Chemistry. - "On the Crystalforms of some position-isomeric Dinitrotoluenes". By Prof. F. M. Jaeger.
(Communicated at the meeting of October 31, 1925).
§ 1. In the following article are communicated the results of the crystallographic measurements made with a number of position-isomeric Dinitrotoluenes, which had been were prepared by Dr. H. A. Sirks ${ }^{1}$) and given to me by this author for the purpose mentioned. It appeared possible to obtain five of the six possible isomerides in a form suitable for measurement. For the purpose of comparison also some measurements are considered here, made with some other nitro-derivatives of toluene by Bodewig ${ }^{2}$), Calderon ${ }^{2}$) and Friedländer ${ }^{3}$).
§ 2. 1-2-3-Dinitrotoluene : $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}$; Mpt. $60^{\circ} \mathrm{C}$.
This substance was obtained from ether in the shape of small, almost colourless tabular crystals. They are well built and show constant angular values.

Rhombic-bipyramidal.

$$
a: b: c=0,6352: 1: 0,3721 .
$$

Fig. 1.
Forms observed: $c=\{001\}$, predominant, very lustrous; $m=\{110\}$, well developed and yielding very sharp images; $r=\{101\}$, large and well reflecting; $o=\{111\}$, extremely narrow, mostly absent, and yielding only faint reflections. The habit of the crystals is tabular parallel to $\{001\}$.

Angular values:	Observed:		Calculated	
$c: t=(001):(101)=$ *	30°	$21 \frac{1}{2}^{\prime}$		
$m: m=(110):(\overline{1} 0)=^{*}$	64	51		
$m: c=(110) ~:(001)=$	90	0	90°	0^{\prime}
$m: m=(110):(110)=$	115	9	115	9
$r: r=(101):(10 \overline{1})=$	119	25	119	7
$m: 0=(110):(111)=$	36	391	36	58
o : $\boldsymbol{c}=(111):(001)=$	53	201 $\frac{1}{2}$	53	21

No distinct cleavability was found.

[^0]§ 3. 1-2-4-Dinitrotoluene; Mpt.: $71^{\circ} \mathrm{C}$.
From a mixture of ether and alcool this compound was obtained in colourless, flat needles.

Monoclinic-prismatic.

$$
\begin{gathered}
a: b: c=0,8553: 1: 0,5236 \\
\beta=84^{\circ} 37 \frac{1_{2}^{\prime}}{\prime} .
\end{gathered}
$$

Forms observed: $m=\{110\}$ and $b=\{010\}$, large and very lustrous; $a=\{100\}$, much narrower than either of these forms, but yielding good reflections; $r=\{101\}$, large, but dull; $\mathrm{c}=\{001\}$, small and yielding only faint images; $\mathrm{o}=\{111\}$, narrow, but very lustrous; $p=\{120\}$, extremely narrow. The shape of the crystals is prismatic parallel to the c-axis.

Angular Values:
Measured:

	63°	521 ${ }^{\prime}$	-	
$m: b=(110):(010)=$ *	49	35	-	
$r: 0=(101):(111)$ 土 *	39	48	-	
$m: o=(110):(111)=$	76	191	76°	$19 \frac{1}{2}^{\prime}$
$a: r=(100):(101)=$	54	38	54	40
$a: m=(100) ~:(110)=$	40	25	40	25
$p: b=(120):(010)=$	29	491 $\frac{1}{2}$	30	25
$p: n=(120):(110)=$	19	26	19	10
$c: r=(001):(101)=$	29	471 $\frac{1}{2}$	29	571
$a: c=(100):(001)=$	84	25	84	371 $\frac{1}{2}$
$c: b=(001):(010)=$	90	0	90	0
o : $b=(111):(010)=$	62	35	62	28

Fig.2.

No distinct cleavage could be observed.
The optical axial plane is perpendicular to $\{010\}$.
This substance was also studied by Bodewig ${ }^{1}$); with his (pale yellow) crystals this author found: $a: b: c=0,8593: 1: 0,5407 ; \beta=85^{\circ} 12^{\prime}$. Perhaps small traces of impurities are responsible for the differences of angular values compared with those here observed.
§ 4. 1-2-6-Dinitro-toluene; Mpt. $66^{\circ} \mathrm{C}$.
From ethylacetate this isomeride was obtained as big, flat, and colourless crystals, showing constant angular values and permitting accurate measurements ${ }^{2}$).

[^1]Rhombic-bipyramidal (pseudohexagonal).

$$
a: b: c=0,5725: 1: 0,5324
$$

Forms observed: $m=\{110\}$, broad highly lustrous; $b=\{010\}$, also well developed and yielding good reflections; $r=\{101\}$, narrow, but eminently reflecting; $q=\{011\}$, also strongly lustrous; $s=012$, narrow, yielding sharp images.

Angular values:
Measured:

$m: m=(110):(\overline{10} 0)=^{\star}$	59°	59^{\prime}	-	
$b: q=(010) ~: ~(011) ~=* ~$	61	58	-	
$b: m=(010):(110)=$	60	121	60°	$12 \frac{1}{2}^{\prime}$
$q: s=(011):(012)=$	13	6	13	$7 \frac{1}{2}$
$s: c=(012):(001)=$	14	57	14	541
$m: q=(110):(011)=$	76	231	76	291

Cleavage distinct parallel to $\{001\}$.
The shape of the crystals is elongated parallel to the c-axis, either parallel to $\{010\}$, or to a pair of faces of

Fig. 3. $\{110\}$. Sometimes hexagonally limited plates were obtained, showing only $\{001\}$, with m and b as bordering facets. The plane of the optical axes is $\{100\}$, with c-axis as first bissectrix.
§5. 1-3-4-Dinitro-toluene; Mpt. $60^{\circ} \mathrm{C}$.
From a mixture of benzene and ethyl-alcool the substance crystallizes in very thin, transparent needles, which mostly show no limiting faces at the top, beyond the basis $\{001\}$. Rarely, however, a form $q=\{011\}$ was observed, only very small.

Fig. 4.

Monoclinic-prismatic.

$a: b: c=0,8320: 1: 0,2465$;

$$
\beta=88^{\circ} 25^{\prime} .
$$

Forms observed: $a=\{100\}, m=\{110\}$ and $p=\{120\}$, all three about equally broad and yielding good images; $b=\{010\}$, somewhat narrower $c=\{001\}$, well reflecting; $q=\{011\}$, small and giving only faint reflections. The crystal-habitus is elongated parallel to the c-axis.
Angular values: Observed: Calculated:

$$
\begin{array}{rlcc}
m: b & =(110):(010)=^{*} & 50^{\circ} & 15^{\prime} \\
q: p & =(011): \overline{(120)}=^{*} & 79 & 3 \\
q: c & =(011):(001)={ }^{*} & 13 & 50 \frac{1}{2}
\end{array}
$$

Angular Values:	Observed:	Calculated:		
$c: p=(001):(120)=$	89°	$8 \frac{1}{2}^{\prime}$	89°	11^{\prime}
$\mathbf{a}: c=(100):(001)=$	88	27	88	25
$c: b=(001):(010)=$	90	0	90	0
$a: m=(100):(110)=$	39	45	39	45
$m: p=(110):(120)=$	19	18	19	$14 \frac{1}{2}$

No distinct cleavage could be observed.
The extinction on m, p and b differs only inappreciably from 90°.
§ 6. It may be remarked in connection with the measurements of the isomeric $1-2-4$ - and 1-3-4-Dinitrotoluenes, which both are derivatives of p-Nitrotoluene, that this last (Mpt. : $\left.54^{\circ} \mathrm{C}.\right)$, is rhombic-bipyramidal, with : $a: b: c=0,9107: 1: 1,0965$ and the forms: $\{110\},\{011\},\{211\},\{001\}$, and $\{010\}$. The crystals are perfectly cleavable parallel to $\{010\}$. The plane of the optical axes is parallel to $\{100\}$, with the c-axis as first bissectrix of negative character. The dispersion is: $\varrho>v$.

Furthermore measurements are made of: 1-2-4-6 and 1-3-4-6-Trinitrotoluene; both these compounds are also thombic-bipyramidal, 1-2-4-6trinitrotoluene (Mpt. : $82^{\circ} \mathrm{C}$.) has the parameters : $a: b: c=0,7586: 1: 0,5970$, and exhibits the forms: $\{110\},\{010\},\{210\}$ and $\{011\}$. The optical axial plane is $\{001\}$, the double refraction is negative. 1-3-4-6-Trinitrotoluene (Mpt.: 104° C.) possesses the axial ratio: $a: b: c=0,9373: i: 0,6724$, and shows the forms: $\{010\},\{111\},\{120\},\{021\}$ and $\{001\}$. This compound has a positive double refraction; the plane of the optical axes is $\{100\}$.

From these data it is clear that there does not exist a close formanalogy between the mono-, di- and tri-nitro-derivatives of toluene; at the utmost, one might speak of some relation in the value $b: c$ in the 1-2-4-derivative and in p-Nitrotoluene, if for the c-axis half the measured value be taken, while the angle β decreases from 90° to $84^{\circ} 37 \frac{1^{\prime}}{}{ }^{\prime}$ Then also a certain analogy can be seen in the relations $b: c$ of these two compounds with the 1-2-6- and 1-3-5-derivative (see below), although, as a fact these isomerides cannot be considered to be derivatives of p-Nitrotoluene. As a final result, therefore, it must be considered to be artificial to indicate any crystallographical relationship here, - the more so, as the 1-3-4-derivative on the other hand does not show any relation of this kind with respect to the substances mentioned in the above.

§ 7. 1-3-5-Dinitro-toluene; Mpt.: $93^{\circ} \mathrm{C}$.

From a mixture of benzene and carbodisulphide, peculiarly shaped individuals were obtained, being wedge-shaped. They appeared, however, completely identical with the monoclinic crystals, obtained by BARNER ${ }^{1}$) from a mixture of benzene and acetic acid. They are bordered by $\{001\}$, two planes of $\{110\}$ and two planes of $\{1 \overline{1}\}$, i.e. $\{1 \overline{1}\}$ and $\{1 \overline{1} \overline{1}\}$, and

[^2]also by a number of strongly curved faces, giving the shape of a lancepoint to the crystals dealt with here (Fig. 5).

Monoclinic-prismatic (pseudo-rhombic).

$$
\begin{gathered}
a: b: c=0,4691: 1: 0,5276 \\
\beta=89^{\circ} 51^{\prime} .
\end{gathered}
$$

Forms observed: $o^{\prime}=\{11 \overline{1}\}$, rather large and well reflecting; $m=\{110\}$, narrower than o^{\prime}, also lustrous; $c=\{001\}$, large, is

Fig. 5. striated parallel to the edge (001): (010). The indices of the curved faces were not determinable.

Fig. 6.

No distinct cleavability present.
The plane of the optical axes is perpendicular to $\{010\}$; on m the extinction is almost normally orientated. If this compound is recrystallized from ethyl-acetate, beautiful transparent crystals of the shape of Fig. 6 are obtained, which, however, soon become dull and opaque.

Monoclinic-prismatic.

$$
\begin{gathered}
a: b: c=0,7143: 1: 0,3853 ; \\
\beta=73^{\circ} 58 \frac{1^{\prime}}{\prime} .
\end{gathered}
$$

Forms observed: $m=\{110\}$ and $r=\{101\}$, large and highly lustrous: $s=\{\overline{1} 01\}$, somewhat narrower than r, but well reflecting; $b=\{010\}$, rather narrow, but yielding very sharp reflections. The habitus of the crystals is short-prismatic along the c-axis.

Angular	Values:	Observed:		Calculated:	
	$m: m=(110):(1 \overline{10})=$ *	68°	651 ${ }^{\prime}$		-
	$m: r=(110):(101)=^{*}$	57	46		-
	$r: s=(101):(\overline{101})=*$	55	38		-
	$m: b=(110):(010)=$	55	32		$5^{\circ} 32^{\prime}$

No distinct cleavage was found.
Evidently no direct morphotropic relations exist between these crystals and those of the pure substance.

Groningen, Laboratory for Inorganic Physical Chemistry of the University.

[^0]: ${ }^{1}$) H. A. Sirks, Dissertatie, Groningen, (1906).
 ${ }^{2}$) C. Bodewig, Zeits. f. Kryst., 3, 388, (1879); L. Calderon, ibid., 4, 235, (188
 ${ }^{3}$) P. Friedlânder, Zeits. f. Kryst., 3, 170, 173, (1879).

[^1]: ${ }^{1}$) C. Bodewig, loco cit., p. 389.
 ${ }^{2}$) See also: K. Heydrich, Zeits. f. Kryst., 48, 268, (1911). The melting-point mentioned there is 6° too low.

[^2]: ${ }^{1}{ }^{1}$ F. Barner, Zeits. f. Kryt., 9, 300 (Ref.).

