Chemistry. — “Equilibria in systems, in which phases, separated by a
semi-permeable membrane.” XIV.— By F. A. H. SCHREINEMAKERS.

(Communicated at the meeting of January 30, 1926).

Deduction of some properties of isotonic curves in ternary systems, in
which dimixtion into two liquids occurs.

In order to deduce and to elucidate further the properties, discussed
in the previous communication we contemplate fig. 1 in which fi q; h;
and £, q, h, represent a part of the binodalcurve. The isotonic W-curve
going through the two conjugated points is represented by the dotted
curve abq, cdq;e. We are able to represent the composition, the
thermodynamical potential, etc. of an arbitrary phase Q, which contains
the components W X and Y, not only with the aid of the quantities of
those three components, but also with the aid of three arbitrary other
phases (provided that they are not situated on a straight line); previously
we have called those phases “composants” in distinction with the com-
ponents, of which this phase Q consists?).

As many properties can be deduced more easily with the aid of com-
posants than of components, we now shall use those composants.

We choose as composants 1. the diffusing substance W, 2. an arbitrary
liquid b, 3. an arbitrary phase F. As we have seen formerly (l.c.) we
can represent the composition of an arbitrary liquid p by:

m quantities of W + n quantities of F 4 (1—m—n) quantitiesof b (1)

so that we call b as fundamental composant. Consequently we have in
fig. 1 a system of coordinates with the point b as origin and the lines
bW and bF as axes. If we draw in the figure the lines pp; and pp,
parallel to b W and b F then is (l.c.)
bp: __bp2
bW n—bF........(Z)
If we take for m as unity of length bW and for n as unity of length
bF then we can put:
m = pp n=pp;. . « « « . . . (3

In order to represent the composition of a liquid with the aid of com-

1) For a contemplation more in detail of components and composants comp.: In-, mono-
and plurivariant equilibria. Comm. XXIV and XXV.
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ponents in the communications XXIV and XXV we have used always
x and y as_variables, but, if we used composants, always m and n.
As, however, now we do not
compare both methods with
one another and therefore no
confusion can occur, we shall
take for the composants also
x and y as variables.

Consequently we represent
the composition of an arbitrary
liquid p by:

x quant. of W+ y quant. of
F 4+ (1—x—y) quant.of b, (4)

so that in fig. 1 bW represents
the X-axis and bF the Y-axis.
Therefore we have in the figure :

Fig. 1. x=pp, y=pp:

If we put in (4) x—=0 and y =0 then p coincides with point b; for
y=0 p is situated anywhere on the line bW; for y=0 and x=1 p
coincides with point W. If x+ y=1 then p is situated anywhere on
the line WF. If we give a negative value to x or y or 1 —x—y,
then p falls outside the composants-triangle bWF.

We now take a liquid L with the composition as in (4) and a liquid
L, with the composition:

x; quant. of W + y, quant. of F+ (1—x;,—y,) quant. of b

and we now consider the osmotic equilibrium:
|
L., ..........10

in which the substance W only diffuses through the membrane. We
assume that there are n quantities of L and n, quantities of L,. If dn
quantities of W (water) diffuse from L towards L,, then x and y change
with

de— nx—én — (1—x) . on
" n—on o n—an
_ ny __y.on
dy—n_an Y= en - oo (6)

while x, and y, change with:

(l_xl_)_d’_l

dxl: n —|—6n

()
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The total thermodynamical potential of the osmotic system (5) now
changes with:

(n——&n)(i’—i-?—idx—{—gédy)+(n_{_5n)(cl+gfld _|_6C1d )

—nl—n,

®)

in which ¢ and {; represent the thermodynamical potentials of the liquids

L and L,. With the aid of (6) and (7), (8) passes into:

GCI OC, (3&' 65

As the thermodynamical potential of a system in equilibrium is not
allowed to change, (9) must be zero for infinitely small positive and
negative values of On. Consequently the osmotic system (5) is in equili-
brium if:

©)

oL oL o¢ o

O R LR I (10)

The O. W.A. (osmotic water attraction) of an arbitrary liquid is
defined therefore by:
o oc at

Previously (Comm. II) we have found, using components for the
O.W. A.

SR '

P=ET X Y oy’

the origin of the system of coordinates was situated then in point W
and now in the point b.

We now replace the liquid L, of equilibrium (5) by the liquid b of
fig. 1; we then have the osmotic equilibrium:

LiL (Bg. 1) . . . . . . .. (12
As x| and y, for liquid b are zero, it follows from (10) that the liquid L

is defined by:
ol OC o¢
B x)' 0x Oy I:C __:\

which represents the equation of the isotonic curve going through
point b. From (13) follows:

[(1—x) r—ys] dx + [(1—x) s—yt]dy =0 . . . . (14)

(13)

in which:
0% 0% - 0’¢
0x? bey oy?’

i



362

If we take the liquid L of equilibrium (12) in the vicinity of the
point b (fig. 1) then x and y approach zero, r s and ¢ rest finite, if b
represents a ternary liquid. (14) now passes into:

dy r
d. dy=0 < =—— . ...
rdx -+ sdy dx 5 (15)
by which the direction of the isotonic curve in point b is defined. Of
course this relation is valid for every arbitrary point of an isotonic
curve, f.i. for the points a, q,c, d, q; e etc. but not for its terminating-
points on the sides of the components-triangle.

As is known from the theory of the ternary liquids, outside the region
of dimixtion is:

r>0 t>0 rr—s2>0 . . . . . (16)

This is also the case on the binodalcurve itself. Within the region of
dimixtion however a curve (not drawn in the figure) proceeds, on which:

rt—s2=0 . . . . . . . . . (17

This is the spinodalcurve, which is situated within the binodalcurve,
but touches this in the critical points. Within this spinodalcurve is:

rt—s2<0

and also may be r<o and tZ o. Is one of the magnitudes r or ¢ negative,
then rt—s? is negative also; of course the reverse is not the case.

If k and ! in fig. 1 represent the points of intersection of the spinodal-
curve with the line g, q,, then rt—s? is zero in those points, therefore;
between q; and k and g, and [ it is positive and between k and [ negative.

The direction of the isotonic curve is defined by (15) in the point b;
as b is situated outside the region of dimixtion, r is > o, but the sign of s
is indefinite. If s is negative, then it follows from (15) that the isotonic
curve is situated in the vicinity of the point b within the angle Wb F
(and its opposite angle b, b b,); if s is positive, then the curve is situated
within the angles b, b W and b, b F. If s—o0 then the curve touches in
point b the Y-axis viz. the line b F. As r is never zero in the point b,
the curve can, therefore, never touch the X-axis viz. the line b W in b.

Above we have seen already that (15) is true for every arbitrary point
of an isotonic curve; as in every point outside the region of dimixtion
ris >0, none of the lines Wa, Wq,, Wgq, and We can touch this curve,
therefore. Hence follows the property, already discussed before:

the part of an isotonic W-curve, situated outside a region of dimixtion
has such a form that every straight line, going through point W, inter-
sects this curve in one point only and never touches it.

We now consider the part g, cdq, of the isotonic curve, situated
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within the region of dimixtion and we assume that r is zero in the points
c and d and is negative, therefore, between ¢ and d. It now follows
from (15) that the isotonic curve touches the lines Wcand Wd in c and d.
If we imagine within the angle cWd a straight line going through point
W, then this intersects the isotonic curve in three points. Consequently
we find: :

the part of an isotonic Wi-curve, situated within a region of dimixtion
can have such a form that we are able to draw from point W straight
lines which touch this branch or intersect it in three points.

If r is positive in all points of the part of the isotonic curve, situated
between gq; and @, then for this part the same is true as for the part,
which is situated outside the region of dimixtion. This is the case f.i.
with the curves 4 and 6 of fig 1. (Comm. XIII).

In order to examine the binodal-curve in the vicinity of the points
q, and q, we take as composants q; g, and W, we represent the com-
position of two arbitrary liquids L, and L, by:

x; quant. of W+ y, quant. of q; + (1—x;—py,) quant. of q,
x, quant. of W+ y, quant. of g, + (1—x;—y,;) quant. of q;.

Consequently we take a system of coordinates with point q, as origin
qy W as X-axis and q, q;, as Y-axis. If L; and L, are two conjugated
liquids, then the equilibrium L, 4 L, is defined by the three equations:

L. T S S
ox Yoy)~ ox 7oy,

(=) (o)=(6),

We find those equations by expressing that the total thermodynamical
potential of the equilibrium L, 4+ L, does not change, if small quantities
of each of the three components q, g, and W pass from the one liquid
into the other. It follows from (18):

(xr+ys) dx;+(xs+yt) dy, = (xr+ys), dx, +(xs+y¢)z dy, (19)

ridx, +s dyy,=r,dx;+s,dy, . . . . . (20)

sidx; + tdy, = s, dx; +t,dy, . . . . . (21)

We now let coincide the liquids L, and L, with the points g, and q,;

therefore we have to put:

x =0 y, =0 x,=0 y,=1 . . . . (22)

If we substitute those values in equations (19) and if we neglect the
terms of higher order than the first, we find:

O=s,dx;+8tdy, . . . . . . . (23

The binodal-curve in the vicinity of the points q, and g, is defined,

therefore, by (20), (21) and (23). Instead of (21) we now may write also :

sydxy +6dy, =0 . . . . . . . (29)

. (18)
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If we substitute in (20) the values of dy, and dy, which follow from
(24) and (23) then we find:

rt—32 rt—s2
”t ldoe, =207 %2dx, . . . L L L (25)
1 2

Hence is apparent that dx, and dx, have always the same sign. This
means: if a liquid is situated on q, h; (q, fi) then the conjugated liquid
is situated on q, h, (q; f2).

Equation (24) defines the direction of the binodal curve in the point q;;
we have viz.:

dy, |
= T .
dx, t, (26)

The direction of the isotonic curve is defined in every point by (15),
in the point q, therefore, we have to give to r and s in (15) the values
r; and s;. We then have:

dy r dy, S

== e == . . . . . . (27

dx S dxl tl ( )
the first of which defines the direction of the isotonic curve, the second
defines the direction of the binodal curve in the point q;. As r; and ¢
are positive, r;:s; and s;;f have always the same sign, therefore.
If s;, =0 then follows:

dy _ dy, _

D= dx,_o S ¢2.)]

It now follows from (29) and (28):

the binodal curve and an isotonic curve are situated in the vicinity of
their point of intersection either both within the conjugation-angle or
both within the supplement-angle. If the binodal curve touches the one
leg of the angle, then the isotonic curve touches the other leg.

The O. W. A. of an arbitrary liquid L is defined by (11). For a
liquid in the vicinity of L is true, therefore:

dp=[1—x)r—ys]dx+[(l —x)s—ytldy . . . (29)

If we take the liquid L in the point q, (fig. 1) and if we take again
the same components as above, consequently g, as origin of the system
of coordinates, then x and y become zero. (29) then passes into:

dp=rdx+s,dy. . . . . . . . (30
If we proceed from q, along the binodal curve towards a point in the

immediate vicinity, then the relation (24) is true for dx and dy. Hence
follows for (30):

2
dzp—_—r't'tl_sl.dx~ R 1))
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in which the coefficient of dx is positive. We now proceed from g, in
the direction towards h; or, as we have expressed it in the previous
communication: we proceed starting from the point g, along the binodal
curve away from point W. As then dx is negative, dp, therefore, is also
negative and consequently the O. W. A. increases. Therefore we find:

the O. W. A. of the liquids of a binodal curve increases in that direction
in which we move away from the point W. ;

We have already applied this property in order to define the dlrectlon
in which the O. W. A. of the liquids increases along the binodal curve
of the figs. 1 —3 (previous Communication).

In the previous Communication we have discussed already, that the
isotonic curve, which goes through m;, (figs 2 and 3 Comm. XIII),
touches the binodal curve in this point m,. A second branch of the
isotonic curve, which is situated, however, totally within the region of
dimixtion, also touches the binodal curve in the point m,.

In order to examine the isotonic curve and the binodal curve in the
vicinity of those points, we take as composants: W m; and an arbitrary
phase F. Consequently we take a system of coordinates with m, as origin,
m;, W as X-axis and m;, F as Y-axis.

For the isotonic curve, going through point m;, equation (15) is true,
in which we have to give to r and s the values, which they have in m,.
If we take those r; and s;, then curve 2 (fig. 2 XIII) and curve 5 (fig.
3 XIII) in the vicinity of m, are defined by:

dy___ o
dx s 2)

For an equilibrium L, + L, the equations (18) are true and the equations
(19)—(21) which follow from this. We now imagine the liquids L, and
L, in the points m; and m,, so that:

x=0 y,=0 y,=0. . . . . . . (33
Limiting ourselves to terms of the first order, then (19)—(21) pass into:
0 =, (r; dx, + s, dy,)
rydx, +s,dy, = r,dx, + s, dy,
sy dx; + £, dy, = s, dx, + £, dy,.
Hence follows:

d r
rldxl+sldyl:0 d—i‘::_.?: . e e .. (34)
by which the direction of the binodal curve in m, is defined. It is apparent
from (32) and (34) that the isotonic curve and the binodal curve touch
one another in m,.
If we take as composant m; instead of m;, then we have to exchange
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the indices 1 and 2 in the deduction above, hence follows that the isotonic
curve and the binodal curve touch one another also in the point m,

(figs. 2 and 3 XIII).

The change of the O.W.A. of a liquid L is defined by (29); therefore
is true for the liquid m, (fig. 2 and 3 XIII):

dp=[(1—2)ry—yisi]ldx; +[(1 —x1) sy —y1 1] dy, . . (35)
As however x;, =0 and y, =0, (35) passes into:
dp=rydx, +s,dy,. . . . . . . . (36)

We now choose the new liquid on the binodal curve so that dx; and
dy, satisfy (34); then follows:
dp=0. . . . . . . . . . (3

Hence follows the property, already formerly discussed:

the O.W. A. of the liquids of a binodal curve is maximum or minimum
in the points, which are situated on the conjugation-line going through
W (figs. 2 and 3 XIII).

We have assumed in the deductions above that the points m, and m,
represent ternary liquids, so that m; m, is a ternary conjugation-line.

If, however, m; and m, are binary liquids, then the deductions are
valuable no more. If we imagine the line Wm, m, (figs. 2 and 3 XIII)
coinciding with one of the sides of the components-triangle, then ¢ and ¢,
are infinitely large, but y, ¢, and y,¢, rest finite for y, =0 and y,—=0.
It now follows from (19) — (21):

y by dyy = x; (rp dx, + 5, d!h)?

r dxl +Sl dyl =1 dxz +82 dyz (38)
t,dy, =, dy, S
while (14) which defines the direction of the isotonic curve, passes into:
ndx—+(s—y t)dy=0. . . . . . . (39
From (38) follows for the binodal curve
ry dxl +(31_‘M) dy] :0 P T (40)
X2

It is apparent from (39) and (40) that the isotonic curve and the binodal
curve do not touch one another now, a property to which we have
pointed in the previous communication.

Above we have seen that the O.W. A. of the liquids of the binodal
curve in the points m; and m, (figs. 2 en 3 XIII) is a maximum or
minimum; we now shall consider this case more in detail.

We have represented the compositions of the liquids with the aid of
the composants Wm;, and F, in which F is an arbitrary phase. We
now choose F in such a way that s; becomes =0. (Later on it will
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appear that F is situated then anywhere on the tangent going through
point m,;). If we involve in (19) — (21) also terms of higher order and
if we put:

x=0 y,=0 y,=0 =0 . . . . . (41
then we get:
1 1
5"1 dxf +_ t dyf =x;(rpdx; +s,dy)) + A, . . . (42)
lasl P
r dx, + dyl———rz dx2+sz dy2+Bz e e (43)
£ dy1+C]:$2dx2+t2dy2+C2 e e s e e (44)

In the first part of (43) the terms with dx, dy, and dx?, which are
infinitely small with respect to dx,, are omitted. A, Band C contain the
terms of the second order. We can satisfy those equations by taking
dy, dx, and dy, of the same order and dx; of the order dyf, while
rydx; + s, dy, is also of the order dyf. Consequently we may write for

(42)—(44) :

1
Etl dyf:xz (l'z dx2+52 dy2)+A2 L (45)
lasl
rldx1+ dz—rzdx2+szdy2+B2 e e (46)
t dyIZSdez“}’tzdyz P (47)
Herein is:
A, = (r—i—x ) dxz—i—(s—!—xar) dx, dy, + = ( )dy2 (48)
16r2d2+ar2d dz—f—l%

B:=3 3, 2 3y,

It follows from (45) and (46):
ridx, += (631 f )dyf:—i-(; rdx? 4+ sdxdy + tdy2> . (50)
2

0y x 2
It follows from (46) and (47):
tys;dyy=—Ddx, trydyy=Ddy,. . . . . (51)
in which :

— 2
D—l'ztz S3.

The terms of higher order are neglected in (51); if we substitute the
values of dx; and dy, from (51) in the second part of (50), then we find:

05, firy
r dxl—,“ (ay] x2+x2D d 1—0 - - - . . (52)

by which the binodal curve is defined in the vicinity of the point m,.
In a similar way we find from (14) for the isotonic curve:

ridx+ = (Qi——t,)dyzzo. B X))
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and for the change of the O. W. A. from (35):

dp—=r,dx + = (Os, )dyf. B X 4]

We now choose dx; and dy, in such a way that the new liquid is
situated on the binodal curve; consequently dx; and dy, must satisfy
(52); then we may replace (54) by:

@:%(1—% “D’Z) L N -

X2

Instead of by (37) dp is defined, therefore, by a magnitude of the
second order. With the aid of (51) we are able to give still another

form to (55), viz.:
1 d
d(p:i(l— X, a'zz) Lodyl. ... . (56)

It follows from (52) and (53) that the binodal curve and the isotonic
curve are parabolic in the vicinity of m, and touch both the Y-axis in
m;. In order to define the position of those curves with respect to one
another, we imagine in the figures to be drawn a line m; W, parallel
to and in the vicinity of m; W. For the point of mtersectmn of m, W,
with those curves then is valid dy—=—dy,. It follows then from (52)

and (53):
0s, _(0s;  t | tin
(ayl )dx,_(ayl x2+x2D)dx 6D
If we put:
Osi _,
B Ht=—Q;, . . . . . . . . (58
then we may write (57) with the aid of (55):
. dep dx
dx, —dx =2 =5 . 5
df Q (59)

If we consider the value of Q, from (58), then follows from (53) that
dx and Q, have the same sign, so that dx: Q) is always positive; the
sign of (59) is the same, therefore, as that of dp.

In order to apply the above equations, we shall distinguish different
cases:

A. Binodal curve and isotonic curve in m;; fig. 2 XIII.

The origin of the system of coordinates is situated, therefore, in point
m, of the figure. If we imagine the conjugation-line a, a, in the vicinity
of m; m,, then we find:

b L T o)

W sz
As aym; — dy,, a,my; = dyz. Wm =1 ad Wm, = 1—x, in
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which x is negative, therefore, we may write for (60), if we take positive
dy, and dy,, also

dy,
or:

dy,

l—x,—=>0. . . . . . . . (62

X2 dyl > ( )

If we take dy, and dy, both negative, then we find also (62).

As x, is negative, it follows from (56):

dp<<0. . . . . . . , . . (63

Consequently ¢ is a maximum in m,; the O. W. A. is a minimum in
m;, therefore. This is in accordance with the direction of the arrows
on the binodal curve (fig. 2 XIII). It now follows from (59) in connec-
tion with (63):

de<dx . . . . . . . . . (69

This means: if we proceed along the line m W, (see above) in the
direction towards the point W, then we meet firstly the binodal curve
and afterwards the isotonic curve; we see that this is in accordance
with the figure.

B. Binodal curve and isotonic curve in m,; fig. 3 XIII.

The origin of the system of coordinates is situated, therefore, in point
m; of the figure; x, is positive now. In the same way as in A we find

again (62); as, however, x, is positive, it now follows:
dp>0. . . . . . . . . . (65

In accordance with the direction of the arrows in the figure, it follows,
therefore, that the O. W. A. in m, is a maximum. In connection with
(65) it follows from (59):

dey>dx . . . . . . . . . (66)

This is in accordance with the position of the binodal curve and the
isotonic curve in the vicinity of point m,.

In order to consider the curves in the vicinity of the point m, we
may use also the equations (52)—(59); then, however, we have to replace
the index 1 by 2 and x, by x;. We call those new equations (52%)—(597);
with the aid of (60) we find instead of (62):

e N (74

We now distinguish two cases.
C. Binodal curve and isotonic curve in m,; fig. 2 XIII.
The origin of the system of coordinates is situated now in the point
m, of the figure; x, is positive but smaller than 1. With the aid of (67)
25
Proceedings Royal Acad. Amsterdam. Vol. XXIX.
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we find from (56%) that d ¢ <0, which is in accordance with (63), as is

necessary.
Instead of (64) we find from (599):

de,<dx . . . . . . . . . (68)

This is in accordance with the position of the two curves in the
vicinity of point m,; the branch of the isotonic curve which touches
the binodal curve in m; is situated viz. within the region of dimixtion.

D. Binodal curve and isotonic curve in my; fig. 3 XIII.

The origin of the system of coordinates is situated now in the point
m, of the figure; x, is negative. With the aid of (67) we now find
from (56°) that d ¢ > 0. This is in accordance with (65). Instead of (66)
now is:

de,>dx . . . . . . . . . (69

This is also in accordance with the figure; the branch of the isotonic
curve, which touches the binodal curve in m,, is situated viz. within

he region of dimixtion.
(To be continued).





