Mathematics. - "Projective and conformal invariants of half-symmetrical connections". By J. A. Schouten. (Communicated by Prof. Jan de Vries).
(Communicated at the meeting of December 19, 1925).

1. The quantity of projective curvature.

We consider a linear connection ${ }^{1}$) leaving transvections invariant:

$$
\begin{align*}
& \delta v^{\nu}=d v^{\nu}+\Gamma_{\lambda \mu}^{\nu} v^{\lambda} d x^{\mu} \tag{1}\\
& \delta \boldsymbol{w}_{\lambda}=d w_{\lambda}-\Gamma_{\lambda \mu}^{\nu} w_{\nu} d x^{\mu}
\end{align*}
$$

If

$$
\begin{equation*}
S_{\lambda_{\mu}}{ }^{\nu}=1 / 2\left(\Gamma_{\lambda \mu}^{\nu}-\Gamma_{\mu \lambda}^{\nu}\right) \tag{2}
\end{equation*}
$$

has the form

$$
\begin{equation*}
S_{\dot{\lambda} \mu}^{\ddot{\mu}^{\nu}}=S_{[\lambda} A_{\lambda]}^{\nu}, \tag{3}
\end{equation*}
$$

the connection is called a halfsymmetrical one ${ }^{2}$).
First we take $S_{i_{\mu}{ }^{\nu}}$ quite general and using the quantity of curvature $R_{\omega \mu \lambda}^{\ldots \nu}$ we form a quantity $P_{\omega \mu \lambda}^{\cdots{ }^{\prime}}$ in the same way as this is done in an affine connection ${ }^{3}$)

$$
\begin{gather*}
P_{\omega, \mu \lambda}^{\cdots \nu}=R_{\omega \mu \lambda}^{\ldots \nu}-2 P_{[\omega \mu]} A_{\lambda}^{\nu}+2 A_{[\omega}^{\nu} P_{\mu] \lambda} \tag{4}\\
P_{\mu \lambda}=-\frac{1}{n^{2}-1}\left(n R_{\mu \lambda}+R_{\lambda \mu}\right) . \tag{5}\\
R_{\mu \lambda .}=R_{\nu, \mu \lambda} \ldots . \tag{6}
\end{gather*}
$$

Then the following theorems hold:
I. In a halfsymmetrical connection $P_{\omega, \mu, i}^{*}$ is invariant with all geodesical transformations of the $\Gamma_{\gamma \mu}^{\nu}$, which leave S_{ν} invariant.
II. If $P_{\omega \mu \nu}^{\ldots \nu}$ is invariant with all transformations wich leave $\mathrm{S}_{; \mu}{ }_{\mu}^{\nu}$ invariant, the connection is halfsymmetrical.
III. A halfsymmetrical connection can then and only then be transformed by a geodesical transformation of the $\Gamma_{\lambda \mu}^{\nu}$, which leaves S_{λ} invariant, into a displacement with a zero quantity of curvature, if $P_{\omega \mu i}^{\ldots}{ }^{\nu}$ is zero.

We have some remarkable identities. For a halfsymmetrical connection holds :

[^0]\[

\left.$$
\begin{array}{rl}
\nabla_{\nu} P_{\omega \mu \lambda} \ddot{\nu}^{\nu} & =-2(n-2) \nabla_{[\omega} P_{\mu] \lambda}+ \\
\quad+\frac{12}{n+1} S_{[\omega} R_{\mu \nu]}-\frac{12}{n+1} S_{[\lambda} \nabla_{\omega} S_{\mu]}-4 S_{[\omega} R_{\mu] \lambda}+2 S_{\nu} R_{\omega \mu \mu \nu}^{\cdots \nu} \tag{7}
\end{array}
$$\right\}
\]

For an affine connection this identity passes into:

$$
\begin{equation*}
\nabla_{\nu} P_{\omega \lambda \mu}^{\ldots \nu}=-2(n-2) \nabla_{[\omega} P_{\mu] \lambda} \tag{8}
\end{equation*}
$$

If $P_{\omega, \mu \lambda}^{\ldots \nu}=0$ the conditions

$$
\begin{gather*}
\nabla_{[\omega} S_{\mu]}=\mathbf{0} \tag{9}\\
\nabla_{[\omega} P_{\mu] \lambda}=\mathbf{2} S_{[\omega} P_{\mu] \lambda} \tag{10}
\end{gather*}
$$

hold for a halfsymmetrical connection.
2. The quantity of conformal curvature.

We consider a metrical connection leaving transvections invariant, and we suppose $S_{i \mu}^{* \nu} \neq 0^{1}$). The $\Gamma_{\lambda \mu}^{\nu \nu}$ are given by the equation ${ }^{2}$):

$$
\Gamma_{j \mu}^{\nu}=\left|\begin{array}{c}
\lambda \mu \tag{11}\\
\nu
\end{array}\right|+S_{i_{\mu}}^{\nu \nu}-2 S_{.(j \mu)}^{\nu}
$$

Using the quantity of curvature, which we will call $K_{\omega \mu \nu \lambda}{ }^{\nu}$, we form a quantity $C_{\omega, j, i,}^{\ldots}$ in a perfectly analogous manner as this is done in a RIEMANNIAN connection:

$$
\begin{align*}
& C_{\omega, \mu \nu \nu}=K_{\omega, \mu \nu \nu}-\frac{4}{n-2} g_{[\omega[\lambda} L_{\mu] \nu]} . \tag{12}\\
& L_{\mu \lambda}=-K_{\mu i \lambda}+\frac{1}{2(n-1)} K g_{\mu \lambda} . \tag{13}\\
& K_{\mu, \lambda}=K_{\nu \mu, \lambda}^{\cdots} \quad ; \quad K=K_{\mu}^{\cdot \mu} . \tag{14}
\end{align*}
$$

Then the following theorems hold:
I. In a halfsymmetrical connection $C_{\text {oj, }}^{\ldots i}{ }^{\nu}$ is invariant with all conformal transformations of $g_{i, \mu}$.
II. If $\mathrm{C}_{\omega, \ldots, i}$, is invariant with all conformal transformations of $g_{\lambda_{\mu}}$, the connection is halfsymmetrical.
III. A halfsymmetrical connection can then and only then be transformed by a conformal transformation of $g_{i, \mu}$, which leaves $S_{;}$invariant, in a connection with a zero quantity of curvature, if $C_{\omega \mu \nu .}$. is zero.

[^1]Here also some remarkable identities exist.
For a halfsymmetrical connection we have

$$
\left.\begin{array}{rl}
\nabla_{\nu} C_{\omega \mu \lambda} \ldots \nu=-2 \frac{n-3}{n-2} \nabla_{[\omega} L_{\mu] \lambda}-S_{[\omega} R_{\mu] \lambda}+ \\
& \quad+2 S_{\nu} R_{\omega \mu \lambda}+\frac{4}{n-2} g_{\lambda[\omega} G_{\mu] \nu} S^{\nu}
\end{array}\right\}
$$

For a Riemannian connection this identity passes into:

$$
\begin{equation*}
\nabla_{\nu} C_{\omega \chi_{\mu}}=-2 \frac{n-3}{n-2} \nabla_{[\omega} L_{\mu] \lambda} \tag{18}
\end{equation*}
$$

If $C_{\omega \mu \lambda}{ }^{\nu}=0$, the relations

$$
\begin{gather*}
L_{[\mu \lambda]}=-(n-2) \nabla_{[\mu} S_{\lambda]} \tag{19}\\
\nabla_{[\omega} L_{\mu] \nu}=2 S_{[\omega} L_{\mu] \nu .} . \tag{20}
\end{gather*}
$$

hold for a halfsymmetrical connection.

[^0]: ${ }^{1}$) Der Ricci Kalkül, Springer 1924, p. 67.
 ${ }^{2}$) R. K. p. 69.
 ${ }^{3}$) R. K. p. 131.

[^1]: ${ }^{1}{ }^{1}$ R. K. p. 72.
 ${ }^{2}$) R. K. p. 73, equation (53b).
 ${ }^{3}$) R. K, p. 170.

