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I. 

The Equation of State. 

1. It is known that VAN DER WAALS'S equation of state 

a RT 
P+~=v-b (1 ) 

holds for gases and liquids at higher temperatures. This equation may 
he imagined as having arisen from the Virial~equation (everything still 

to he multiplied hy -~2) 
a b 

pv+ - - - RT=RT, 
v v-b 

(2) 

a 
in which pv is the virial of the external forces (pressure), - the so~called 

v 
b 

virial of attraction and - --b RT the virial of repulsion, which latter 
v-

3 
is proportional to RT, i.e. to the vis viva L = "2 RT of the progressive 

motion of the molecules. Consequently it is immaterial for the equation 
of state whether the molecules contain only one or more atoms. as RT 
always refers to L. and not to L + the energy of the atoms in the molecule. 

In most cases the temperature functions of the quantities a and b. 
which ahout compensate each other. and also the sm all volume~function 
of a. may he neglected here. But this may hy no means he done with 
the very strong dependenee on the volume of b. which may he repre~ 
sented hy the simple equation I) 

b= bg 
• or v-bo = (v-b) (1 + bg ~ bo). (3) 

1 +bg-~ 
v 

The second of equations (3) can he derived from the first hy calculat~ 
ing v-b from it. Then the vi rial equation (2) hecomes: 

I) Compare my book: "die Zustandsgleichung von Gasen und FIUsslgkeiten". Lelpzlg, 
L. Voss, 1924, especially p. 74-79 and 91. Also Z . f. anorg. u. allg. Ch. HO, 58-60 (1924) . 
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pv+~-RT~-=RT. 
v v- bo 

. . (2a) 

and the equation of state (I). ensuing from it. becomes: 

+ ~= RT (1 + bg - bo) . 
P v2 v-bo v 

. . (I a) 

That the above equation for the dep enden ce on the volume of b 
renders all the thermal quantities (compressibility. expansibility etc.) for 
liquids with great accuracy. I have shown before already more than 
once I}. IE e.g. the quantity 1 + (bg-bo) : v is neglected. values 4 or 5 
times too sm all are e.g. obtained for the coefficient of compressibility. 

As for ordinary substances (r = 0.9 to I) the value bIJ: bo lies in the 
neighbourhood of 3.8 to 4.8 at T = t Th (bg-bo): bo will be 2.8 to 3.8. 
and (bg-bo): v will be = 2.14 to 2.85. because v is = 1.31 to 1.33 bo 
at temperatures in the neighbourhood of the solidifying point (T about 
= t T k) 2}. Thus 2.5 is e.g. found for (bg-bo): v for mercury. 2.0 for 
C2H sCI. 1.8 for ether. 2.0 for molten copper (see IV) 3). Here T is. 
however. higher than 1/2 Tk for ether and ethylchloride. hence at : ak is 
< 1.5. whereas mercury and molten copper belong strictly speaking to 
another category. 

Por the important quantity ~b the following equation is found. wh en 
v-

a 
the external pressure is negligible by the side of 2: 

IJ 

in which f is the known vapour pressure factor (still slightly variabie 
with the temperature). Por ordinary substances the value of 14 to 16 is 

found for ~b at m = tand with f= 8 r = 7 to 8. We may. therefore. 
v-

1) Compare inter alia pages 108-121 of the cited book. 

2) Compare also Z. f. anorg. u. allg. eh. 149. 349-350 (1925). At a temperature T 
the following relations are valid: 

(bb~t = ~::~: X(bb:k 
X :: = (1.5 à 1.6) X (r + t) X2r=(1.5 to 1.6} r (2r+1). 

T T (bg}t at 6 d d 2 
as at = t k (b) = - = 1.5 to 1 .. Further from = 0 - rm follows 

9 k ak 

! = ~ = 1 - 1 ~ r m. as do is = 2 (I + r)· Hence with ~ = ~ we get 

V v 2 (1 + r) 
Vo - bo 2 + r . 

3) Compare also Z. Gl. p. IH-ll5 and 156-162. 
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write for "ordinary" liquids in the neighbourhood of the solidifying point: 

v 
v-b'- 15; bg-~=~=(." _ 25 ([··d t) " •. lqUl. m = . 

v v 

2. Por solid substances the equation of state 

a b RT 
p+---=y-

v2 vn V 

has of ten been proposed (GRONEISEN and others). in which at very low 
temperatures PT4 must be substituted for RT. in accordance with the 
expression for the Energy holding then . Here P is a volume function. 
which is still to be determined. It is. however. not equal to the coeffi~ 

cient of Ti in the expression for E at very low temperatures. 
But this equation cannot possibly be correct. Por at very high pressures 

the first member would then approach to 00 at a given temperature. 
whereas the second member remained finite. Hence here too v-b must 
necessarily occur in the equation of state. and not vno 

This is. ho wever. not all. If the coefficient y occurring in the above 

equation is calculated theoretically. ~ y = (3 n + 5) : 6 is found for it 1) 

1 
(and not (3n-l): 6. as GRONEISEN erroneously gives). But since for 3" y in 

· 49 
different metals values are experimentally found between 3" and 3" (average 

2; see 11 § 2). n would lie between 1 and 4. which is impossible. Por 
in the first place n cannot be = 2. which would yet be the case with 
many metals; secondly it is inconceivable that in the term b: vn 

• referring 
to the repulsive forces. the exponent of v should be different for every 
metal; and thirdly fractional exponents would frequently occur. 

All these considerations completely condemn the equation of state in 
question. IE on the contrary 

(4) 

is written for solid substances at higher (i.e. at ordinary) temperatures. 
in which equation b is again a function of v. represented by arelation 
analogous to (3). all the discrepancies disappear. and also the disconti~ 

nuity between the form of the vi rial of repulsion in liquids and that in 
solid bodies which is difficult to understand. At bottom it will. indeed. 
be pretty weIl immaterial wh ether the molecules move - as in liquids -
along curvilinear .. open" paths between the other molecules. frequently 
"colliding" (which mayalso take place "at a distance"; it is not neces~ 

1) Compare my earlier Paper in These Proceedings 27. 902-904 (1924). 

7 
Proceedings Royal Acad. Amsterdam. Vol. XXIX. 
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sary that the molecules exactly touch 1)). or - as in solid substances -
move in curvilinear "closed" paths round a certain state of equilibrium. 
without shifting from one molecule to another. This with reference to the 
so-called "dynamic" vi rial of repulsion. whieh accordingly. as in liquids 

b 
in equation (2). keeps the form - v-b RT; this. added to RT in the 

second member. again yielding RT
b 

af ter division by v. 
v-

But what distinguishes solid bodies from liquids (and gases). is that in 
consequence of the fact that the molecules are bound to definite positions 
of equilibrium. there must necessarily a term À be present in the equation 
of state. which refers to the so-called "sta tic" virial of repulsion. Hence 
this. no more than the statie virial of attraction a/v. will contain the 
temperature as a factor. but it will. of course. contain v-b in the 
denominator. as otherwise at T = O. p = 00 equation (4) would lead to 
an absurdity. 

Accordingly the virial equation has now 1he following form (everything 
still to be multiplied by 3/2): 

pv+ --À- --RT=RT. (
a v) b 
v v-b v-b 

Here too, in the case of solid substances. it is quite indifferent whether 
the molecules are mon-atomic or pluri-atomic. because in both members 
RT refers again to the progressive energy of the molecules. now in 
c10sed paths (so that L is half the total energy of the path) instead of 
in open paths. as with liquids and gases. 

In what follows we shall show that the equation (4). combined with 
arelation b = f(v) of the form (3). represents the experimental results 
for metals perfectly accurately in every respect - not only the coeffi­
cient of compressibility and expansibility. but also the coefficients of 
pressure and temperature of the first-mentioned coefficient. whieh the 
earlier theories of GRONEISEN and others were entirely inadequate to do. 

11. 

Closer Consideration at Higher temperatures. 

1. The quantity À. occurring in the above equation (4). can be expressed in 
the volume VOl which the metal occupies at T=O (PP is th en substituted 
for RT). when the external pressure p 0 is retained. i. e. when the 

1) In th is we think e. g. of the molten electrolytes, where the molecules can remain at 
comparatively large distances apart from each other. Compare These Proceedings 28, 789-793 
(1925), and also Z. f. anorg. u. aUg. Ch.l~9, 337-311 (1925), where we found about 2,7 
for the ratio between the diameter of the molecules and the longitudinal dimension of the 
elementary cubes. 
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a À. 
solid, substance. as usually, is not under "strain", Then 2- --b . 

Vo vo- 0 

is obtained, hence À = a 2 (vo-bo). 
vo 

In this bo is the value of b corresponding with voo according to the 
equation 

b= bg ,or v-boo = (v-b) (1 + bg v boo) . 
1 + bu - boo 

v 

which corresponds to (3), or also, when we write bo-boo for abbreviation 
=q;: 

b- bu 
-f~' (5) 

from which then follows bo = bg : (1 + ~). In this equation (5) bu is 

eVidently again the (fictitious) value of b, when v should be = 00. The 
other limiting value boo = voo is evidently the value of b, wh en in (5) 
we take p = 00. This is, therefore. the smallest volume possible, that the 
solid substance can occupy àt the utmost compression. Hence we distin­
guish two limiting volumes with the corresponding values of b, viz. vo 
and bo < vo at T = 0, p = 0, and voo = boo at p = 00. 

The quantity Cf. is much smaller in solid substances than in liquids. 
v 

viz. = 0.6 in solid copper as we shall see in IV, as against an average 

value of 2,5 in ordinary sub stances ( m = ~). so that the variability of 

b is by no means so great. 

2. The quantity ~. From the equation of state (5) follows immediately: 

_(dP)_ R _R v 
s- d- - - b--X-b' t v- v v-

v 

and as the coefficient of tension s according to a known identity is 

= - ( ~~ l : ( ~; ); we mayalso write s = ~, in which a = ~ ( ~~ ) p is the 

coefficient of expansion, and 0 = - ~ ( ~; } is the coefficient of compres­

a R v 
sibility. Hence;; = V- X v-b' i.e. 

v a v ---- X­v-b-o R' (6) 

7* 
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from which the ratio v: (v-b) can be calculated for every solid substance, 
when a and (J are known. Thus e.g. in copper at 20°C a = 3 X 17.10-4, 

(J = 0,73.10-12 (p in dynes per cm2), v = 63,57 : 8,933 = 7,116, and 
R = 83,17.106 in ergs. Hence: 

v 51 . 10-6 7,116 362,9 _ 598 
v-b -0.73.10-12 • 83.17 .106 60,7 - , . 

so that (see for P.. = w Chapter IV) 
v 

v 
-b=6: v-

b -b cp 
9 00=_ = W = 0.6 (solid copper 200C.) 

v v 

may be put. For other metals the following values are found in exactly 
the same way: 

Cu Ag Au IMgl Zn CdlA1ISn Pbl Ta l Bi IWIFe Ni Pd Pt 
6 7 9 5 ±7 ±9 6 7 8 5 I ± 4 4 5 5 7 7. 

mean about 6. 

If in (4) i Lis substituted for RT 1). then i d. is to be substituted for R, 

in which c'. represents the specific heat referring to the pure progressive 
energy (= half the total energy of path) of the molecule (atom) at con~ 
stant volume. We th en get: 

from which it therefore follows, that as v-b does not approach 0 at 
T = 0 and p = O. but approaches the finite value vo-bo (see above). 
and also (J remaining finite, the coeffici~nt of expansion a will always run 
parallel with c·., and will, therefore. also approach 0 at very low tempe~ 
ratures, where c'. approaches 0: and this about proportional to T4. In 
this way this property of a is proved in an independent way, and not in 
the way indicated by N ERNST and others on the ground of perfectly 
wrong formulae. (compare my Paper in These Proc. 27. 911-913 (1924) 
already cited). 

A d· h I' . f + a b RT R ccor lOg to t e ear Ier equatIon 0 state p 2 - - = r - , r -
V v" v v 

would have been found for (ddP) = ~, instead of !i X ~b' I t is seen from t (J v v-. 
this that the earlier r (determined by î r = 3nt5) is nothing else than the 

ratio ~b in the new equation of state. And it is very plausible that 
v-

1) This is not perfectly correct. We shall see later on that there is a difference. At 
higher temperatures th is difference approaches. however. to O. but at very low tempera­
ratures Pand A are not equal to each other in L = A 1"', and P1'" in the equation of state. 
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th is ratio will assume different values at e.g. 20° according to circum~ 
stances (different values of a and of T : Tk• etc.). whereas the older 
equation of state would lead to great absurdities with regard to n (see I). 

As regards the quantity À. in the equation of state (4). it follows imme~ 

d· I f 1 - a ( ) a vo-bo . 1 a late y rom A - 2 vo-bo = - --. that À. IS ab out = -6 -. as 
Vo Vo Vo Vo 

vo-bo v-b 1 a 
--- will hardly differ from -- = -6' If we assume that - (solid) is 
~ v ~ 

a 
practically = - (liquid). which is quite fulfilled with respect to a as we 

Vo 
shall see soon. and with great approximation with respect to voo then 
a. 2a la .. 
-=7r.RTk will follow from RTk = -7 -b = -7 -b (ltqUld). because 
Vo kro 
bk = 2r . bo and bo = Vo (r is here the coefficient of direction of the 
straight joining line between d k and 1/ 2 do). Now r is = 1.76 for copper I) 

according to our formula 2 r = 1 + 0.038 VTk• with Tk = about 4400°; 

hence ~ = 12.3 RTk and À. .- 2 RTk • We have therefore (for copper): 
Vo 

À. .- .-.!.-~ or .- 2 RTk • 
6 voo 

3. We shall now calculate the different values of v and b. both for 
solid and (by way of comparison) for liquid copper. For solid copper 
at 20° C. we found already above v = 63.57 : 8.933. i.e. V20 = 7.116. 
From this the value Vo = 7.046 is easily calculated at T = O. p = O. 
For the coefficient of expansion between 16° and -191 ° is 3 X 14.28 . 10-6 
(HENNINO). in consequence of which V_1910 becomes =7.052. And between 
- 1930 and - 2530 a = 3 X 3.9 . 10- 6 (LINDEMANN). which yields V_2530 = 
= 7.047. so that V_mo = Vo will be = 7,046. 

Now b20 = t V20 follows further from v v b = ~ at 20°. from which we 

get b20 = 5.930. And as according to (5) V20 - boo=(v2o-b2o) (1 + ~), in 
V20 

which ~ = 0.6 (see IV). v2o-boo becomes = 1.186 X 1.6 = 1.898. hence 
V20 -

boo = voo = 5.218. Then vo-bo = 1.828 : 1.606 = 1.138 is found ac~ 

cording to (5) from (vo - boo) = (vo - bo) (1 + ce. ). with ce. = ~ X V20 = 
Vo Vo V20 Vo 

0.6 X 1.01. which yields bo = 5.908. As regards the (fictitious) value of 

bu (at v = 00). the value 7.116 X 0.6 = 4.270 follows for cp = bu - boo 

Erom ~ = 0.6. which yields bu = 9.488. (Also from b20 = bu : (1 + ~) 
V20 V20 

the value bu = 5.930 X 1.6 = 9.488 would have followed). 

I) Prom T. X 1.7 = 2578° X 1.7 = 13830 abs. 



102 

And now the corresponding values for liquid copper. But as at 1083° C. 
(the melting-point of copper) the coefficient of expansion is. indeed. known 
to a certain extent. but not the compressibility, we must know the value 

of a for the calculation of ~b at 1083°. For from the equation of state 
v-

va/IJ 
follows (see I. § 1) v-b = RT' Nowweshallcalculatethevaluea=32.63.1012 

for a in 111 from measurements of the vapour pressure. We find for v at 
1083° the '1alue 63.57: 8.40. i.e. VlOS] = 7.568. Hence we have: 

v 32.63 . 1012 : 7.568 
v-b - 83.17. 106 X 1356 

4.312. 1012 
0.1128 . 1012 = 38.23. 

This value is considerably greater than for solid copper (= 6) and for 
ordinary liquids (± 15). but all the same perfectly plausible. For from 

~b = L (see I. § 1) with m = T: Tk = 1356 : 4400 = 0.3082 follows for 
v- m 
f the value 38.23 X 0.3082= 11.8 = about 12. From our formula [" = 8)' = 
= 8 X 1.76 (see above § 2) the value 14.1 = 14 would follow for [". And 
as {J083 will be somewhat smaller than [" as it usually is. th is value agrees 
very weil. 

In IV we shall find the value 2.017 = 2 for T. (at 1083°). hence about 
- v 

the same as for ordinary Iiquids (~ - 2.5; zie I. § 1 ). For solid sub-

stances (copper) th is was only = 0.6. And knowing this value. we can 
easily calculate the different values of v and b. 

From v: (v-b) = 38.23 and v = 7,568 (at 1083°) follows immediately 
v-b=0,198. hence bl083 := 7.370. And then the value 0.198 X 3.017 = 0,597 

follows for v-bo at 1083° from (3). i.e. v-bo = (v-b) ( 1 + ;} 50 that 

(fictitiously) we find bo = vo=6.971. And from bg = b (1+~) the value 

7.370 X 3.017 is found for bg • hence bg = 22.24. 

Taking al that has been found together. we get the following summary. 
in which we have also added the results for "ordinary" substances for 
a comparison. 

The values for "ordinary" liquids ()' = 0.9 to 1) are : 

v=oo (_V) _ 15 
v-b '/2Tk 

- -- 25 ( CP) 
V '/zTk •• 

The values for molten copper ()' = 1.7) are : 
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~ (va = 6.97) 

(ba = 6.97) 

V1083 = 7,57 

blO83 = 7.37 
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v=oo ( _v )=38 
v-b 1083 

(rr.) -2 
v 1083 

The values for solid copper (V20 is at 20° C.) are: 

~ VOO = 5.22 

( boa = 5.22 

VO= 7.05 

ba = 5.91 

V20 = 7.12 

b20 = 5.93 

(v =(0) (
_v )=6 
v-b 20 

( P...)=0.6. 
v 20 

If the Iimiting volume voo = 5.22 for solid copper is assumed to be 
= 1.91m (in the case of cubic distribution; m is the real volume of the 
molecule or atom thought spherical). then we have m =2.73. from whieh it 

follows that at 10830 bg = 8.14 m for liquid copper. i.e. = 4 m X 

BOL TZMANN'S factor of distribution, which is accordingly about = 2 at 
the tempera tu re mentioned. Also for ordinary liquids (bg ) 1/2 Tk lies on an 
average in the neighbourhood of 4,3 X 1,9 m = 8,17 m. so that BOL TZMANN' s 
factor is again = 2. At the absolute zero. but p = O. we find further 
ba = va = 2.6 m for liquid copper. and ba = 2.2 m for solid copper. so 

th at in both cases some space is left (in consequence of the repulsive 
forces), which space does not vanish before p = 00 (boa = voo = 1.9 m). 

111. 

Calculation of ~ in Copper. 
v2 

We will now calculate the value of a in liquid copper. which value. 
as will appear in what follows. may be applied to the solid state un~ 
changed. The value of aseems therefore to be the same for all the 
three states of aggregation. This is not the case with b. as appears very 
c1early from the survey in § 3 of 11. 

Many years ago I drew up a theory of the solid state - without 
the very essential quantity Ä. however - in which v-b was retained. 
a passed unchanged from one state to another. and also b was supposed 
variabie. not only in each of the two states of aggregation separately. 
but also at the transition from the Iiquid into the solid state. I did not 
ascribe this variability. however, to the true cause at the time. but to 
the so~called "quasi~association". which was th en the fashion. Then 
another state of association was assumed by me to exist in the solid 
state than in the liquid state. and also the degrees of association in the 
two states could differ according to Tand v. This hypothesis could 
account for much. but by no means for everything. and at present this 
theory may be considered as entirely discarded. 
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According to RUFF and BERGDAHL I) we have. for molten copper. the 
subjoined values of p. at the values of T standing above them. According 
to the shortened formula 

mm _ AIO 
logloP --r+Co. 

the values of C IO can be determined from the values of T loglo P = 
= - AIO + C IO T by subtraction. IE for this purpose the values at the 
lowest and at the highest temperature are taken for the sake of accuracy 
(with the exclusion of that of the very lowest temperature. which in 
spite of the redetermination by RUFF and MUGDAN 2) is not yet quite 
certain). C IO is found from 

C - T 2 loglo P2 - TI loglo PI 
10- T 2-TI 

t= 1875 2105 2175 2215 2245 2300 

T=2148 2378 2448 2488 2518 2573 

pmm = 20 124 209 300 404 752 

loglO pmm = 1.3010 2.0934 2.3201 2.4771 2.6064 2.8762 

T [oglo pmm = 2795 4978 5680 6163 6563 7401 

7401-4978 2423 
From this follows for C IO averagely C IO = 2573-2378 = 195 = 12.43. 

With this values of C IO the values 

AIO = 23880 I 24560 24720 24740 24710 24560 
are further found from A IO= C IO T - T [oglo p. hence on an average 
AIO = 24530. It is seen that the first value (calculated from p at 1875°) 
does not fit in with the others. VAN LIEMPT 3) gave the somewhat 
smaller value 23600. For A = AIO X 2.3026 we find therefore A = 56480. 
hence AR becomes=4.698.1012 with R=83.17.106

• 

As in log p = - : + C=- ~~ + C the numerator AR is the 

extrapolated heat of evaporation at the absolute zero 4). viz. = ~ (strictly 
Vo 

I) Z. für anorg. u. aUg. Chemie 106. 76-94 (1919). GREENWOOD. Z. f. physik. eh. 
76. 484-490 (1911). 

2) Z . für anorg. u. aUg . Ch. 117. 147 (1921). 
3) Z. f. anorg. u. aUg. Ch. 114. 105-116 (1920). 

. ~ a 
4) Por m the general formula log p = - RT + Cl ; has been developed into a series. 

vi:!;. = ~ + ~ T + . . .. in which the term with T joins the constant Cl after division 
va 

by RT. through which it becomes = C. 
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~ T speaking - . but a is supposed independent of ). we get v'ot 

~ = 4.698.1012
• 

Vo 

If for the coefficient of expansion of Iiquid copper at 10830 the value 
65 '.10-6 is assumed I). the value 9.153 follows for Do'. i. e. the extra~ 
polated value of D at T = 0 (which we want here. as appears from the 
derivation of the formula for log p (cf. no'te 2). from the density 8.40 at 
1083°). And from this the value 63.57: 9.153 =6.945 is calculated for v'o. 
(This value v'o. calculated from the expansibility at 1083°. is therefore 
slightly smaller than the real value of Vo = bo. which we have found 
above in 11. § 3.',' viz. 6.97). 

In virtue of this a finally becomes for liquid. hence according to the 
hypothesis also for solid copper: 

a = 4.698 . 1012 X 6.945 = 32.63. 1012
• 

in which alv2 is expressed in dynes per cm2• For this quality the following 
value is found for solid copper with V20 = 7.116 : 

--; = 0.6444. 1012 (solid copper 200 C.). 
v20 

IV. 

The Coefficient of Expansion (Solid). 

We start from (4) combined with (5). viz. 

p+ a
2
=1+RT=1+RT(I+'E). 

v v-b v-boo v 

which equation we shall differentiate with respect to T (p constant). Then 
we get: 

_ 2a (dv) = (1 + RT) (_ ~ + 'fIv __ 1_ !E) (dv) + ~. 
v3 dt p (V-bOO)2 v-boo v2 dt p v-b 

wh en both a and bg (in cp = bg-bo) are supposed independent of T. 
Hence we get further: 

~ (dV) [_ 2a + (1 + RT) v (1 + 'E + 'E V-boo)] = ~. 
v dt v2 (v-boo)2 v V v v-b 

p 

If in this for 1 + RT its value from the equation of state is substituted. 
in which p is put = O. we get: 

I) Between 10830 and 12000 PASCAL and HOUNIAUX gave the formula v = vI083 

(I + 62 . 10- 6 (t - 1083) - 560 . 10-9 (ibid.)2 + 5600.10-12 (ibid.)3). of which the coeffi­
cients of the 2nd and the 3rd powers of t - 1083 are much too great. Close to 10830 

the coefficient of expansion is = 62 . 10-6. But if vl2QQ is calculated according to th is 
formula. v becomes = 7.633 ., (D = 8.328 and not 8.32 as is given). And th Is would give 
0( = 73.10-6. As most probable value we take 65. somewhat greater than 62. 
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a[_2a+~ v (v-b) (1 +~+~ v-boo)J=~. 
v2 v2 {V-bOO)2 V V v v-b 

i.e. af ter substitution of v-bo = (v-b) (1 + ~) : 

a :2 [ - 2 + v v b 1 ~fT: (1 +; v ~ b) J=~ v v b' 

or 6nally 

v-b rp_ 
IE --=z. - - w. the equation becomes: 

v v 

i.e. 
R 1 +w 

(~)= -;r;; 1 - (2 + w) z" . . . . • • (7) 

and this equation for a will evidently also be valid for the liquid state 
(p = 0). It is true th at then in the equation of state À. is absent by the 
side of RT. but this quantity À. is eliminated during the calculation. Only. 
rp is then not = bg - boo. but simply = bg - bo. 

For solid copper (200 C.) a is now = 3 X 17.10-6-51 . 10-6• We 
have. therefore. for the calculation of w (for z we found al ready the 

value 1/6 in 11) with V20= 7.116. ~ = 4.585.1012 and R: 83.17 .106 : 
V20 

__ 1 + w __ 51 . 10-6 X 4.585.1012 
_ 2 812 

1 - 1/6 (2 + w)- 83.17.106 -.. 

from which w = 0.596 = 0.6. of which we have already made use in 
11. § 3. For ordinary substances the mean value 2.5 was found for this 
(see I. § 1). 

In mo/ten copper at 10830 a = 65 . 10-6 (see 111); there we get. there­
fore. with a: V1083 = 32.63. 1012

: 7.568 = 4.312. 1012 and z = 1 : 38.23 
(see 11. § 3): 

__ 1 + w _ _ = 65.10-6 X 4.312.1012 
_ 3 370 

1 _1/38.23 (2 + w) 83.17.106 -.. 

from which w = 2.017 = 2. which value is. therefore. in the neighbour­
hood of that of ordinary liquids (see I. § 1 and 11. § 3). 

At verg low temperatures (but p = 0) the value 

4 PT3 1 + Wo 
a - -- -:-----;-::--'--=--,--

(p=O)- a/vo 1 - (2 + wo) Zo 

is evidently found instead of (7). as everything remains the same; only 
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PT' is now substituted for RT. which. differentiated with respect to T. 
yields 4 PT3. Now (00 is = cp : Vo and Zo is = (vo-bo) : vo. which values 
will differ "nly little from those at 20° C. e.g. for solid copper (see the 
summary in 11. § 3). Hence the coefficient of expansion a will become 
proportional to T3 at very low temperatures. just as cv. with which it 
runs parallel. 

v. 
The Coefficient of Compressibility (Solid). 

Now that both z = (v-b) : v and (0 = cp: vare known. the calcul­
ated coefficient of compressibility. af ter substitution of these values. must 
agree with the coefficient determined experimentally. For according to 

a R 1 
(6) - = - X -. from which we have determined the value of z (= 1/6), a v z 
When. therefore. the value of a comes right (and in IV this has been 
effected by the assumption of w = 0.6). a must naturally also be in har­
mony. Only in VI and VII with the pressure and temperature coefficients 
of the coefficient of compressibility there can be question of a verification 
of our hypotheses. 

Now a-I = R X 1.-. follows immediately from the above equation. 
v az 

hen ce according to (7) for a. we have: 

a-I - ~ X 1.- 1 - (2 + w) z (8) 
(p=O) - v2 z l+w ' 

which might also easily have been derived directly from the equation 
of state by differentiation with respect to v (T constant). in entirely the 
same way as in IV for a. However. in VI and VII we cannot make 
use of this result. because in this ). + RT has been replaced by its 
value from the equation of state. in which p = 0 was put. 

a 
If in (8) the value 0.6444.1012

• found in lIl, is substituted for 2' the 
v 

1 v . . 
value 6 for - = --b' the value 0.6 determmed Just now in IV from 

z v-
the coefficient of expansion (everything at 20° c.). we get: 

a-I =0.6444 .1012 X6X 1-!~66: 6) = 3.866.1012 X 0,3542 = 1.369. 1012• 

The value 1.370.1012 was found by BRIDGMAN at 20° c.. so that the 

agreement of course is perfect. For BRIDGMAN I) found for pure copper (loc. 

I) Compare his exceedingly important and comprehensive paper in the Proceedings of 
the American Acad. of Arts and Sciences 58. No. 5. p. 165-242 (1923): The compressi­
bility of thirty metals as a function of pressure and temperature. Also in numerous other 
papers BRIDGMAN has considerably enriched our knowledge in this and allied regions 
af ter RICHARDS. We are greatly indebted to this investigator for his extensive and very 
accurate researches. 
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cito p. 192) for - ~ 6v = 0' . which is practically = 0, in which v. repre~ 
Va p 

sents the volume at t;O and p = 0 : 

O'3Cf' = 10-6 (0.719-2.6 . 10-6 p) ~ . KGI 
P m cm2• 

0'750 = 10-6 (0.734 - 2.7 . 10-6 p) 

If p is expressed in Dynes/cm2 (in which then e. g. 0.719 must be 
multiplied by 1.02. 10-6 and 2.6 by (1.02 . 10-6 )2). the expression becomes : 

0' 3Cf' = 10-12 (0.7334 - 2.704 . 10-12 p) ~ . dynes 
pm--' 

0'750 = 10-12 (0.7487 - 2.808. 10-12 p) cm
2 

From this follows by extrapolation: 

0'20 = 10-12 (0,7300- 2.681 . 10-12 p). 

so that 020 becomes = 0.7300 . 10-12 at p =0. hence OiJI = 1.370.1012
, 

as we gave above. 

VI. 

The CoefBcient of Pressure of 0-1 • 

As we already remarked in V. it is not allowed to start from (8), 
where p = 0 is put, for the differentiation with respect to p, but from 
the equation for 0-1 derived directly from the equation of state 

=_~+l+RT =_~+l+RT(I+~). 
P v2 v-b v2 v-boo v 

We Bnd then (see also IV): 

. (dP)=2a _1 + RT (I + ~+~ v-boo) . 
dv t v3 (V-bOO)2 V V V 

so that 

0-
1 =-v(:} -~+(~+b~~( v+9J+9J

v 
v

boo
) . . (a) 

From this follows (T constant) : 

dO-I [4 \ 2(v+ 9J +
9Jv 

v
boo

) 1+9J ( - v v~oo+~ )!]d 
dp = ;+(l+RT)(- (v-booP + (V-bOO)2 d; 

=!.-dV[4a _ (1+RT)v2~2(1+~ +~ V-boo)_ v-boo(I+~ _~v-boo)lJ. 
v dp v2 (V-bOO)3? . v v v v v v v ~ 

If the value (p + :2) (v-b) is substituted here for 1 + RT, and the 

value (v-b) ( 1 +!) for v-boo. we get (p = 0) : 



109 

. • ({i v-b 
I.e. wlth -= wand -- = z : 

v v 

or 

c!a-
I 

= (- a) ~ l.. _1_ . (- 2 + (l-w) z + (4 +7 w + 3w2) Z2) . 
dp v2 z 2(I+w)2 

According to (8) a is = (1 : ~) X z 1 -~i;w) z. so that we finally 

obtain: 
dO-I 1 2-(I-w)z-(4+7w+3w2)z2 

~-;-z (1 + w) (1 - (2 + w)z) 

We will now compare this with BRIDGMAN' s experimental 
written above. 

With z = ~. w = 0,6 (at 20° c.) the above becomes: 

dO-I _ 6 2 - (0.4: 6) - (9.28 : 36) 
dp - 1,6 (1 - (2.6: 6)) 

60.32 
5.4i = 11.1 (p = 0). 

. (9) 

values 

A d· 1 dv h . 1 dv. . h ccor lOg to us 0= - d-' w ereas 10 al = - d- v. IS constant Wit 
v p v. p 

respect to p (see V). We have. therefore : 

d~;1 = ;p (-v '!Iv) = v ! ( - ~~) -~~ ~; = 

=!!...!! (-v. dP) -1 =da,1 -1 
v. dp dv dp 

at p = O. where v. = v. Hence we find theoretically: 

dali 
-d = 12.1 (p = 0). 

p -

According to BRIDGMAN (see V) a' = - 6v is of the form of a - fJ p. 
Vap 

i. e. 
Va - V --= ap - fJp2. 

Va 

From this follows therefore: 

1 dv dal-I 1 dal 
al = - - - = a - 2fJp. hence because --= - - -: 

Va dp dp o~ dp 
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dal-I _2p _ 
-d-- 2 (p-O). 

p a 

Accordingly at 20° C is experimentally (with a = 0,73. 10-12, P = 
= 2,681 . 10-21) (see V): 

dal-I = 2 X 2,681 . 10-2
'1 = 101 ( . = 0) 

dp 0,5329.10-21 -' P . 

The difference between 10 and 12 as differential coefficient with respect 
to p of a quantity which is = 1,37 . 1012 itself, may be called very smalI. 
Not only is the order of magnitude the same, but there is even al most 
numerical agreement; this was impossible with the earlier theories of 
GRONEISEN, BORN and others (BRIDGMAN, loc, cito p. 233 et seq.). Even 
the order of magnitude is already wrong there in many cases, up to 
a ratio of 1 : 1/" . 10-16 I)!! In comparison with this it is seen how un­
expectedly weIl our theoretical value 12 harmonizes with the value 10 
found experimentally, taking note that it would be easy through a very 
sm all modification in the value of a, which was transferred from the 

·liquid phase to the solid phase, hen ce also of the value of w, to obtain 
a perfect harmony. 

VII. 

The Coefficient of the Temperature of a-I. 

We again start from the equation (a) in VI: 

_I _ 2a+). + RT ( + ·v-boo) 
a - - 2 ( b)2 V - ({J ({J -- , v v- 00 v 

(a) 

and must differentiate this now with respect to T (p constant). This 
calculation runs almost parallel with that in VI. but is somewhat longer. 
We can, however, obtain the result more easily by the following con-

sideration. According to (a) is a-I =f(T,v), hence ('!:) =~x(~v) , 
PtV P t 

when for shortness we write x for a- I. Likewise ( ~~) p = ~~ + ~~ (~~) p. 

Hence we have: 

(~~)p ~: +(~;} (~~} (~;)p ~: -(~;} eX); 
We have, therefore, according to (a) and (9): 

I) Thus in an extensive theoretical discussion of his experimental results BRIDGMAN 
found the value 8,5 . 10-10 (p. 230). calculated from the experiments for a certain quantity 
f3 (p. 232), whereas on p. 232 the quantity 1,04 . 10-10 is found for it, which he all the 
same eaUs "the same order of magnitude" (8,5 and 1). But on p. 235 the value of 2,03. 10-56 
would ensue from the coefficient of pressure. which is not less than 1/" X 10-16 of the 
first-mentioned value! 



111 

(
dX) _ R( v + lP + lP ~ ) _ ~ 2 - (1 - w) z - (4 + 7 w + 3w2) Z2 X ~ 
dt ;- (v-boo)2 z. (1 + w) (1 - (2 + w) z) v-b' 

as ( ~~). = v Rb immediately follows from the equation of state. With 

v-boa = (v-b) (1 +w) and P. = w this becomes, wh en 0-1 is again written 
v 

for x and the indication p = constant is omitted: 

dO-I Rv 1 + wz Rv 2-(1-w) z - (4 + 7ro + 3w2) Z2 
dt-(v-b)2 T+ w - (v-b)2 (1 + w) (1 - (2 + w) z) 

1 v 
as -z- v-b· 

We have therefore finally : 

da-l Rv (2-(1-w)z-(4+7w+3w2)z2)-(I+wz)(I-(2+w)z) 
dt - (v-b)2 (1 + w) (1 - (2 + w) z) 

or 
dO-I R 1 1 + (1 + w) z - (4 + 5w + 2w2) Z2 

dt(p={J) -; Z2 (1 + w) (1 - (2 + w) z) 
(10) 

With z=t.w=0.6. R=83.17 . 106. v=7.116(all this at 20°C.) this 
becomes: 

do-_~ = _ 11 69 106 X 36 1+(1.6: 6) - (7.72: 36) 
dt • . 1.6(1-(2.6:6)) . 

i. e. 

dO-I 37.88 
dt=-11.69.10

6 
X36X6Xl.6X3.4 70.14.106X

3;48
4
8 
=-488.106 

at p = O. We have therefore theoretically: 

dO-I 

dt =- 490. 106 (p = 0). 

The following value has been found by BRIDGMAN for pure copper 
(p = 0) (see V): 

-1_ . 10
12 

-13635 1012. -1_ 10
12 

-13357 1012 
03QO-0.7334 -. . • 0750-0.7487 -. . . 

Per degree this gives an increase of - 0.0278.1012 :45=-618.106. 
But in another specimen BRIDGMAN found a much smaller value for 

6.0. i.e. (in his units) against (0.734-0.719) 10-6= 15 .10- 9• on which 
we based the above caIculation. also (0.737-0.729) 10-6=8.10- 9• On 
an average therefore 11.5.10-9• and not 15.10-9• so that we must also 
take only the 23/30 of the above value - 618. 106 referring to 0-1 (the 
pressure coefficients are exactly the same in the two specimens; only 
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the temperature coefflcients are different). Accordingly we get experi~ 

mentallyon an average : 
dO-I 
dt= - 475. 106 (p = 0). 

which is again in very good harmony with the above theoretical value 
- 490.106• 

Summarizing we may. therefore. say that - at least in copper - our 
equation of state (4). which has now again (with the exception of ),) 
the VAN DER WAALS' type. accurately represents. combined with b={(v) 
according to (5). all the thermic quantities. and - as far as the coef~ 
ficients of pressure and temperature of the compressibility coefficient are 
concerned - it does so with sufficient accuracy. not only as regards the 
order of magnitude. but also as regards the numerical value. None of 
the equations of state proposed earl ier • were in any way adequate to do 
50 (even apart from the inner inconsistences contained in them; see I). 

When in a following Communication we :shall first have discussed 
further the question of the degeneration of RT in the equation of state 
in connection with the degeneration of the Energy. we will determine 

the values of z = ~b' w = P.. and a for all the metals of which a 
v- v 

and a are known (and th is is by far the majority). and so doing again 
verify the said coefficients of pressure and temperature of o. 

Tavel sur Clarens. Suisse. 1924-1925. 




