + JI 1' dl 1 + 1,li1 T 

Y = 1 0 1 + /i, T = 1. d, 1 + 1/1, T 

(10) 

al'e, 

and 'f\ of f)' = 0.' (1 + (PI 1'). With regard to ).. it may be said 
()I 

that 1. /i . is evidently the limiting value, to whieh 1 approaches , 
for great val ues of 1'. 

6. Further oaloulation of lo from pand r. 
We must now detel'mine the value of 1, but fOl' this the know-

ledge of fl = (:;} and of the two diffel'ential quotients {l'v and fl't 
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is I'eqnired (see + 4). Wilh regard 10 tJ il may be slaled thaI frolll 
(8), viz. 

P +~=~ =). ~Rl'(1+~8'_.,,) 
v' v-b • v-b 20 1" ' I , 

wilh Ilegleet of 'th" iJl ), = ),. (1 + "/p), and e\ren of Ihe lal'm 
8~h " , as having 110 intluence 011 Ihe l'e81111, follows: 

2a(dV) I/,R1'(dt,) 
1 -;.- dp ,= - ) .• (IJ-- b,)' tip ; 

fl'om which 

fl= -- (dV) = 1: [_ 2a + )' 0 1/,Rl'l = 1: 1\', 
dp Vi (v-bo)' 

W hen delel'lnillillg [1'" = ~ (c,liJ) alld ri't = ~ (cll
tJ) fl'om Illis, a 

fJ cv I tJ ct v 

' I, R1' . . 
gl'ave er1'Ol' wOllId be committed, if e. g. J" b was snbslltllted 

v- , 
fol' Cl /v' accol'ding 10 the equalioll of slate, with lIegleclof JJ , For 
though p may safely . be lIeglected with l'egard 10 CI/ v', Ihis is not 

the case wilh (:~}= - ~, which qualltity runs into thousands 

(nlld for sol id bodies into millions). For tJ must be diffel'entiated 
with respect to v witlt l' constant, In the same way Ihe dependence 
on the temperalure of IJ, v constant, would be estilllated quite wrongly, 

whell Ihe subslitntion mentiolled was execuled. For (~~).,iS likewise 

vel'y great. Sucl! substitutions may only be made af ter the ne(~essal'y 
diffel'entiations described have been cal'ried out (inwhieh cel'lain 
quantities must l'emain constant). A most elemental'y tl'uth, but 
which is frequently ovel'looked! 

We now get: 

and for (J'I: 

1/, Rl' 
- ). --

I l' (dtJ) . l' (dN) · (v-bo)' 

flt = ti d'J' IJ= - N dt- " 2a 1/. RT 
-- +). - --

Vi I (v-bi)' 
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This yields aecol'dillg 10 (6): 

-- --+). --- +- - - +2).--2 (2a '/. R1') 1 (6a 1/, RTV) 
S v' 8 (v-bo)' 2 Vi • (v-b.)1 

Y= 

(
, 2(/ À '/, Rl') 1 ( I/,RT) 
- -:;,a + 8 (v- bo)' + 2 -).. (v-b.)' 

or 

I) a '/. Rl' (V 2) 
- s;'- + l·~_b.)' v-b.-S 

y= ------2a 1 1/. RT --+-). - -
t,l 2 ft (v-b.)' 

1 1/, Rl' v' v + 26. 
1- -À - - _ . ------

5 5' (I" (v-bo)' v-bI 

6 1 1/, Rl' v' 
1_ - 1'0 -----

4 a/" (v-b.)' 

Also in th is case we have not I'eplaced "/VI by its value from 
the equation of state wit.h lIeglect of p, beeause in fOl'lnula (9) 

\' \', 1 + ~lT 
del'ived above the qualllities Ui and (I, lil Y = Yo 1 + (~.T are the 

pUl'e coefficients of 1', calculated from an equation, in which only 

v and T occur. 
Now the formula (9) mentioned yields immediately: 

À. = v- b. Y. ó l = v -b .. ~ (~. v + 2bu)=~(1 + 2b.) . . (U) 
v ó. v 6 5 v-be S v 

80 that (8), with neglect of "/1'1 in ).1 (1 + "/TI), passes into 

p + ~. = '/, L (1+ 2bo). . (12) 
v v-bI t, 

i. e. OUI' equation (aa) in ~ 2, as at higher temperatlll'es L = 1/, RT. 
Rance - making use of the thermodynamic relation (5) and of the 

generaJ expl'ession fol' Et Ol' L (DEBYE) at higher temperatul'es, 
where the expansion into series (a) of ~ 5 is valid - a value, which 
is in pe1fect agreement with the coefficient found by liS in ~ 2 by 
all entirely different way, has been found for the coefficient )., which 
had l'emained quite undetermined in (8). We may point ont that 
(12) might also have been written in the form 

in which 

a 3b, RT 
p+--Rl' =-. 

v' v (v-bI) v 

RT ~ may be intel'preted as repulsive Virial (cf, ~ 2), 
v-bI 
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AccOl'dingly at 1ti,qlter tempel'atllres the equalion of slate 

Cl '/. L ( bo) RT (
1 + 2

1

0 ~,: - .. , ) ( bi) 
1:>+-=-- 1+2- = 1+2-

v' v-bo " v-be " 

holds fOl' ltquids (and gases); which appl'oaches to 

p +.!:= RT (1 + 2~)= 3 RT (1- ~ v-bi) 
v' ti-bi v v-be S v 

at sufticiently high temperature, As we have seen, Ihis equation of 

state wilh the factol' 1 + 2 b, at RT is in harmony with Ihe expel'Ï­
v , 

mental data conceming the straight diameter, cOE'fficiellt, of rom-
pl'essibility, cl'itical qnalltilies, vapoul'·pl'essul'e eqnaliofl, etc, It 
illllllediately ensues fl'om the dependenee on lhe voillme of b in 
p + 0/1,1 = R1': (v-b) found by us, but also fl'OIll Ihe thel'lllodynamic 

'" I ' 1,(d'P) (dc,,) , "h D' 1 10l'mu a -I' = - 111 ronllectJOn wil EBYE s quanta-I leo-
. (t v dv t 

reti(,fll expallsion into series fOl' L, 
For gases we have v = 00, alld). beeomes = ),. = '/" solhat simply 

p=R1':v, 
At very /ow temperahll'e in the neighhomhood of T = 0 we mnst 

use anol hel' expansion illio sel'ies fOl' L, The further development 
of this case will be t1'eated in the sequel 10 this papel', in whielt 
also Ihe equalioll of slate will be del'ived for so/iel lIulJslaJlceS bolh 
at high and a.t low temperaltll'es. 

7, CODcluding remark. (A tbermo.dynamic lophilm). 

According to (c) of§ 4 ((,lP) will be = 11 Cu, wIt en 'V (v) = 0 may ' 
(t " v 

be put, i. e, wlten (de)" at l' = 0 cOl1verges to zel'O, parallel to c", But 

then the coefficienl of e:rpansion will also converge 10 0 pal'allel 
to cu' FOl' fl'om the kllown relation 

(~;)p = -, (:;), X (Z)" or at = ~p X $,. • (13) 

in which at= ~ (ld1v) is the coe~6cient of expansion, ~p = !(dv) 
v t p 'v ,dp t 

(
dp) . the coefficient of compressibilily, and dl IJ the coefficient of tensi,on, 

then follows immediately: 
59 

Proceedings Royal Acad, Amsterdam, Vol. XX VII. 
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(130) 

in which (lp \ViII I'emain finite down to the lowest temperature, 
and 1, is a nUllIerieal coeftident, so that at will approach 0 pro­
porlional 10 CV' 

This propel'ty is, howevel', proved by some 1) quasi·thermodyna­
mit'ally in Ihe f'ollowillg wonderful way, 

It is kllown that the general equation 

dQ = c/' dt + lp dp 

leads 10 the equation 

Cl' lp 
dS= -dt +-dn 

'I' '1' r 

f'or the entl'opy, when Tand pare chosen as independent val'Ïables, 

ilJ which 1" = (d
Q

) = - T (d,") , jllSt as the quantity Iv iR = 
cl LJ t (t /' 

= T (liP) in dQ = Cv dt + Iv dv , In conaequence of this we have: 
dt .' 

dS = ~ dt- (dV) dp, 
'1' dt p 

hence, according to well-known mIes of integJ'ation, in which e,g. 
T must be kept constant in the second integl'al, and equal 10 Ihe 
lowest limit of the fhst inlegt'al: 

l' I' 

S =Jcp dt _J1(dV) dp 
l' dt' p 

o 0 tT=O) 

becauae S, disappears in S = 80 at T = 0, p = 0 (v = VI)' 

This expression is sometimes shortened inlo 
T 

(0) 

S fCp dt (b) 
l' ' 

o 

. (dV) , d which is coneet, when the coefficient of expansIOn dt I' IS assume 

to approach 0 with Cv at T = 0 (see above), But now the s/wrtened 

. ' (du) fOJ'mula thus obtained· is uaed 10 prove, thai e.g, de p approaches 0 

at T=O!! 
This mal'vellous reasoning runs as follows, From (cf. (b» 

1) Cf. inter alia PLANCK, Thermodynamik (1921), p. ~76. 
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T T 

(~;}= J;, (~;')tdt J -(~::)/t = - (~:)p+ (;;)1' 
o 0 (7'=0) 

follow8 immediately, C~;;)t being = - C~;}J' t,lIat (~~\ must 

necessal'Ïly be = 0 at '1' = 0 (Pr,ANCK, loc, Cil,)!! 
In l'eality nothing lias been pl'overl; for tlle forrnnla, on whieh 

tlle l'easonillg is based, is olll,}' cOl'l'ect if it, is assnllIed hefm'lJ/tand, 
thai Ihe thesis Illat is 10 be IlI'oved, lias al,'ead,ll been p/'oved, 

When, 1I0wevel', tlle ' second inlegl'al in (a) is not lIegleeled, the 
follow ing eq ualioll ewmes: 

(:~),= [ - (~tv\+ (~:)J - (~:); 
Cl'=O) ('1=0) 

hence 

a known thel'modynamic fOl'mula, whieh of conrse might mnch 
quiekel' be written down directly from the ol'iginal eqllalion 

S - cp (dv) d I d - l' dt - clt p 'P ' 

The valid proof, th at (~;)p really approaches to 0 parallel 10 Cv 

for solid suost.anees, ean ollly be flll'niMhed when it is assumed (see 
above), or proved ill an illdependellt way, that tp (1J) = 0 in (c) of 

§ 4, in otller words that (~~I)u converges 100 at T= 0, Alld inversely, 

"",hen the approach of (~;)p is assumed to be known, the appl'oach 

of (~~I)l' to 0 can be derived from (13), fl'om whieh it thenfolluws, 

thai", (v) mnst be = 0, 
But "proof:!" Iike Ihe above, which al'e no proofs at all, shollld 

be gual'ded against. Ullfol'lullately in mally hooks fl'om ft. cel'tuill 
sehool,I'el'~lItly puhlished 011 these suhjects, val'Ïous new, often very 
q uestionable cUl'tailed "thel'mody lIamie" fOl'lllulae al'e foulId; of 
which the eldel' gelleratioll nevel' dl'eamt, alld "",hielt - the above 
pl'oves it - should be Ireated witlt lhe gl'eatest call1ion. 

Tavel sur Clal'en,v, Sui.'1se, 
Decembel' 1~24. 

59* 




