Physics. “On the Equation of State of Liquids and Solid Bodies
at High and at Low Temperatures”. By Dr. J. J. vaN Laar.
(Communicated by Prof. H. A. LorrnTz).

(Communicated at the meeting of December 27, 1924).

1. Introduction.
Some five years ago!) I showed, that when in vax DEr WaaLS’
equation of state for liquids and gases, viz.

e« RT .
p—f—‘v—;-—-v—r_—b'.. P ()

b is considered as a function of » (which vaNn DEr Waars -had
already done in another way), and when the simple relation

b
b=—F— ... L@
' by—b,
v
is assumed for this, a perfect agreement — not only a qualitative,
but also a quantitative one — is reached between the values for

different quantities derived from the equation of state, and the
experimental results; which so far had either not been the case,
or in a much smaller degree. All this has been set forth more at
length and more systematically in my book on the equation of
state *), to which 1 refer the interested reader. (Cf. in particular
p. 74—79, 91 et seq., and further the Chapters 11 and lII). I will
only mention the following points here.

1. From (2) in connection with (1) follows the almost-rectilinearity
of the locus '/, (D, + D,)=f(T), in which D, and D, represent
resp. the densities of the coexisting liquid and gas phases.

2. The values derived e.g. for the coefficient of compressibility 3,
now' become more than three times greater than on assumption of

1) Compare inter alia my two papers in the Recueil des Trav. Chim. des P. B. 89,
215—242 and 371—410 (1920).

3) “Die Zustandsgleichung von Gasen und Flissigkeiten, usw.”, Leipzig L. Voss
(1924). Compare also a paper published recently: “Ueber die Fliissigkeitsdichten
bei verschiedenen Temperaturen” in the Zeitschr. f. anorg. u. allg. Chemie 140,
52—60 (1924).
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b constant, in perfect harmony with the values found experimentally
for this coefficient.

3. The critical quantities, e. g. » = wg: b, s = RT%: pr v, the
- vapour-pressure coefficient f, are now in perfect agreement with
the values found experimentally for them. Thus for ordinary sub-
stances » now becomes — 2,1 instead of 3, s becomes — 3,8 instead
of 2*/,, f becomes 7 instead of 4.

4. The coefficients of the general vapour-pressure equation
log p = ——‘%— Blog T4+ C—DT, which may be calculated by
means of the equation of state corrected by means of (2), agree
again perfectly with the values found experimentally for them.
Compare in the book cited particularly p. 296 —304 (He, H,, Ar, C,H,),
p. 287—296 ‘(mercury and carbon), and p. 311—326 (the molten
metals). -

In this way | found in 1920 for solid carbon the theoretical
vapour-pressure equation '):

<o 47120
109' Patm. = — —— - 9,4,

7
while in 1923 for the first time by an experimental way (method
Lanamuir) the equation
47000
l0g"® patm. = — ~F + 9,3
was found by WERTENSTEIN and JEDRZEJEWSKI?).

A better agreement with theoretical calculation — which according
to the formulae derived by me was ounly based on the coefticient of
expansion of graphite extrapolated to 4000° in connection with the
value of 1 a for carbon found from the additive fundamental values
— could hardly be expected®).

And this was also found for the other above-mentioned substances,
and wherever in other cases the equation of state snpplemented by
(2) was applied.

Probably a and b, are still functions of 7°; 1 have, however,
found that these two temperature-dependences always almost
entirely neutralize each other, so that the simple assumption

1) Recueil 89, 647—655 (1920).

5) C.R. 177, 316—319 (1923).

8) Compare also Recueil 43, 598—599 (1924), C.R. 23 June 1924, p. 2250—
22562. Further Van Liempr, “Het toestandsdiagram van koolstof”’, Chem. Weekbl.
21, NO. 45 (1924), in particular the last two pages.
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that only b is a function of the wolume (for also the dependence of
a on the volume may be neglected), which is rendered by (2),
suffices in practice.

2. Significance of the found dependence on the volume of b.
When (2) is substituted in (1), the equation:

a RT by—b,
pt+ = (1+- ) Ce (8
v v—b, v

b

is obtained after some reduction (Zustandsgl. p. 91). In this b,
represents the limiting value of & at v — o, and b, that at v = v,.
If 1,35m is assumed for b, (m — real dimension of the molecule

imagined spherical; 1,35 = '/, V2 : !/, &« = coefficient in case of
densest packing) and the theoretical value 4m for b, then 6, beco-
mes — 3b,, so that it is also allowed to write:
a  RT 25,
Y4 + ——.: 1 + - . . . . = (3“)
v v—>b, v

The dependence of & on the volume represented by (2) is of
course only an apparent one, ensuing from the necessity of applying

. . a ;
a correction to the faulty equation of state p+_’=_b with b
v V—
constant. For instead . of the Virial equation
a b
pv +—— RT = RT,
v v—b

l4A}

which leads to p+%,=:b, and in which RT —

the so-called Virial of repulsion (6 = 4m,), strictly speaking the equation

represen ts

a by ,

pr+-——RT—L =RT . . . . . . |3}
v v—10,

ought to have been drawn up, which, with b, = 4m = 3b,, leads

to the correct equation of state (3), which has been experimentally

confirmed in every respect.

b, am
It is known that Lorentz has found RT;": RT m “for the
v

Virial of repulsion at » = o0; it now appears that when v is no

: m b .
longer = oo, the expression R 71— satisfies to the smallest volumes.

In this &, = 4m might be called the *“£inetic”’ co-volume, b, = 1,35 m
the true co-volume.
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It is remarkable, that when it is tried to derive the equation of
state by an entirely different way (see §4), viz. from certain thermo-
dynamic relations in connection with the assumption that at higher
temperatures also for liquids (and gases) the quantity */, RT may
be considered as the limiting value of the general expression for
the kinetec energy, which has been derived quanta-theoretically e.g.
by DEBYE — that the same expression (37 is then obtained, though
in this derivation there has been no question of any dependence
of b on the volume.

Putting generally for quuids:

P + o2,

v—c
in whieh ¢ is an arbitrary constant, and . L represents the general

expression for the progressive energy of the molecules, the following
value is found in the way mentioned (see § 4):

2 2¢
A=—-11 —
3( +v

through which the equation of state for liquids (and gases) at higher
temperatures (L ="/, RT") immediately passes into (37), when
c=2"0, is taken. It will appear in the following paragraph from a
single example that this equation of state is in perfect agreement
with the experimental data. '

3. Experimental confirmation of (3) or (3%) for liquids at ordi-
nary temperatures (T = 2 Ty).
We will derive from (3) the value of the coefficient of coinpressibility

By = —— (a;v) Differentiation with respect to p (7' consta.nt) yields,
dp):

when 0, ——b,:rp is put in (3), from

a RT )
r+ = (1 =
v v—b v
the equation :

2 (Z;) _ [__ (‘éjﬁ (1 + ;f) (vii:;v ] ( )

from which follows:

dv 2a R4 ] B
g (dp) =1: [, 5+ '(v—b.,)—’(l :) +v_—b30}

When according to the equation of state — is substituted in this
v
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RT (
for b (l—}— /), in which, therefore, the external pressure is
v—
neglected, the following form results:
LIS S Y. W LY ]
By v vty - b, v?* 1 + ¢/, v'v—b, v 1+ ¢/,
Nowr — . 6 sgnin =0 (1+"’ hence finall
w ain — : — }; hence finally :
v—0b, 6 RT v )
1 _ @/ _9 al+ l/: ?/y
E,,_RT( (p) v 149,
a/ 1 +

or

N (S M 5 N
() o ]

as ¢/, = fRTy (f = vapour-pressure factor at 7") and m = 1": T.

. . m
Since for ordinary substances f—T7 at m="'/,, — becomes =—

7

1
1 hence approximately with :: 2:
s 0,3
b= =
. —/14 /2

Without the factor 1 4 ¢/, in (3), i.e. if h, = b, had been put
(b constant), the coefficient of compressihility would have therefore
been at least 1 -+ ¢/, times, i.e. 3 tines smaller. Aund now it actually
appears from the following examples that values are found for g,
which agree with (4); and not with the equation without 1 + ¢/,,
hence with A constant, which equation would have had the simple

"/r
s (1—2 "p)

a. Mercury. (Cf. Zustandsgl. p. 114). Here m = 71': T} =
=295:1750 =1:5,9 at 22° C,, the value 4,1 being found for f
from the vapour-tension at this temperature, so that /s is ="/ .
We assume the value 3 for 1 4 ¢/, =1 4 (b;=b)/, =1 } 2h/, s0
that we obtain, when 10%a —= 17140 is assumed at 22° for a (from
vapour-pressure observations; cf. Zust.gl. p. 101) and 106y —= 661
(everything expressed in so-called ‘“‘normal” units):

form 8, =

1
,i) o TS L. AN e _— = 3 82 ]0_6 g "lm/rm .
T 39250 (1—1/,,.2) 261700 Lol b
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The value found was 3,9.10—% (per ¢/.;:), so that the agreement
may be considered good. (It follows really from BripemMaN’s obser-
vations, that 149/, is somewhat greater than 3). But without the

l/u . 1
39250 (1—'/,,) 863500
would have been calculated, hence 3,3 fimes too small!

factor 1 4 ¢/, the value = 1,16 .10—¢

5 1
b. Ether. (Zust.gl. p. 115). At 20° 3 :7:H is found for m/,.

(RT:2/, gives 1,073:(2413 X 4618.10-6), as ¢/,» is = 2413 (loc. cit.
p. 103), i,e. 1:10,4. From BribeMaN’s experiments I calculated
8405.10°:4618.10° = 1,82 for ¢/,, so that 1 4%/, becomes = 2,82.
Hence we have:

l/10.4 X 2’82
2413(1—1/,,.1,91)

B, = = 178.10—S,
while from 176 to 185 has been found (average 180), which is
again in excellent harmony with the calculated value. The uncor-

CYhes
2413 (1—1/5)
3,6 times too small!

c. Ethylchloride (Zust.gl. p. 115). We refer to the book cited, and
will only mention that the calculated value of 8, is 135.10—¢, while
AMagaT likewise - found 135.10-6. The uncorrected value wonld
have been 34 .10-%, i.e. 4 times too smadl/

would have been — 49 .10-5 hence

rected value

4. Derivation of the equation of state from thermodynamic
relations.

From the well-known thermodynamic formula

o d’p _ de,

2 (ﬁ v—(;v“)t B 1)) |
dp\_ (1 [de,
(d—t),;—f?(:[;)tdt_‘l’(”), B ()

in which the meaning of w(») will appear from what follows.

In order to be able to integrate the above equation quite generally
at all temperatures, we apply the following expedient. According to
DeByr’'s well-known expression ¢. is only a function of x, = Av,:
kT =6 : T, in which the characteristic temperature 8 will, in general,
still be a function of v and 7’ For according to the well-known
expression

follows:
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__ 3,61

w

6

10—3 MY D" 8, %,

in which ® is a numerical factor related to PoissoN’s coefticient o
(which is absent with liquids), & can be represented by

6 = Av'ls 3,7} = Av*h g2

- dv .. .
when the coefficient g = — (CT) is introduced instead of
P/t
1 /dv . ) .
By= ——| 5], which will prove to be more convenient. Hence
v \dp/,

xy—= Avilsp— T--1

is obtained for z, = 6: 7.
From this follows, as 3 is still a function both of v and 7':

1 (de,\ 21 1 17dg\ 1 2 1 v dg\]
i )T 2\w)- v T8 T2 gl

1 fde,\ 1 1 1 7ag\ 1 ; 1T dﬂ)
m\a )= "7 T wel\a)T T Tea\a)

In consequence of this we get:

dw,, T (da,, —* ! ﬂ'v T [da,
Eeel T [ >< _—/Lff/}ﬁ,_. — Y >< — i
dv )i v\ dt ), 1L+, 8 v\ dt ),

in which y is a numerical coefficient, which will in general still

{
be a function of v and 7'; @, being substituted for %(:fs) and

o Trdg .
' for =( =) for brevity’ :
3 for B(dt )Ufm brevity’s sake

The above equation (a) now passes into
((~l—’—) = ,—l; (—ici) —::f}— dby [ S — ldcu d.b—m dt — (v),
dt /, T \dv /, T dzx, \ dv ), v den \ dt /,
i. e.
dp v [dey
— |J=1—[ — |dt — )y - - . . . . (b
(B)=f*(5)a—vo ®)

de, de,
through which — in consequence of the substution of (f—) by ((Tj— ;
"o t

which has been effected by the aid of =, and the introduced
coefficient y — the integration with respect to 7' has heen rendered
possible ; since the dependence of y on the temperature will pract-
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ically entirely disappear from the result, as will be shown in § 5.
The integration of (b) gives:

(gk:%@—wm,... A

dE
which, once more integrated with respect to T(c,, being — (d_tl) ),
leads to

p+ﬂ®=%U%~Twm,... coe . (d)

in which according to § 5 vy, and y, will differ only exceedingly

little from the limiting value at 7'= o of the coefficient y above
introduced, viz. from

. '/u + l,'/: B’v

1 ""' l/a ﬂ'! ~‘

(6)

for

which limiting value will appear to contain the factor
v—0,

liquids.

The integration constant f(v) remains thermodynamically undeter-
mined, and can be determined only by considerations of a kinetic
nature. (is = /,» for liquids).

With regard to 7'y (v) it may be stated that this is evidently —

T (n—'/,)RT, as in the equation for p according to the usual kinetic
v

derivation (e.g. by means of the Virial theorem) not the whole
energy will ocenr in the second member, but only the progressive
part of the energy of the molecules (L) — i.e. with exclusion of
the potential energy of the forces acting between the atoms in the
molecule. Hence (u—"*/,) RT, which relates to the said potential
energy, must be subtracted from Z;. For mon-atomic substances p
is therefore —"*/,, for 'di-atomic substances —"*/,, etc. Hence we
may write instead of (d):

p+ﬂﬂ:%L.. N ()

The considerations given in this paragraph are namely not only
valid for solid substances, but also for liquids and gases; when it is only
assumed, that the value of L then dependson z, = 6 : 7" (according
to the relation of DEBYE) in quite the same way as for solid bodies.
But according to the formula holding for & this quantity has then
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a much smaller value than for solid bodies. That the degeneration
of the. progressive energy L may be assumed to take place in an
entirely analogous way in liquids and in gases as in solid bodies,
has, indeed, already been assumed by many physicists (among others
by Keksom in many of his papers).

5. Determination of 7, (or 1) for liquids and gases.

We shall now proceed to the determination of the value of 7,
or vather — starting from the known form of the equation of state -
for liquids and gases, viz.

R |
P+ == 7 )

v —v-—b“

: v—b, . . . .
of the value of the quantity 2 =y, ——, in which 2 will be in the
v

neighbourhood of 2, and in which the quantity v:(v—b,) will no
longer occur directly as a factor.
At not too low temperatures the expansion into series
1 6 1 4 1 6 )
C

3
L=—Rr{14 -2 ___ 2%
2 ( T 207" 1680 7% T 90720 T¢

(a)

holds for L, at least when the zero-point energy is also taken into
account in the expression

x

m

'LRT (7 1 1
L— a"—.{(? + e"—l) z'da.
0

m

(4 *dz under the integral sign). For otherwise L would become

3 . 36 186 ,
=g R1 (1 -3 7,—|—§(—) T etc.), which would not approach

to */y RT even at the highest temperatures, but which would always
remain the - finite value of °/,, R# distant from it.
The quantity & can be represented as function of 7' by

0::0:(1 +’})1T+%.;+)'
in which 8,, ¢,, ¢, etc. are still functions of v. Forin 8* = A*»* g1

(see § 4) p—! will have the form a + 07T + %,—l— ... (see § 6). With

regard to A we may write:

A=z,(1 4%+)
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in which terms with '/7 and '/7: must be omitted, as it will at
once appear, that when the expansion into series of L is not pursued
further than 6°/ys, the expansion into series of A must be continued
to «/». But since only two equations will then be obtained for the
two unknown quantities 2, and one coefficient, there can occur only
one coefficient in the expansion into series of 2. If the expansion of L
is carried up to 6°/7'% that of 2 must go to «/7s, and there will
be one equation more for the determination of the new coefficient
«'. Ete.. It is, therefore, clear that in the expansion into series of 2
the terms with '/7 and '/y2 will be absent.
Like 4, the coefficient « is again a function of v.
Finally, as will appear in § 6, the quantity y in (6) will be
represented by
144
Y="7 ]—4‘(’.—,_7—"
in- which further terms with '/ may be omitted, and in which
Yo, d,, and d, will still be functions of v.
We may now write:

6* Py + 0‘ w," 2¢, 0' »,’
™ °( +71;' ) n=0 N\ T ) T =0

when in what follows one restricts oneself to terms with '/;s. This
lowering of the degree with respect to 7' has of course been brought
about by the term with 7" in the above expression fm 6*. Hence
we have according to (a):

L=>g|lry Lo, Ly L oge
=% +26 0 ‘Il+7i. 71) " 16807" ,[.+ -+

1 g+ 0, 8 R
Yootz \ 1) |T2 @
and from this:

. (@_f{): (d(n + (u—"/) RT)‘),, By

dt dt

SR 14 10’ 1 2¢, 1 g o, 4’/1
T2 20\ T ) e T )T

hence:

d‘-'n 3 1 2 6,,1 1 ‘)l’) 12(" )
e —— Rl — 3 . L af © 1
(dt ) 2 [206" (’1"+ 1) 1680 7° ( )T




907

Witha = A,(l + %) we get :

. 3 Q) 3 a(T-{—..;)
).L_)L,.ER(Q—{—F)_).,.ER(Q—{—————T, ):

from which it appears that the expansion into series for A need not
go further than #/7s, when @ is not continued further than '/7: (see

above). From the equation of state (8) follows, as ——(— Q)

d*L dey .
=|—= ) =] according to the above:
(lt’ v (lt H,

d*p A de, 3 6ba
TP — M () LS R22.
(dt’),, v —b, [( dt),, Ty T‘]

Now according to the thermodynamic relation.(5), in connection

dc, de, )
with our transformation of 7 into 7R by means of y, which
v "

we developed in § 4, the followmg equation ensues:
so that

( de, de,

). =2(a)=1(&).

1, de, 3 6a de, ‘y,,l + d,T (de,

v—b, | \ dt ], E' T+ ) v1+d,7\ dt ),
According to the above, the following form may be written for
de, '

().
de\ 8 [l /1 _ ., 1 __ .

(a).,—'a""[y—w (‘ro"- g2 )+

+ 1 (3 8. 1 g 1 6,
A" T 1% t 51209 "’1) '

de, 3 A B
(E),,_E R(T‘ + —7—)

Hence, when both members of the above equation are divided by

or also

gR, and multiplied by 1 4 d, 7', the following equation is obtained :

A B+ 6a A B
J, T)[T‘ %——:l_yo (1 4 d, 7)( )'

/A A
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i.e.

v d,4 A d, (B4 6a) _ 0,4 A d B

Equalizing the terms with '/7s and !/7s» in the two members
now gives the two conditional equations for 2, and «, which were
referred to above, viz. :

v

v :
——d, A=7vy,d, A ; 4

v—b, v—b,

A [A+¢uL+MH:WAA+¢B}

The former leads immediately to
v—b, d

I — ayo(’—l,..._.._.(g)

Y 2

while then from

d
n;:[A +d,(B+6)| =17, (4 + d,B)
ensues:

¢, [4+9,(B + 60)] =4, (4 + d,B),
i.e. .
d,d, . 6a = (d,—d,) 4,

the whole term with B disappearing, and with it the coefficient ¢,
in the expression for &* (see above). And we get:

_ld—d, Va—d (L1 0
“ =8 gd 76 g0 107 “gro %) - (10

172

by which the two coefficients 2, and a in 2 =2, (‘1 +7a,.) are,
therefore, expressed in a simple way in y,, d, and d, of

1 40,7 d. 1417
YT="% m =7 d_, m
and ¢, of 8 =26,"1+4 ¢, T). With regard to 2, it may be said
th@t Yo :;\—: is evidently the limiting value, to which y approaches
for great values of 7.
6. Further calculation of 1, from 8 and y.

We must now determine the value of y, but for this the know-

ledge of ﬂ=(j—;) and of the two differential quotients ', and f'
t
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is required (see § 4). With regard to g it may be stated that from

(8), viz.
+a_)LL — '/, RT " 1 6°
P E_u—b,_h ¢ v—1b, ( +%F~)’

with neglect of #/7» in A=2,(1 4+ %/ys), and even of the term
6*/7:, as having no influence on the result, follows:

i 2a [ dv . p }, RT (dv
v \dp); " (w—b,)*\dp/i
from which

_(dN_ | .[_ta_ LRI _ .
(G [

/ T rd
When determining p)’,,:z(l—#) and gy = — (—#) from this, a
B\dv/, g \dt/,

2oORT
grave error would be committed, if e.g. 2, ;’ 2

for ¢ /,» according to the equation of state, with neglect of p. For
though p may safely be neglected with regard to ¢/, this is not

was substituted

) d 1 . . .
the case with [ —— | = — —, which quantity runs into thousands

dv/, 8 ’
(and for solid bodies into millions). For g must be differentiated
with respect to v with 1" constant. In the same way the dependence
on the temperature of 3, v constant, would be estimated quite wrongly,
. . dp\ . ...
when the substitution mentioned was executed. For (d—f) is likewise
v
very great. Such substitutions may only be made after the necessary
differentiations described have been carried out (in which certain
quantities must remain constant). A most elementary truth, but
which is frequently overlooked !
We now get:

6a 23 '/.Rﬂ

, v (d8\ v (dN __—F+“ " (v—b,)*
"”-‘g(av),— J_V(dv),_ 2a LRI

o (b,

and for g3':
'/ RT

Y C AV CAT T (o—byy
‘T e \dr),”  N\dt ), 2 ;‘_/,R’I"

N )
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This yields according to (6):

2 2a 2, RT 1 6a '/, RT»
3 “?( = )’) +"(’_'? = )

o . 2a '/, RT 1 *,RT

(“1.‘- Az by) + a‘( —h (v_b,)-)
or
_Ei_*_) i/’ RT( v _g)
3 *(v—b,)*\v—b, 3

2¢ 1 y ', RT
v? T PR (v—0,)?

k)

'WRT o' v+ 2b
“,  (v—b,)' v—b

6 ”'_;"7'/,131' v
4° e (v—b,)

1— —-}.
S

Also in this case we have not replaced ¢/, by its value from
the equation of state with neglect of p, because in founula 9)
in Y-Y"ill i )—T are the
pure coefficients of 7', calculated from an equation, in which only
v and T occur.

Now the formula (9) mentioned yields immediately :

v—b, 6, v—b, 5(4 v+ 25\ 2 25
A, — y, == 2= =, l=—(1 -, . 1
YTy T e 6(5 v—b,) 3( T i)

derived above the quantities J, and 0o,

so that (8), with neglect of */7» in 2, (1 4 */7s), passes into
a ’/, 25
—I— == b, 1+ T’), B 0 87

i.e. our equation (3%) in § 2, as at higher temperatures L =?*/, RT.
Hence — making use of the thermodynamic relation (5) and of the
general expression for E, or L (DEByr) at higher temperatures,
where the expansion into series (a) of § 5 is valid — a value, which
is in perfect agreement with the coefficient found by us in § 2 by
an entirely different way, has been found for the coefficient 2, which
had remained quite undetermined in (8). We may point out that
(12) might also have been written in the form

3% RT
P+ ——RI—0 =T
v

in which RT 36,

b may be interpreted as repulsive Virial (cf. § 2).
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Accordingly at higher temperatures the equation of state

RT (1 L &

a ’/lL bﬂ ( +2—67'1—;_...) b.

v+—'=——(l+2— = f 4232
v v—b, v v—>b, v

holds for liquids (and gases); which approaches to

a __ RT g 2bf,)_3RT . 2 v—b,
P+;—v—~b( r v T v—b, 8 v

at sufficiently high temperature. As we have seen, this equation of

' b : .

state with the factor 1 4+ 2 = at RT is in harmony with the experi-
v

mental data concerning the straight diameter, coefficient of com-
pressibility, critical quantities, vapour-pressure equation, etc. It
immediately ensues from the dependence on the volume of & in
p+ ?n = RT:(v—0b) found by us, but also from the thermodynamic
2

formula T(((I[::) CZ) in connection with DEBYE's quanta-theo-
retical expansion into series for L.

For gases we have v — o, and 2 becomes = 2, = ?/,, so that simply
p=RT:v

At very low temperature in the neighbourhood of 7'— 0 we must
use another expansion into series for L. The further development
of this case will be treated in the sequel to this paper, in which
also the equation of state will be derived fon solid substances both
at high and at low temperalures.

7; Concluding remark. (A thermo-dynamic sophism).

According to (c) of §4 (‘j—;’) will be :%cu, when P (v) =0 may
¢

v

d, .
be put, i.e. when (d—?) at T'= 0 converges to zero, parallel to c,. But
v

then the coefficient of expansion will also converge to O parallel
to ¢,. For from the known relation

dv\ dv dp . g
(E p—*‘(@)‘X(E)D or ar =8p X8 . . (13)

1/d
in which e,= — (2) is the coefﬁclent of expansion, 8, = (dv
v\dt ), dp )i

: _— d ‘
the coefficient of compressibility, and ((7;-7) the coefficient of tension,

then follows immediately :
59
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al:ﬁp><?v—lcv| s 3 o m @ % a2 @ (13a)

in which B8, will remain finite down to the lowest temperature,
and y, is a numerical coefficient, so that «; will approach O pro-
portional to c,.

This property is, however, proved by some ') quasi-thermodyna-
mically in the following wonderful way.

It is known that the general equation

dQ =c,dt + I, dp
leads to the equation

!
w=?m+%@

Yl
for the entropy, when T and p are chosen as independent variables,
d
in which l:(—g = — 7(@) , just as the quantity /, is =
‘ dp /. dt),

l
o= T (:l—i)) in dQ =c,dt 4+ I, dv. In consequence of this we have:

¢ dv
dS—= 2L dt - dp,
Y QJP

hence, according to well-known rules of integration, in which e.g.
T must be kept constant in the second integral, and equal to the
lowest limit of the first integral:

T »
S f g dv d (
= |- = s Yow @ s ® @ s a
)7 m P )
0 0 ( '—0

because S, disappears in S=S§, at I'=0, p =0 (v =v,).
This expression is sometimes shorlened into

sif”a Y ()

AN
which is correct, when the coefficient of expansion ((E) is assumed

to approach O with ¢, at 77=0 (see above). But now the shortened
d
formula thus obtained-is used to prove, that e.g. (d_:)) approaches 0
P

at 7’=0!!
This marvellous reasoning runs as follows. From (cf. (b))

) Cf. inter alia PLaNck, Thermodynamik (1921), p. 276.
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1 d
follows immediately, (;Il—?) being = — (Z—:’) , that (a;—)) must
t » 4

necessarily be =0 at 7"=0 (Pranck, loc. cit.)!!

In reality mothing has been proved; for the formula, on which
the reasoning is based, is only correct if it is assumed befvrehand,
that the thesis that is to be proved, has already been proved.

When, however, the second integral in (a) is not neglected, the
following equation ensues:

()=~ (@) ]- (),

(T=0) (1=0)

dS . dv

a known thermodynamic formula, which of course might much
quicker be written down directly from the original equation

_C dv |
dS_Tdt (l)dp

hence

The wvalid proof, that (Z—:’) really approaches to O parallel toc,
P

for solid snbstances, can only be furnished when it is assumed (see
above), or proved in an independent way, that @ (») =0 in (c) of

d
§ 4, in other words that (1—2)) converges to 0 at 7’=10. And inversely,
¢

v

d
when the approach of (ﬁ) is assumed to be known, the approach
P

of (%) to O can be derived from (13), from which it then follows,
»

that ¥ (v) must be = 0.

But ‘“‘proofs” like the above, which are no proofs at all, should
be guarded against. Unfortunately in many books from a certain
school, recently published on these subjects, various new, often very
questionable curtailed ‘‘thermodynamic” formulae are found; of
which the elder generation never dreamt, and which — the above
proves it — should be treated with the greatest caution.

Tavel sur Clarens, Suisse,
December 1924.
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