Mathematics. - "On transformations of projective spaces". By Prof. L. E. J. Brouwer.
(Communicated at the meeting of May 29, 1926).
In my article: "Ueber Abbildung von Mannigfaltigkeiten" (Math. Ann. 71, p. 97-115) I have proved the following theorem:

A uniform continuous transformation without fixed point of an n-dimensional sphere into itself, has degree -1 for even n and +1 for odd n.

Since it appears that the specialisation of this theorem which gives an analogous property of uniform continuous transformations of n-dimensional projective spaces into themselves, and of which a particular case had already been published in these Proceedings XI, p. 798, is not to that degree, as I then thought permissible to assume, self evident to all readers, it shall be set forth here in full detail.

In the first place let there be given a uniform continuous transformation τ of a ($2 n-1$)-dimensional projective space E into itself. We provide E with a positive indicatrix and with an elliptic metric. Let S be the ($2 n-1$)-dimensional sphere provided with a positive indicatrix and a metric, obtained by duplication of E. Let P be a point of E, P_{1} and P_{2} the corresponding points of S, P^{\prime} the image of P in E under τ, and P_{1}^{\prime} and P_{2}^{\prime} the points of S corresponding to P^{\prime}. Let τ_{1} be the uniform continuous transformation of S into itself which brings P_{1} into P_{1}^{\prime}, and which becomes r by the folding of S into E^{1}). Then the volume of the image of S under τ_{1} (measured by the volume of the image of S under the simplicial approximations of τ_{1}) is twice as much as the volume of the image of E under r. Since, however, the volume of S is also twice that of E, the degree of τ_{1} appears to be equal to that of τ. Further, since the absence of a fixed point for r implies the absence of one for τ_{1}, the transformation τ, if exhibiting no fixed point must be necessarily of degree +1 .

On the other hand there exist arbitrarily small congruent transformations of S into itself without fixed point. To these correspond arbitrarily

[^0]small congruent transformations of E into itself without fixed point. Thus there exist uniform continuous transformations of E into itself of degree +1 and without fixed point.

In the second place let there be given a uniform continuous transformation τ of a 2 n-dimensional projective space E into itself. We provide E with an elliptic metric. Let S be the $2 n$-dimensional sphere provided with a metric, obtained by duplication of E. We provide S with a positive indicatrix. Let P be a point of E, P_{1} and P_{2} the corresponding points of S, P^{\prime} the image of P in E under τ, and P_{1}^{\prime} and P_{2}^{\prime} the points of S corresponding to P^{\prime}. Let τ_{1} and τ_{2} be the uniform continuous transformations of S into itself which carry P_{1} into P_{1}^{\prime} and P_{2}^{\prime} respectively, and which become r by the folding of S into E. Then corresponding image simplexes of corresponding simplicial approximations of τ_{1} and τ_{2} have equal volumes of opposite signs; thus τ_{1} and τ_{2} have equal degrees of opposite signs, and thus either τ_{1} or τ_{2} has a fixed point. Then, however, τ also must have a (ixed point ${ }^{2}$).

[^1]
[^0]: ${ }^{1}$) The existence of τ_{1} is due to the fact that to a circuit of S passing through P_{1} corresponds a contractible circuit of E passing through P the image of which under τ is a contractible circuit of E passing through P^{\prime} which corresponds to a circuit of S passing through P_{1}^{\prime}.

 The antipodal point-pairs of S become under τ_{1} again antipodal point-pairs or simple points, according as uncontractible circuits of E become under τ again uncontractible or contractible.

[^1]: ${ }^{2}$) Dr. HOPF points out to me that a uniform continuous transformation of a ($2 n-1$)dimensional projective space E into itself possesses at least two invariant points, if its degree is odd and $\neq+1$. We can add that on the other hand a uniform continuous transformation of a $2 n$-dimensional projective space E into itself has at least two invariant points, if its absolute degree (i.e. the absolute value of the degrees of the correspondent transformations of the sphere S duplicating E) is ≥ 2.

