> Mathematics. - "A Representation of the Rays of Space on the Pairs of Points of a Plane". By Prof. Jan de Vries.

(Communicated at the meeting of February 28, 1925).
§ 1. Let l be an arbitrary straight line which cuts the planes α^{\prime} and $\alpha^{\prime \prime}$ in the points L^{\prime} and $L^{\prime \prime} . L^{\prime}$ and $L^{\prime \prime}$ are projected on the plane α out of the fixed points A^{\prime} and $A^{\prime \prime}$; the projections L_{1} and L_{2} form a pair of points which we consider as the image of the ray l. Apparently two arbitrary points L_{1} and L_{2} of α generally define one ray.

Let G be a point of the intersection g of the planes α^{\prime} and $\alpha^{\prime \prime}$; all the rays of the sheaf round G are represented in the pair of points G_{1}, G_{2}, which we call a cardinal pair. The cardinal pairs form two projective point-ranges on the lines g_{1} and g_{2} (the projections of g out of A^{\prime} and $A^{\prime \prime}$); these meet in the point of intersection G_{12} of g and α. Accordingly the point-ranges $\left(G_{1}\right)$ and $\left(G_{2}\right)$ lie perspectively; the center of perspectivety A_{12} is the point of intersection of α and the line a which joins the centers A^{\prime} and $A^{\prime \prime}$.

Any two points of g may be considered as intersections with α^{\prime} and $\alpha^{\prime \prime}$. Hence any pair consisting of an arbitrary point G_{1} and an arbitrary point G_{2} may be considered as the image of the cardinal ray g.

If l lies in $\alpha^{\prime}, L^{\prime}$ is an arbitrary point of $l^{\prime} \equiv l$; if G_{2} is the projection of the point $g l$, the image of l consists of G_{2} and an arbitrary point L_{1} of the line l_{1} (the projection of l out of A^{\prime} as center).

The rays in a^{\prime} and $a^{\prime \prime}$ are, therefore, singular rays.
§ 2. The image of a straight line d cutting a consists of two points D_{1}, D_{2}, that are collinear with A_{12}. The pairs of points on a line d_{12} through A_{12} are the images of the rays in a plane through a.

The pairs of points L_{1}, L_{2} on an arbitrary line are the images of the rays of a bilinear congruence of which the directrices lie in α^{\prime} and $\alpha^{\prime \prime}$.

The image of a field of rays consists of the ∞^{2} pairs of points L_{1}, L_{2}, of which L_{1} lies on a straight line f_{1}, L_{2} on a straight line f_{2}. One of these pairs is formed by the images G_{1}, G_{2} of the plane pencil of the rays resting on g.

The point of intersection D_{12} of f_{1} and f_{2} is the image of a ray d which cuts a. The congruence of the rays for which the images L_{1} and L_{2} coincide, has accordingly one ray in any plane.

If D_{12} describes a straight line d_{12}, the points D^{\prime} and $D^{\prime \prime}$ describe two projective point-ranges in a^{\prime} and $\alpha^{\prime \prime}$ and d envelops a conic which
touches a. Hence through a given point there pass two rays d of the congruence in question; this has accordingly the symbol [2,1]. In the plane $\left(G_{12}, a\right)$ the conic degenerates, for G_{12} is the image of a pencil in that plane.

Consequently the rays with coinciding image points are the tangents of a quadratic cone with vertex G_{12} which rest on the fixed tangent a ${ }^{1}$).
§ 3. Image of a plane pencil. The image of a plane pencil is formed by two projective point-ranges on two straight lines f_{1}, f_{2}. One pair consists of the image G_{1}, G_{2} of the ray resting on g, and another pair, D_{1}, D_{2}, is the image of the ray that cuts a.

If we choose the line f_{1} at random and if G_{1} is its intersection with g_{1}, G_{2} the point which forms a cardinal pair with G_{1}, f_{2} must pass through G_{2}. If we associate two arbitrary points P_{2}, Q_{2} of f_{2} to two arbitrary points P_{1}, Q_{1} of f_{1}, and if G_{2} corresponds to G_{1}, the point-ranges on f_{1} and f_{2}, which in this way have become projective, are the image of a plane pencil.

The projective point-ranges on f_{1} and f_{2} define a conic δ^{2} as the envelope of the lines $l_{12} \equiv L_{1} L_{2}$. One of the tangents through A_{12} contains the cardinal pair G_{1}, G_{2}, the other the pair D_{1}, D_{2}. If we consider δ^{2} as the image of the plane pencil, the ∞^{5} plane pencils of space are represented on the ∞^{5} conics of a plane.

But in this way any conic is the image of two plane pencils; for each of the two tangents through A_{12} may be considered as $g_{12} \equiv G_{1}, G_{2}$, the other containing the pair D_{1}, D_{2}. The tangents through G_{1} and G_{2} define the carriers f_{1}, f_{2} of the projective point-ranges.

By means of the conics δ^{2} we find accordingly an involution in the plane pencils of space.

If the vertex T of a plane pencil lies in $\alpha^{\prime}, \delta^{2}$ degenerates. For in this case the image consists of the pairs formed by T_{1} and the points L_{2} of a straight line f_{2} and of the pairs formed by the point G_{2} on f_{2} and the points L_{1} of f_{1}.

If the whole plane pencil lies in α^{\prime}, each ray has ∞^{1} images consisting of a point G_{2} and a point of a definite ray of the plane pencil round T_{1}.

If the plane of the pencil passes through G_{12}, its image consists of two perspective point-ranges and δ^{2} degenerates into two plane pencils. If the plane passes through a, the image consists of two collocal projective point-ranges.
§ 4. Image of a quadratic scroll. The image is formed by two projective point-ranges on two conics $\alpha_{1}{ }^{2}$ en $\alpha_{2}{ }^{2}$. The points of intersection of $a_{1}{ }^{2}$ and g_{1} form cardinal pairs with the points where $a_{2}{ }^{2}$ is cut by g_{2};

[^0]these pairs are the images of the rays that rest on g. The two rays resting on a have images L_{1}, L_{2}, for which l_{12} passes through A_{12}.

Let $\alpha_{1}{ }^{2}$ be an arbitrary conic, G_{1} and $G_{1}{ }^{*}$ its points of intersection with g_{1}. If we pass a conic $\alpha_{2}{ }^{2}$ through G_{2} and $G_{2}{ }^{\star}$ and establish a projective correspondence between the point-ranges on $\alpha_{1}{ }^{2}$ and $\alpha_{2}{ }^{2}$ so that G_{1} and $G_{1}{ }^{\star}$ are associated to G_{2} and $G_{2}{ }^{\star}$, we have obtained the image of a quadratic scroll. If the scroll has a directrix f^{\prime} in α^{\prime} and a directrix $f^{\prime \prime}$ in $a^{\prime \prime}$, its image is formed by two projective point-ranges on the lines f_{1} and f_{2}. In this case the points $f_{1} g_{1}$ and $f_{2} g_{2}$ do not form a cardinal pair. To the image there belong also the pairs of points which represent the rays of the scroll in a^{\prime} and $a^{\prime \prime}$.
§ 5. Image of a sheaf. The rays through the point S make the fields of points [L^{\prime}] and [$L^{\prime \prime}$] perspective. Accordingly the image of the sheaf is formed by the pairs L_{1}, L_{2} of two projective fields.

The plane pencil of the rays resting on g, has its image in the cardinal pairs. To the sheaf there belong two rays of the congruence [2, 1], the rays of which are represented by points D_{12}. These two points and the point G_{12} are the coincidences of the two fields.

If the projective correspondence between the points of the fields $\left[L_{1}\right]$ and $\left[L_{2}\right]$ is such that the cardinal pairs consist of homologous points, we have the image of a sheaf. In order to see this we investigate what this image, \mathbf{B}, has in common with the image \mathbf{V} of a field of rays and with the image \mathbf{S} of an arbitrary sheaf.

The image \mathbf{V} consists of the ∞^{2} pairs L_{1}, L_{2} on two lines f_{1}, f_{2}. The straight line $f_{2}{ }^{\star}$ which is associated to f_{1} in \mathbf{B} cuts f_{2} in the point G_{2} which is associated to the point G_{1} on f_{1}. Hence V and \mathbf{B} have only this pair $\left(G_{1}, G_{2}\right)$ in common. But a cardinal pair is the image of a sheaf (round G); accordingly the field of rays generally does not contain any ray of the congruence that has \mathbf{B} as image.

Let L_{1}, L_{2} be a pair of $\mathbf{B}, L_{1}{ }^{\star}$ the point which through \mathbf{S} is associated to L_{2}. In this case the points L_{1} and $L_{1}{ }^{\star}$ are homologous in a projectivity that has all the points of g_{1} as double points and is, therefore, a homology.

The center of the homology is a point L_{1} to which \mathbf{B} and \mathbf{S} associate the same point L_{2}. But then \mathbf{B} must be the image of a congruence $[0,1]$, hence of a sheaf.
§ 6. Let us suppose that a homology in α contains the cardinal points; these are the images of the rays of the congruence that is represented by the homology.

A ray of this congruence which cuts a, has for image a pair D_{1}, D_{2}. The line d_{12} through D_{1} and D_{2} contains also a cardinal pair and is, therefore, a double ray of the homology; accordingly this has A_{12} for center and its axis passes through G_{12}. The point-ranges on homologous
lines are projective, hence images of a plane pencil that has a as a ray. Consequently the homology in question is the image of a parabolic congruence [1,1] that has a as directrix.
§ 7. Image of a bilinear congruence. The rays of a congruence [1,1] define a quadratic correspondence in α. For the line f^{\prime} of α^{\prime}, which is the projection of a line f_{1} in α, defines, together with the directrices r and s of the congruence, a quadratic scroll, hence a conic $\varphi^{\prime \prime}$ in $\alpha^{\prime \prime}$, consequently also a conic φ_{2} in α. The ray t^{\prime} of the [1,1] that lies in α^{\prime}, defines a point G^{\star} on g. Hence φ_{2} passes through $G_{2}{ }^{\star}$ and through the images R_{2} and S_{2} of r and s. These three points are the cardinal points of the latter system. The cardinal points of the former system are R_{1}, S_{1} and the image $G_{1}{ }^{\star}$ of the ray in $\alpha^{\prime \prime}$.

The plane pencil of the congruence that has R^{\prime} as vertex, has for image the point-range on $S_{2} G_{2}{ }^{\star}$, apart from the image of t^{\prime}. Together with the point-range on $R_{1} S_{1}$ the cardinal point $G_{2}{ }^{\star}$ forms the image of the ray t^{\prime}.

The plane pencils of the $[1,1]$ that have their vertices on s, are represented in the point-ranges on lines f_{1} and f_{2} of which f_{1} passes through R_{1} and f_{2} through R_{2}; the plane pencil $\left(f_{1}\right)$ is projective with the plane pencil (f_{2}). Analogously S_{1} and S_{2} are the centers of two projective plane pencils, and any two homologous rays contain the image of a plane pencil that has its vertex on the directrix r.

A parabolic [1,1] consists of ∞^{1} plane pencils which have a ray r in common while the vertices form a point-range on r which is projective with the pencil of their planes. The quadratic scroll which has a line of α^{\prime} as directrix, contains a ray of the plane pencil of the [1,1] that has $R^{\prime \prime}$ as vertex. The plane of this pencil touches the carrier of the scroll at $R^{\prime \prime}$; accordingly the conics $\varphi^{\prime \prime}$ have a fixed tangent at $R^{\prime \prime}$. But then the conics φ_{2} have also the same tangent at R_{2}. Consequently the quadratic correspondence has two coinciding cardinal points in R_{2}; this is also the case in R_{1}. This result could be foreseen because in this case the directrix s coincides with r.
§ 8. We arrive at an involution in the rays of space by associating to a ray l with image L_{1}, L_{2} the ray m of which the image consists of the points $M_{1} \equiv L_{2}$ and $M_{2} \equiv L_{1}$.

If l describes a plane pencil, L^{\prime} and $L^{\prime \prime}$ describe projective pointranges; hence L_{1} and L_{2} describe projective point-ranges on two lines l_{1} and l_{2}. The points $G_{1} \equiv g_{1} l_{1}$ and $G_{2} \equiv g_{2} l_{2}$ form a cardinal pair. But this is not the case with the points $H_{1} \equiv G_{2}$ and $H_{2} \equiv G_{1}$; hence the point-ranges $\left(M_{1}\right)$ on $m_{1} \equiv l_{2}$ and $\left(M_{2}\right)$ on $m_{2} \equiv l_{1}$ form the representation of a quadratic scroll. Accordingly our involution transforms a plane pencil into a quadratic scroll.

The double rays of this involution form the congruence [2,1] found in § 2.

The rays in a plane through a are arranged in involutorial pairs.
To the ray g there corresponds the field of rays in the plane defined by $h_{1} \equiv g_{2}$ and $h_{2} \equiv g_{1}$.
§ 9. As we pointed out, the conics δ^{2} give rise to an involution in the plane pencils of space.

In this way each of the two systems of plane pencils of a congruence [1,1] is transformed in itself. Let us consider e.g. the pencils in the planes through the directrix r, which, therefore, have their vertices on the directrix s. Let δ^{2} be the image of such a plane pencil; one of its tangents through A_{12}, G_{12}, contains a cardinal pair G_{1}, G_{2}, the other, d_{12}, contains the image $\left(D_{1}, D_{2}\right)$ of the ray of the pencil that rests on a. The straight lines $f_{1} \equiv R_{1} G_{1}$ and $f_{2} \equiv R_{2} G_{2}$ carry the image points L_{1}, L_{2} of the other rays of the pencil.

If we also draw the tangents $f_{1}{ }^{\star}$ and $f_{2}{ }^{\star}$ through R_{1} and R_{2}, these contain the images of the rays of another plane pencil belonging to the system; now $d_{12} \equiv g_{12}{ }^{\star}$ contains the cardinal pair $G_{1}{ }^{\star}, G_{2}{ }^{\star}, g_{12} \equiv d_{12}{ }^{\star}$ the pair ($D_{1}{ }^{*}, D_{2}{ }^{*}$).

Any tangent l_{12} to δ^{2} contains the image $\left(L_{1}, L_{2}\right)$ of a ray of the former plane pencil and the image ($L_{1}{ }^{\star}, L_{2}{ }^{\star}$) of a ray belonging to the latter. The line l_{12} contains the images of the rays of a congruence [1,1] that has as directrices a straight line of α^{\prime} and one of $\alpha^{\prime \prime}$. This congruence has two lines in common with the given [1,1] ; each of them belongs to one of the plane pencils in question.

An arbitrary line of α is, therefore, touched by one δ^{2}; accordingly the conics of our system form a scroll. The two conics meeting in A_{12}, are the images of the plane pencils lying in the double planes of the involution round r.

The pairs of points of the scroll are $\left(S_{1}, G_{2}{ }^{\star}\right),\left(S_{2}{ }^{\star}, G_{1}\right)$ and the pair to which G_{12} belongs.

If the congruence [1,1] is parabolic with the directrix r, the conics of the system have the line $R_{1} R_{2}$ as common tangent.
§ 10. Let us now consider the system Σ of the plane pencils with common ray r that have their vertex in the point S (and which belong, therefore, to the sheaf round S).

All the conics δ^{2} touch the straight line $r_{12} \equiv R_{1} R_{2}$ and the intersection d_{12} of their planes and the plane (Sa); for each plane pencil has one ray in the latter plane and the images of these rays form two projective point-ranges on d_{12}.

Now to any plane pencil there corresponds the plane pencil of the rays that have their images on the tangents $f_{1}{ }^{\star}, f_{2}{ }^{\star}$ through the points $G_{1}{ }^{\star}, G_{2}{ }^{\star}$ on $d_{12}{ }^{\star}$. The new pencils form a congruence Σ^{\star}; their planes pass through the point G^{\star}. Evidently the plane pencils ($f_{1}{ }^{\star}$) and ($f_{2}{ }^{\star}$) are projective; hence the lines f^{\prime} and $f^{\prime \prime}$ (in a^{\prime} and $\alpha^{\prime \prime}$) describe two
projective plane pencils round G^{\star} and the planes of the pencils of Σ^{\star} envelop a quadratic cone. Consequently an arbitrary point lies on two rays of the pencils and an arbitrary plane contains one ray.

The system Σ is transformed by the involution into a congruence $[2,1]$.
§ 11. Let Σ be the system of the pencils in a plane ϱ that have one ray r in common. If the field of rays in ϱ is represented by the pairs of points on f_{1} and f_{2}, the plane pencils of Σ have as images the conics which touch f_{1}, f_{2}, r_{12}, and g_{12}, which form accordingly a scroll.

Any line d_{12} defines one δ^{2}; the tangents $f_{1}{ }^{\star}$ and $f_{2}{ }^{\star}$ through the points $G_{1}{ }^{\star}$ and $G_{2}{ }^{\star}$ on d_{12} contain the images of the rays of the associated plane pencil. Any plane contains one ray of the system Σ^{\star}.

Let L_{1} be a point of α, G_{1} a point of g_{1}, δ^{2} the conic which touches $L_{1} G_{1}$. The tangent d_{12} cuts g_{1} in a point $G_{1}{ }^{\star}$, which we associate to G_{1}. If we choose $G_{1}{ }^{\star}$ arbitrarily on $g_{1}, A_{12} G_{1}{ }^{*}$ defines a δ^{2} of which two tangents meet in L_{1}. Hence g_{1} contains three points $G_{1}{ }^{\star}$ for which $A_{12} G_{1}{ }^{\star}$ and $L_{1} G_{1}{ }^{\star}$ touch the same δ^{2}. Each of the three lines $f_{1}{ }^{\star} \equiv L_{1} G_{1}{ }^{\star}$ corresponds to a plane pencil of Σ^{\star}. Accordingly this system is a congruence $[3,1]$.

It consists of the pencils in the planes of osculation of a twisted cubic of which the vertices lie on the intersection of two planes of osculation ${ }^{1}$).

[^1]
[^0]: ${ }^{1}$) A congruence [1,2] consists of the transversals of a conic and a fixed straight line cutting it. A [2,1] corresponds to it dually.

[^1]: ${ }^{1}$) This congruence corresponds dually to the [1,3] which has a twisted cubic and one of its bisecants as directrices. The other [1,3] which consists of the bisecants of a curve ρ^{3}, does not contain any plane pencils.

