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§ 1. It was remarked some years ago by KRETSCHMANN I) that from 
observations solely concerning the course of rays of light and the motion 
of material particles. the values of the potentials gab which characterize 
a gravitation~field can be so far deduced that only a constant factor 
remains undetermined. He showed, in facto that, if two sets of values gab 
and gab are in agreement with these observations. the ratio gab/gab must 
be the same for all suffixes a and b. and independent of the coordinates. 

It is easily seen in what manner this determination of the potentials 
can be effected. Let us imagine that a physicist explores a gravitation~ 
field by attending to the motion of light~signals and material particles 
which he throws into the field in any way he likes. and let us suppose 
that he does so a great number of times and under varied conditions. 
His object will be to no te and clearly to record the encounters between 
these projectiles. 

To this effect he might tabulate the encounters in a register. af ter 
having numbered the projectiles. but a better picture of the phenomena 
may be obtained by means of a diagram drawn in a four~dimensional 
space R4 in which each projectile has its .. world~line". An encounter 
between two projectiles will be represented by an intersection of their 
world~lines and the lines have to be drawn in such a way that. along 
any one of them. the intersections with other Hnes follow each other in 
the order in which the successive encounters have taken place. 

It is clear that the observer has a good deal of liberty in the con~ 
struction of the diagram. A particular figure will continue to serve his 
purpose though it be subjected to an arbitrary deformation. provided 
only that the connexions between its parts remain unbroken. Even. as 
we are concerned with the intersections and their order only. all diagrams 
thus derivable from each other may. in asense. be said to be the same 
figure. It ought also to be remarked that points in R1 are defined ex~ 
clusively by the intersection of world ~ lines. there being. according to the 
conceptions of the theory of relativity. no other means for defining the 
position of a point. Each point represents an .. event". 

I) E. KRETSCHMANN, Ueber den physlkalischen Sinn der Relatlvltätspostulate. Ann. d. 
Physlk, (4) S3 (1917), p. 575. 
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We shall suppose the word~lines and the encounters to be so nume~ 
rous that we may speak of a continuous succession of points along each 
line. and also of lines lying infinitely near each other. 

Af ter having drawn the world~diagram we can introduce coordinates. 
assigning to each point fQur numbers Xl •••• Xi' In doing so we are 
limit~d only by the restriction of continuity and by the condition that. 
as we proceed along a world~line in the positive direction. corresponding 
to the succession of the encounters. the time~coordinate Xi must constantly 
increase. 

§ 2. EINSTEIN'S theory postulates the possibility of associating with 
each point in Ri ten numbers gab (gba = gba). such that. if one puts 

ds2 = I (ab) gab dXa dXb • 

ds being the .. line~element". the world~line of a flash of light satisfies 
the condition 

ds=O 

and that the world ~ line of a material particle is a geodesie. i.e. such 
that. if its beginning and its end are kept fixed. 

óJds=O. 

Admitting this, and remembering that the values of the coordinates 
can be directly read from the diagram. we may solve our problem as 
follows. 

We consider in the first place the world~lines belonging to light~signals 
and passing through a definite point P. Let. on any one of these. Q be 
a point infinitely near P. We see at once the values of the four differ~ 

entials dxa• corresponding to die transition from P to Q. and the condition 

I (ab) gab dXa dXb = 0 
gives US a homogeneous linear relation between the potentials. with 
known coefficients dXa dXb. Proceeding in the same way with eight 
other lines of the same class. passing through p, we are led to nine 
equations from which the ratios between the potentials may be found. 
This can be done for any position of the point Pand the result may 
be written in the form 

gab = w rab. (1) 
where the quantities )'.b are known functions of the coordinates (rab=rab). 
whereas the function w remains to be determined. H. as we shall sup~ 
pose. the field is free from discontinuities. the quantities rab may be 
chosen as continuous functions. and then w will be of the same kind. 

Any world~line of light passing through Pand not included in the 
group selected will give a verification of the theory. because for it also 
the equation 

I (a b) gab dXa dXb = 0 
must hold. 



385 

§ 3. The world ~ lines for particles. the geodesies. may now serve for 
the determination of the function w. Indeed. at any point of such a 
line. we have the four equations 

d2xc = _ I (ab)~ a bl dx. dx" 
ds2 ? c , ds ds 

(2) 

and these may be put in the form of differential equations for w. 

The symbol I I in (2) is defined by 

J acb t = I (e) gc, [aebJ = tI (e) gc, (ga •. " + g" •. a - ga",,), 

gac." being the differential coefficient of g ac with respect to x" and the 
set of quantities ga" the "inverse" to the set ga'" Similarly. we may 
introduce yab and the derivatives Yab.c. All these quantities will have 
definite values because Yab is known. 

Now 
1 gab=_ yab. 

W 

and therefore 

lacbt =t I (e) Yc. (Ya •. " + Yb •. a - Yab .• ) + 

( 
0 log w 0 log w 0 log w) + tI (e) yce Ya. 0 + Yb. 0 - Yab 0 . (3) Xb Xa x. 

H. further. we put 

do2 = I (ab) Yab dXa dXb . (4) 
we have 

ds= Vw do. (5) 

The differential do may be considered as the line~element expressed 
in a new measure. and since by (4) it is known. we know also for any 
point of the geodesie under consideration the value of the integral 

o J do. reckoned from some fixed point of the line. Thus. along the 

line. the coordinates become known functions of o. and the same may 
be said of their first and second derivatives with respect to that variabie. 

Now. on account of (5). 

dxc dxc 
ds - V w do • etc. 

d2xc __ I_~(_I_dxc )_! d2xc __ 1_ dxc dw 
ds2 -Vw do .Vw do -w do2 2w2 do do 

by which. af ter multiplication by w • . the equation of the geodesie line 
becomes 

d2Xc _ t dxc d log w __ I (ab) ~ a b I dXa dXb 
do2 do do - ( c ~ do do' 

(6) 

26 
Proceedings Royal Acad. Amsterdam. Vol. XXIX. 
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H. finally. we substitute the expression (3) and the value 

d log w = I (f) dXf à log w. 
do do àXf 

we are led to four equations. linear in the unknown quantities 

à log w 
àXf • 

§ 4. Since we started from the assumption that EINSTEIN's theory is 
true. we need fear no contradietion between the different equations. But 
we must make sure that they are mutually independent and can give us 
definite values for the derivatives of log w. 

The equation whieh we deduce from (6) as just explained may be 
written in the form 

_ I (f) dxc dXf à log w 
do do àXf 

+ ~ ( b) dXa dXb ( à log w + à log w à log W) - (7) 
~ a e '}'ce _

d 
-d '}'ae;,. '}'be;,. -'}'ab ~- - .•. 

o 0 UXb uX. UXe 

wh ere the terms on the right ~ hand side are completely known. We 
have simply represented them by ..... their values being irrelevant to 
our purpose. which is merely to show the definiteness of the solution. 

Multiplying (7) by I' ch and adding the resulting equations I) with c = 1.2.3.4. 
we find four new equations (h = 1 ... 4) 

~ ( b) ( à log w à log W) dXa dXb _ 
~ a '}'bh;,. - '}'ab;,. -d -d - ... 

UXa UXh 0 0 

or, again. if we add the equation that is obtained by interchanging the 
suffix es a and b. 

dXa dXb 
I (a b) tPab do do = ... (8) 

n. _ à log w + à log co 2 à log w 
'P'ab-'}'ah;,. '}'bh;,. - '}'ab;,. . 

UXb UXa UXh 

Now. consider a definite point Pand a definite suffix h. Since tPba = tPab 

there are ten mutually independent values tPlI •••• <P12 •••• and these are 
the same whatever be the direction of the geodesie line. The values of 

dXa d dXb b · k h I f h f do an do emg nown. eac ine gives us an equation 0 t e orm 

(8) that must be satisfied by tPab. Hence. if we apply (8) to ten geodesie 
lines passing through P. we obtain a sufficient number of equation~ for 
the determination of tPab. There will be but one solution. if the deter~ 
minant on the coefficients is not zero. a condition that will be fulfilled 
when the lines selected do not happen to lie on a cone of the second 
degree. 

I) The relations ~ (c) y ch yce = ó~ (Ó~ = 1 for h = e. and = 0 for h =/= e) may he 

used here. 
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The outcome of the calculations so far sketched is this. that for all 
combinations of the suffixes a. b. h. we know the expression 

° log w + ° log w 2 ° log w _ 
rah~- rbh ~- - rab -----;,~ - ••. 

UXb UXa UXh 
(9) 

Let us now multiply this by rab and add the equations which we find 
by · giving both to a and to b the values I. 2. 3. 4. The first term gives 
a log w 
-;:,--, the second leads to the same result and from the third we find 

UXh 

_801og W 

OXh • 

so that the derivative a l~g w becomes known. Thus. since h may be 1, 
Xh 

2. 3 or 4. one finds at any point of the diagram the derivatives of 
log w with respect to the coordinates. By this. apart from a constant 
term. log w becomes known. Finally. one finds the function wand. by 
virtue of (1). the potentials gab. only a constant factor being left un­
determinate I). 

Here again there would be opportunities for verifications of the theory. 
Indeed. we have used no more than ten of the geodesics passing through 
P. the number of the equations (9) is far greater than four. the number 
of the first derivatives of log w. and finally. when these have been deter­
mined as functions of the coordinates. the relations of the form 

02 log w _ 02 log W 

OXb oXa oXa OXb 

may be put to the test. 

§ 5 . . So far we used an arbitrarily chosen system of coordinates X a• 

H. instead of these. we want to introduce new coordinates X'a. certain 
functions of Xa. we can follow the same method for determining the 
corresponding potentials g'ab. We may. however. just as weil take for 
these the values that are derived from the potentials gab first determined 
by means of the transformation-formulae for covariant tensors. These 
formulae. wh en applied to gab. are equivalent to the statement that ds2 

I) According to WEYL (Raum. Zeit. Materie. Ist ed .. p. 182) the world-lines of light­
signals would suffice already for th is determination of the potentials. I think this cannot 
be said. Suppose f.i .• that, af ter havlng properly chosen the coordinates. one has been 
able to account for the course of these lines by assuming for 944 and gab (a =/= 4.b =1= 4) 
certain values th at are functions of the space-coordinates XI. X2. X3 only. and by putting 
gai = 0 for a =/= 4 (so that the field is a stationary one) . Then. one may multiply all 
potentials by one and the same arbitrarily chosen function of XI. X2. X3. without altering 
the velocities of propagation. which are determined by ds2 = O. and therefore without 
modifying the course of rays of light which follows from the velocities by means of 
HUYGENS' construction. 

26* 
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is invariant. and it is dear that. if ds' = ds. the new conditions ds' = O. 

and <sJ ds' = 0 for the world~lines are equivalent to the original on es 

ds=O and <sj ds= O. 

As to the constant factor in gab or g' ab. we shall suppose it to have 
been chosen for the first system and to have such a value for the second 
that gab and g' ab are related to each other in the way just mentioned. 

When the potentials gab have been determined. the geometry of the 
extension Ri may be completely developed on the assumption that ds 
represents the line~ element. It will be easy f. i. to define the angle 
between two directions and to find the differential equation for geode~ 
sic lines. We need not speak of all this. but perhaps the following remarks 
will not be out of place. 

1. Two line-elements (PO and PQ') ds and d's with the components 
dXa and d' X a are said to be at right angles to each other wh en 

I (ab) gab dXa d' Xb = O. 

2. It may be inferred from th is that. if the line~element Q Q' is 
denoted by dil S. 

dil S2 = ds2 + d' S2. 

3. A line~element is a contravariant vector. whose direction~constants 
dx 

~a are given by the differential coefficients d:' 
4. If a vector is displaced parallel to itself (the word "parallel" being 

used in the sense that was given it by LEVI CJVITA 1)). its starting point 

1) In order to state what is the meaning of a parallel displacement of a vector we may 
remark in the first place that. when. at any point P - we have two directions at right 

angles to each other and determined by the constants ~a and ~'a. the four quantities 

~"a = r cos f{J + ~,a sin f{J 

will also satisfy the condition th at is fulfilled by direction-constants. (viz. the condition 

I (a b) gab ~a ~b = 1). 
The direction which they determine is said to lIe in the plane of the two given directions 

and to make an angle cp with the former of ~hese. 
Let P he a point in Ri and L a geodesie line starting from it. We shall now deftne a 

parallel displacement of a vector PA. the starting point P of which moves along L. 
1. If. in the first place. at the point P the vector PA is directed along L. it shall con­

stantly he directed along that line. 
2. Similarly. if originally the vector is perpendicular to the line. it shall remain at right 

angles to it. This. however. does not completely determine the direction of the vector 
when a point Q has been reached. and we therefore complete the definition as follows: 

Draw from the point P a second geodesie line L' that makes an Infinitely small angle 
with the line Land whose direction at the point P lies in the plane containing the inltial 
direction of Land that of the vector PA. Take equal infinltely small segments PQ and 
PQ' on Land L'. Then the line-element QQ' will give us the direction of the vector 
PA after its dlsplacement to the point Q . 
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moving along a line~element dXa. the changes of its direction~constants 
are given by 

(10) 

§ 6. Let us now imagine th at not only the values of the coordinates 
but also those of the potentials gab are inscribed in the diagram Ri. 

A physicist who wants to study phenomena as affected by the gravi~ 
tational field will th en be enabled. using the numbers which he sees in 
the diagram. to assign definite vaIues. independent of the choice of 
coordinates. to lengths of Hnes and to intervals of time: he can express 
them in · what may be called "invariant" measure. A first instance of this 
kind is the di stance between two neighbouring points in the diagram. 
the invariant measure for which will simpIy be the value of ds. As a 
second exampIe we may take the Iength of an infinitely short rod. Let 
Land L' be the world~ Iines of its extremities. A a point of the first line 
corresponding to the instant Xi for which we want to evaIuate the length. 
and B a point of L' determined by the condition that A B is perpen~ 
dicuIar to L'. Then we shall measure the Iength I of the rod by I) 

[2 = - AB2. (11) 

caIcuIating A B2 by means of the formuIa for ds 2. 

The necessary calculation can be performed in the following manner. 
Let A' be the point of L' corresponding to the same time Xi as A. and 
Iet B correspond to Xi + l. Then the infiniteIy short time l is determined 
by the condition that A B is at right angIes to L' (we may just as weil 
say. at right angles to L) aod having found l ooe knows A' B2 and AB2 = 
=AA'2_A'B2. The resuIt is 

12-- ~(b) (' - )(' - )+!I(ab)gab Xa(X'b- Xb)12 (12) - ~ a gab X a Xa Xb Xb .. 
I (a b) gab Xa Xb 

Repeating this construction. one can displace the vector parallel to itself over any finite 
part of the geodesie L. 

3. If finally the vector PA in its initial position has a direction neither along the line 
L nor perpendieular to it. we decompose it into two components havlng these directions. 
Displacing each of them parallel to itself along the line. say to a point R. and keeping 
their magnitudes constant. we shall find two vee tors at the point R. Compoundlng these 
we obtain a definite resulting vector and this will give us the direction of PA af ter a 
parallel displacement to the point R. 

This definition of a parallel displacement along a geodesie implies the definition of such 
a displacement along a given infinitely short line. for such a line may always be consldered 
as the first element of a geodesie. Proceeding by infinitely small steps. we may now also 
displace a vector parallel to itself along any length of an arbitrarily chosen !ine that is 
no geodeSie. 

Working out what has been said here. one is led to eq. (10). 
I) IE the potentials have the values that are often ascribed to them (f.i. 9'11 = 9'22 = 9'33 = 

- I. 9'44 = c2. 9'ab = 0 for a =/= b. or values little different Erom these) AB2 becomes negatlve. 
In order to find a real value for 1 (11) has been written with the negative sign. 
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Here the coordinates of A are denoted by x. and those of A' by 

x' a (so that x' 4 = X 4). The symbols Xl' X2. ~3 represent the components 

of the velocity of the first extremity of the rod. (~4 = 1). 
Owing to the way in which it has been found. the above expression 

(12) is invariant. It may be remarked that. if instead of the length of 
A B we had taken that of AA'. which depends on the "simultaneous" 
positions of the two ends. the result would have depended on the choice 
of coordinates. 

That 1. as defined by (12). may appropriately be termed the "length" 
of the roct. will be c1ear if one remarks that. if all circumstances remain 
the same. 1 is proportional to the differences of corresponding coordinates 
x' a - X a• and that for a rod at rest. placed in a field characterized by 

gll = g22 = g33 = - 1. gH = C
2

• gab = 0 for a -.,r:. b. 

the formula becomes 

[2 = (XI' - Xl)2 + (x/ - X2)2 + (x/ - X3)2. 

§ 7. In what precedes nothing has been said of the phenomena presented 
by rods placed in a gravitational field; we have only adopted a rule for 
measuring their length. If a physicist. adhering to the theory of rela~ 
tivity. were able to observe all the minute effects required by this theory 
and wanted to account for them. hecertainly would follow th is rule. 
because it would enable him to discuss all his observations. f.i. those 
about the influence of tempera tu re and of extern al forces. in terms that 
are independent of the choice of coordinates. An "ideal rod of unvariable 
length" would mean to him a rod who se "invariant" length 1 would be 
the same under all circumstances. 

Take f.i. the case of a field. which. wh en Xl' X2_ X3 are rectangular 
cartesian coordinates. is characterized by the potentials specified at the 
end of § 6. that is a field in which there are no forces of gravitation. Let 
a rod be placed in this field in the direction Xl and let it move with the 

velocity v in that direction. Then ~l = V. ~2 = ~3 = O. ~4 = 1. so that 
(12) becomes 

12 _ (' )2 + v2
(X/-Xl)2 _ c

2 
(' )2 

- Xl -Xl 2 2 --2- --2 Xl -Xl' 
C -v c-v 

Now. it would be very natural to measure the length of the rod by 
the difference of the simultaneous values of the coordinates Xl and X',.. 
If 1 is the same under all circumstances. this new leng th Ie (say the 
"euclidian" length) win change with the velocity v. according to the formula 

1. = V 1- :: I. 

in which one recognizes the wen known contraction that is brought ab out 
by a motion of translation. 
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§ 8. The influence of a gravitation - field on the motion of a dock can 
be treated in a similar way. Let the dock be so small t,hat we may speak 
of its world-Iine L; on this line the successive ticks will mark a series 
of points P. Q. R. . . .. which we shall suppose to be infinitely near 
each other. The statement that a dock is "perfect" will have a meaning 
independent of the choice of coordinates. if we understand by it that the 
di stances PQ. QR..... when expressed in invariant measure. wiIl be 
equal for the particular dock considered. whatever be the circumstances. 
If the length of this distance is rand if dX4 is the interval of time between 
successive ticks. we have 

r2 = ~ (a b) gab dXb dXb • 

or 
·2 . . , 2 

r2 = (gll XI + ... + 2 gl2 XI X2 + ... + 2 gli XI + ... goH) dXi. 

arelation from which the value of dXi in different cases can be deduced. 

§ 9. A rod may be conceived to have different lengths I according to 
the circumstances under which it is placed. A short discussion. under 
certain simplifying assumptions. of changes of this kind (in the case of 
an infinitely short rod) will be of interest with a view to a theory that 
has been proposed by WEYL I) and according to which there is a dose 
and fundamental connexion between gravitational and electromagnetic 
phenomena. 

The length of the rod might change with the time Xi' with the position 
of one of the extremities. determined by its coordinates XI' X2. X3. and 
with the direction in which the rod is placed in the space R3. We shall 
however discard this lat ter possibility. so that we are only concerned 
with varia ti ons of Xl • • •• X4. If these are infinitely small. the change 
produced in I may be assumed to be a homogeneous Iinear function of 
them. and if. further. we suppose it to be proportional to I itself. we 
may write 

d log I = ~ (a) Pa dXa (13) 

with coefficients Pa solely depending on the coordinates. Pa will be a 
covariant vector. because. according to the fundamental idea of EINSTEIN'S 
theory. for a given displacement in R4' d log I must be independent of 
the choice of coordinates. 

Eq . (13) may be applied to any part of a world-line. say between the 
points C and D. which. of course. means that during a certain interval 
of time the position of the rod in R3 undergoes · some definite change. 
We shall suppose the dimensions of the line CD to be very small and 
we shall ca1culate the change of I accurately up to quantities of the 
second order with respect to these dimensions. 

Then. if for any point E of the pa th we put 

Xa = X a• C + Xa • 

I) Ber!. Sitz. Ber.. 1918. p. 465. 
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we must. in (13). replace p. by 

P. + I (b) àà
Pa 

Xb • 
Xb 

where we have to take. both for Pa and for its differential coefBcients. 
their values at the point C. 

The total change of log I now becomes 

6 log 1= I (a) Pa.fdXa + I (a b) àà~:JXb dxa • 

The last term in this expres sion depends on the path along which the 
transition from C to D has taken pI ace. and if 6.' logl is the change 
corresponding to a second path CE' D . .we have 

6. log 1- 6.' log 1= I (a b) :.: J Xb dxa • (14) 

the integral being taken along the closed pa th eED E' C in the direction 
indicated by the order of the symbols. 

The integral vanishes for a = band we have Jxa dXb = - JXb dIa. 

the sum of the two integrals being J d (xa Xb) = o. 
Thus (14) may be replaced by 

6. log 1- 6.' log 1= t I (a b) (àà~:"- àà~: )J Xb dXa • (15) 

This again shows that in general the Bnal leng th of the rod will be 
different. according to the path along which the transition from C to D 
has been made. If there is to be no such difference. the éomponents of 
the vector Pa must depend on a potential lP. so that 

OlP 
Pa=--o . 

Xa 

§ 10. There is a certain formal similarity between the expressions to 
which we have now been led and the relations which exist in an elec~ 
tromagnetic Beld. 

Indeed. it is weIl known that the state of things in such a BeId can 

be described by means of a fourfold vector Pa. the components of elec~ 
tric and magnetic force being given by the expressions 

àPa àPb 
àXb - oXa • 

(16) 

which. taken together. form an antisymmetric covariant tensor of the 
second rank. 

This analogy would have a deeper meaning if the two. vectors Pa and 
Pa could be assimilated to each other. 50 that with a constant numerical 
coefficient À, 

(17) 
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This would mean. and it would certainly be very important. th at the 
changes of length considered in the preceding § are the indications of 
an electromagnetic field and that. conversely. any electromagnetic field 
gives ri se to changes of that kind. In particular. the electric and the 
magnetic force would be made responsabIe for the faét that the length 
of a rod depends on the pa th in R" that has been followed. So long. 
however. as these effects of an electromagnetic field have not been 
observed or, at all events. have not been made probable by other argu~ 
ments (for one can always account for their apparent absence by a too 
low value of the coefficient À). I think we had better not admit the 
connexion in question. confining ourselves to the introduction in electro~ 
magnetic theory of the fourfold potential and not ascribing to it any 
other physical meaning. 

Two remarks more may be made. In the first place. if the fourfold vectors 
Pa and Pa really were indissolubly connected. this would amount to an 
action of an electromagnetic field widely different from anything that 
could reasonably be expected. This may be seen by taking the case of 
a constant electric field. In this we are concerned with one only of the 
components Pa. namely with P", the ordinary electrostatic potential. and the 
expression (13) would reduce to P"dx". showing that the leng th of a rod 
would. in course of time. continually and indefinitely increase or diminish. 
These changes might be detected by the following experiment. Of two 
equal rods. first juxtaposed in a region 1. one is left th ere, while the 
other is removed to a region 2 where the potential has a different value. 
Af ter some time it is brought back to its original position and again 
compared with the first rod. The effect of these manipulations would be 
a difference in the two lengths that might be increased at will. simply 
by keeping the second rod for a long er time in the region 2. 

In the second place. from electromagnetic phenomena one can deduce 
differences or changes only of potentials. the absolute values remaining 
undetermined. On the contrary. the numbers inscribed in the diagram 
R" enable us to determine in invariant measure the lengths of rods. 
Attending to their changes and applying eq. (13) one could obtain a 
knowledge of the potentials themselves. 

§ 11. I shall conclude with some remarks on a generalisation of WEYL'S 

theory that has been proposed by EDDINGTON 1). His considerations are 
the more interesting because they can be developed to a certain extent 
without it being necessary to introduce the potentials gab. 

EDDINGTON's aim is to arrive at the anti~symmetric covariant tensor 
Fab of electric and magnetic force. at the fourfold potentiaIon which 
these forces depend, and at the gravitation~potentials. making all these 
quantities flow from one common source. For th is purpose. he begins by 
assigning to each point of the diagram Ri, in which coordinates, but 

1) Proc. Roy. Soc. A. 99. p. 104 (1921); The mathematical theory of relativity, p. 213. 
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no values gab have been inscribed. 40 numbers. These are regarded as 
continuous functions of the four coordinates and are th en subjected to 
certain mathematical operations. 

The fundamental numbers as we may call them are represented by 
the symbol r;b' with the relation 

r~a = r;b. (18) 
by which the number of mutually independent quantities th at otherwise 
would be 64. is reduced to 40. 

Since no potentials gab have been introduced. we can speak neither 
of the length of a line~element. nor of the magnitude of a vector A 
(as we may call any line~element); there can be question only of the 
components dx. or Aa. There is nothing. however. th at prevents us 
from imagining that. when the starting point of a vector moves along 
a line~e1ement dXb. the components of the vector change in some 
specified manner. Making a definite assumption concerning these changes. 
EODINGTON defines what he calls a parallel displacement ; I shall rather 
say the "selected" displacement in order to keep in mind that. so long 
as there is no ds. th ere can be no question of direction~constants and 
of angles. nor of a parallel displacement in the sen se in which the term 
was understood in § 5. 

The fundamental numbers serve precisely for the definition of the 
changes in the components of a vector A a. which accompany its dis~ 
placement along a line~e1ement d Xb •. EOOINGTON's formula being 

dAa = - (b c) r:c Ac dXb . (19) 

Line~e1ements and vectors in R4 may be conceived to remain the 
same whatever be the coordinates which one us es for the evaluation of 
their components. and in the definition contained in (19) it is to be 
understood that the element dXb along which the displacement is effected 
and the vector Aa. both before and af ter its displacement. are always 
the same in this sense. Hence. equations of the form (19). but with 
other fundamental numbers r:c will hold af ter a change of coordinates. 
It is not difficult to find the relations between the original and the new 
fundamental numbers. but these transformation~formulae are found to 
have a form different from the one that is characteristic of tensors. In 
other terms. r:c is not a tensor 1). 

1) The transformation.formula for r:c is 

(
aXla aXa) 
aXb = nba aX'b = pab 

' a ( ) anka (k 1 ) rk rbc = - ~ kl Pkc Plb À-- + I m PlbPmc nka Im' 
VXI 

(20) 

If here. on the right- hand side we had the last term only. r:c would he a tensor. 

Using the relation anka = ~nla . one can deduce from (20) that r':c has. like r:". 
aXI VXk 

the symmetry expressed in (18) . 
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§ 12. We shall now use eq. (19) for calculating the changes 6 A a which 
occur in the components of a vector. wh en in a succession of infinitely 
small selected displacements. its starting point is made to move in a 
c10sed line drawn in R 4. The dimensions of this line are supposed to 
be infinitely small and we shall limit ourselves to quantities that are of 
the second order with respect to them. 

Let the motion begin at the point P. and let for any other point Q 
of the cycle 

X a - Xa P = x a • 

Then we have to calculate 

6 A a = - I (bc)Jr:c A c dXb . (21 ) 

We must here keep in mind that the first factor under the sign of 

integration is the value of r "tx, at the point Q and that for the second 
factor we must take the component A c such as it has become when that 
point has been reached. It is preferabIe. however. to understand by these 
symbols the values corresponding to the fixed point P. Doing so. we 
must replace the first factor by 

lbc + I (s) rbc.5 X s • 

where l ";,c .5 is the value at Pof the differential coefficient of r~c with respect 
to x 5' As to the change of A c during the motion from P to Q. it will 
be sufficient to calculate it up to terms of the first order and we can 
therefore directly deduce it from (19). replacing the differentials dXb by 
XbQ - XbP = X b and understanding by A c the initial values at the point P . 
Thus the second factor in the integral has to be replaced by 

A c - I (h i) r h
c
i Ai Xh . 

Af ter substitution (21) becomes (J dXb= O. and we may omit the product X5Xh) 

6 Aa = - I (bes) r b:. 5 A cJx. dXb + I (.bchi) rbcI'{i AiJXh dXb . 

We may now. in the first term, write i and h instead of e and s and 
then obtain a new form of the same expression by interchanging in both 
terms the suffixes hand b. Finally. taking half the sum of the two forms 

and remembering thatJxb d Xh = --:f Xh d Xb. we find 

(22) 

where 

(23) 

Our conclusion is therefore that in general the components of a vector 
will have changed when it has been carried round along a c10sed path 
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and that the changes are determined by the expressions (23). In what 

follows we shall be concerned with the quantities Bih
a
b only or rather 

with a tensor Gih of the second rank that may be derived from them. 
and we shall scarcely have to think any more of the foregoing consi-

derations. whieh were intended to deduce B:hb from the fundamental 
numbers and to point out its geometrieal meaning. 

It is easily shown that B~hb is a tensor. covariant as to the sufiixes i. h. b 
and contravariant as to al). 

The covariant tensor Gih that was mentioned just now is deduced 

from B~hb by the operations indieated in the formula 2) 

G ih = I (a) B:ha. (24) 

If the fundamental numbers are arbitrarily chosen. the tensor Gih will 
be neither symmetrie. nOl; antisymmetrie. It may however be decomposed 
into a symmetrie and an antisymmetrie part. namely 

Rh = 1 (G ih + Ghi ) Fih = t (G ih - Ghi ). 

It is easily seen that these are both covariant tensors and that 

Rhi=Rih Fhi=-Fih . 

Performing the operations leading from the tensor (23) to Fih and 
taking into account the relations (18). one finds 

gh = t I (a) (r:h. i - ra~.h). 

whieh shows that the tensor F depends on a fourfold potential A k. If 
we put 

(25) 

1) In eq. (22) we may apply to AI the transformation-formula for line-elements. We 
may proceed in the same way with Xh. hecause this quantity is treated as infinitely smal!. 
and with ~ Aa because it is the difference of two vectors beg inning at the same point. 
In all these cases the quantities pab and ?rab which occur in the transformation-formulae 
may he taken such as they are at the point P. We may do the same in transforming 
d Xb. It is true that th is element lies at a certain di stance from P. but the inBuence which 
th is has on pab would lead to terms of an order higher than needs be considered. 

Thus: 

6. A'k = I (a) nak 6. Aa = t I (a bih) nak B~hb AiJXh dXb 

= t I (a b i hl m n) nak Pil phm pbn B~hb A'IJ X~ dx~ • 
an expression that has the same form as (22) if we put 

B 'k ( b ·h) Ba Imn = I a I nak Pil phm pbn ihb. 

2) Proof that Gih is a covariant tensor. It suffices to express in the components B the 
quantities B' occurring in 

and to use the relations 

I (a) nba pca = ~~ . 
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we may write 

(26) 

Following EDDINGTON we may now identify the quantities Fih with 
the components of electric and magnetic force. or the components Ak with 
those of the fourfold electromagnetic potential. 

It must be remarked. however. that the quantities Aa as defined by (25). 
do not constitute a tensor. 

If we require them to do so. we must replace (25) by I) 

Ak = t ~ (a) r:k + :latp • 
VXk 

tp being a function of the coordinates for which the transformation~ 
formula is 

tp' = tp - t log p (27) 

(p is the functional determinant of the original coordinates with respect 
to the new ones). I) 

By the addition of the terms depending on tp (26) is not changed. 

§ 13. If h. i. j are all different. we have according to (26) 

aFhi + aE j + aFjh - 0 
OXj OXh aXi - • 

I) Using (20) we may write 

• 'a atp' ( a.7lka 
Ar = t X (a) r ar + ~ = - t ~ a k 1) pkr pla -;::, - + 

uX
r 

VXI 

k otp .1 a log p. + t X (a klm) pla pmr .7lka r,m + ox' - 2 aT 
r r 

But X (a) pla .7lka = !5t and consequently 

o 
~ (a) 0- (Pla .7lka) = O. 

XI 

By this the first term of the expression for A' r becomes 

and if. in the third term. we write 

the formula becomes 

A~ = ~ (m) pmr Am • 

showing that Ak is a covariant tensor. 
It mayalso he noted that the transformations defined by (27) form a group. 
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There are four formulae of this kind and these form one group of 
MAXWELL' s equations. 

As to the other group. in which the density of electric charge and 
the components of the convection~current occur. these equations must neces~ 
sarily contain a contravariant tensor connected with gh. A tensor Fab 
of this kind can only be defined if we have introduced beforehand the 
components gab. the relation between the two tensors being expressed 
by the formula 

Fab = ~ (i h) gai gbh Eh. 

Moreover the equations in question contain the factor V - g. 
EDDINGTON has remarked. however. that the gravitation~potentials gab 

and all quantities th at depend on them. mayalso be considered as 
derived from the fundamental numbers that have given us the components 
of electric and magnetie force. 

Indeed. we have so far used only the antisymmetric part gh of the 
tensor Gih and we may now have recourse to its symmetrie part Rih. 
Since gi h must also be symmetrie we may put 

1 
gih =IRh. 

À being a constant. 
The effect of this will be that all quantities involved in the phenomena 

of gravitation and electromagnetism. namely the potentials gab. the electrie 
and magnetic forces Fab and the corresponding contravariant tensor Fab 
have been' derived from the fundamental numbers. 1) 

§ 14. All that has been said in § § 11-13 amounts to the establish~ 
ment of certain rul es for the mathematical operations by means of whieh 
the components of electrie and magnetie force and. if so desired. the 
gravitation~potentials can be derived from the fundamental numbers. 

Now it must be remarked that the variety of these numbers is consider~ 
ably greater than that of the quantities whieh we want to deduce from 
them. Indeed. th ere are four components of the electromagnetic poten~ 
tential and ten values gab. whereas there are no less than fourty funda~ 

mental numbers. It may weIl be asked whether af ter all it would not be 
preferabie simply to introduce the functions that are necessary for 
characterizing the electromagnetic and gravitational fields. without en~ 
cumbering the theory with so great a number of superfluous quantities. 
The introduction of these could be justified. and would. of course. become 
very important. only if we had good grounds for thinking that some~ 

I) The only quantity occurring in the above formulae of which this cannot. as yet. he 
said. is the function 0/ which appears in our definition of Ak. This function is to a certain 
extent undeterminate. the only condition heing that it must transform according to eq. (27). 

If we put 0/ = -lh log V '-g. an assumption th at agrees with (27). 0/ also will have its 
origin in the fundamental numbers. 
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thing that might sooner or later be observed lies behind their wide 
diversity. 

It mayalso be remarked that. in any partieular case. the fundamental 
numbers must be such that they lead to the really existing values of 
electrie and magnetie force and of the gravitation~potentials . However. 
I have found it by no means easy to account f. i. for the values 

g I l =g22=g33=-1, gH=C2 

by suitable assumptions concerning EDDINGTON's r:b • 

§ 15. Some words remain to be said about the analogy between eq. 
(10) and (19). The direction~constants in the former equation may be 
considered as the components of a vector of unit magnitude. so that. 
like (19). (10) expresses a rule for a certain selected displacement of a 
vector. In so far it is a special case of (19). rb~ being replaced by 

~ : C ~ (by whieh condition (18) is satisfied). 

By this the tensors Bihab and G ih defined by (23) and (24) become the 

weil known tensors connected with the curvature of R4' and the latter 
of them becomes symmetrie. a simplification that is important for the 
theory of gravitation. 

In order to prove it. one has to show that the antisymmetric part (26) 
vanishes. This becomes c1ear if one takes into account that. according 
to (25). 

2 Ak = ~ (a) 1 aak ( = ~ (a b) gab [ abk ] 

= t ~ (a b)gab([ abk ] + [bak]) = t ~ (a b) gab gah.k 




