Physics. — “On the Equation of State of Solid Substances in Connec-
tion with the General Expression for the Energy.” IlI. By Dr.
J. J. vaN LAAR. (Communicated by Prof. H. A. LORENTZ).

(Communicated at the meeting of January 30, 1926).
I
The Equation of Energy at Higher Temperature.

1. After having established in our preceding paper !), that the equation
of state of solid substances at higher temperatures must possess the form

A+ RT
p+-l%___j~_—b, . . . . . . . . (1)
in which
b b
b= b:_ boo: g‘P n o v—bOOZ(v_b)(l+%)'
1 —|—‘—T- 1+’;‘

we now proceed to the solution of the more general problem, what will
be the form of the equation of state at somewhat lower temperatures,
when the progressive energy of the molecules slowly begins to “degen-

erate”, so that L = —3—RT must be replaced by the expression of DEBYE:

2 RT(14 5 B o + 3)
( 5T+ T8 T ) S

which holds at comparatively high temperatures (the development into
series at low temperatures will be treated in Chapter IV).

This progressive Energy is half the total energy of path for solid
substances (kinetic 4 potential energy in the paths round the positions of
equilibrium of the different molecules). In the above expression the so-
called zero-point energy is included. For in the general expression

CSLRT (71, 1
0

in which x is=é—;(ﬂ =-%). and v, represents the maximum frequency
given by .
-3
o 3c N

T 4mp

1) These Proceed. 29, 95 (1926).
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14
so that x, is :é,r"'— the term '/, within the integral sign refers to the
zero point energy, as immediately appears from the derivation. Execution

of the integration then gives:
LRT[1 , N SRS SIS N S N
3’[‘8"‘m+( g % T3 % g% 5040x’m+~--) '

in which the first %x,‘n refers to the term -;— (hence to the zero point energy)

and the form between () to the integral with e* — 1. In consequence of
this L becomes:

L=

_3 1l .__1 .
L__—Z-RT(1+20xf,_ s )

which is in harmony with (3), when also

o 33N
G_ﬂvm_ﬂcl/m

is introduced, so that x, becomes — 6 : T.

2. In the above expression for & (the so-called “characteristic”’ tem-
perature) c is the mean velocity of propagation of the elastic waves,
given for solid substances by

o=t

(gD)‘/z ’

in which f is a pretty complicated factor containing the so-called POISSON
modulus u (into which we shall not enter any further here), o the coeffi-

cient of compressibility — — —ll,— (cdl_;) and D:I:,—/I the density. Then we get
t

the following equation:
6=4 V?}I’:’ ng——‘la M2 p'l2 p—13,

In this f =h:k =477.101, [/%:0,6203, N=0,6060.10%,
hence N':—=0,8462 . 10%, therefore
6 =0,00250 f. M~z g2 p'ls,
When in this 0, = — dv is substituted for ¢ = — Lfde , we get
dp ) v\dp J:
6 =10,00250 f. M~ o'z s,
in which for different metals f may lie between 0,96 (1 =0,20) and
0.37 (#=0,45). In many cases x —1!/;, and then f=0,69. If we write
_ 6=C v¥s o',

in which therefore
C =0,0025 f M—'#,
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then becomes
?=C?v'he . . . . . . L, ()

From this formula (valid for all statesof aggregation; for liquids and

gases f=1 in C, but then the known factor V'c, : ¢, must be added in
the expression for the velocity of propagation, hence ¢, : ¢, in C?) 6 may
be successfully calculated for different metals; these values are in excellent
harmony with the values calculated for them.

3. When now o or o, is calculated from the equation of state, it will
at once appear that #? in any case (i. e. at comparatively high tempera-
tures) can be represented by

ez:ag(1+¢,:r+%+...), .6

in which #., ¢;, @, etc. are still functions of v. In this it is of importance
noteworthy, that #? contains still a term with T, so that the above
equation (3) for L after all does not give a development into series
%. T etc. but with 71, % 71,—3 etc., in consequence of which a
term without T will occur in L.

Substituting (5) in (3), and leaving the terms with 1: 73 etc., which
contain ¢, out of account, we get:

B A B
L_?RT(1+~T+ﬁ+...), e

with

in which

g . p=1l{(g_1 g
A__zoﬁatpl s B_20(6“ 840“(;)‘ . . . . (63

3
Hence the term in question without T is ERA'

IIQ
The Egquations of Energy and of State at Higher Temperatures.

1. It is now our task to calculate from (6) and (6,) the coefficients
P and Q in the general equation of state (the quantity A, which refers
to the so-called ,static” virial of repulsion (see our first Paper) appears
only in solid substances)

A+RT(1+§,+%+...)
a
p—*—?: o—b P (7)

: —l- etc. We

in which the development into series will also contain 7T
33
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shall see, that DB, Q, etc. are related in an exceedingly simple way with
A, B, etc. in the equation (6) for L, but are by no means equal — in
contradiction with what has often been supposed.

For the calculation of P we make use of the general formula for the
Energy E, viz. (the lower limits o for T and v have been arbitrarily
chosen, but are rational in view of the higher temperatures we are now

considering)
'y v
dp
E= C,,dT"f" T a— —p dU-I-ET:m,. . e (8)
¢ v T=o LS

in which the quantity under the second integral sign (with regard to v)
must be taken at T—oo, i.e. at the lower limit of the first integral (with
regard to T)!).

2. We now calculate further the quantities occurring in the second

1) For, if in general

o, L du,
du —ax dx-i—ay dy—Ax,y dx+ Bx,y dyr

in which u is a function of x and y, du being a total differential (as is here the case
with dE), we shall prove that it follows from this that

x y
Uxy — Uab :fo.y dx +JBn.y dyr
a b

in which, therefore, in the second integral x has been replaced by the lower limit a of
the first integral. For from this latter equation follows by fofal differentiation with regard

to x and y:
di=2 [ (Aeydsrt By Jaxt 2] a
u—ax ‘J xy AX ‘J ay AY X ay Y,
a b

du = (A.,y + 0) dx + [ %ﬁ’ dx + Ba.y:l dyo

or also

F g
0Ba,
as ba*x / Baydy = . b;y dy =0, because Bajy (in which x has been substituted by a)
b

b
Asy _ OBxy

oy Ox

is independent of x. Now, however, , according to a known property of

total differentials, so that

du—=A.,dx+ [ 9%’—” dx + B..g:l dy

a
hence

du— Ax,y dx ‘I— [(Bx,y - Ba,y) + Bl,y] d.ll :AX'!I dx-l— Bx-!l dy'
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integral of (8) from the equation of state (7). As regards c,, as (a, band 1
independent of T)

3
E=2L+fl)=2 .§RT( +24+ 2+ )-1—/4 RT + £(v)
(the factor 2 only for solid; u for multi-atomic mol.), we have immediately :
3 B
C”ZZ'ER(I —Tz——...)-i",uR.
When a, b, and 1 are supposed independent of T (see above),
dy__R _R Q _
dt ], v—b T?v—b 7
follows from (7), hence:
dp _(RT R Q\ ( a, 6 % RT P R Q
T(E)v—p_ (1_;:5 o Tv—b) ( vz+v—b + + R —b + Tv—b)

a_* pP R2Q
. :

Hence extrapolated to 7—o0, we have

(r(8)r), 325

so that, neglecting the term u R T, the following equation may be written
for (8):

E:z.%R[(T—T,,H—] [ ——f—dv—RJ -—dv_|—|—Eu_w

But in this E 7= is evidently —[2 =RT_+2. —RA‘,_«{I-}-UL, be-
00

v— 0o

a
cause the potential energy of the attractive forces is — for v=o0 (for
00
liquids and gases v, may be simply written), the first part referring to
2L.,. (the potential energy of the (“static”’) repulsive forces will disappear
el
in solid substances at v —=o0).

Now A = — 49 @, (see above), and as we shall see presently (in Chapter I1I),

g.e.d. (It can, likewise, be proved that from du = Axydx -+ Bx.ydy follows uxy—uab=
x y

= ij,bdx—f- [ Bxydy, in which inside the first integral y has been replaced by the
2 b
lowest limit b of the second .integral).
When this is applied to the well-known equation dE = ¢, dT + [ T( ‘%’ ) —p ] dv, equa-
v
tion (8) ensures naturally.

33
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this is =0 at v—=o0 (on account of the factor v—"; see (14) and (15)).
Hence we have finally:

_[a a ¥ 3 B ' p

But according to (6) is also:

E:(vi——)—-j—dv—{—z —RT( +T+T2) )

where 2L has been increased by the potential energy of the attractive
forces and (in solid substances) by that of the ,static’’ repulsive forces ),
so that

2. —RA_—Rf—dv
v—>b

1) To prevent the potential energy from becoming = o at finite values of v, it would

A <
be better to substitute > for A in the equation of state. The expression

RPN P do— b P o Vb
fv—bdv—fv—boo(l+ v)dv_l(log (v b°°)+boolog ” =

_1( v— boo_|_ -_vboo):l[log(v_b)g—l_?/v)—}—
P gog (0122
tamlo (5 ()]
which would be = — oo for all finite values of v, becomes with A:

v

Y ~
f oo—5) % —f (T—boo)(1+ )"’”:
| L o P beo SRR NS G _
—A |:b00 log U +(pf( booUZ + booz(v_boo v)) dv:l -

©0

_ v—1byo boo v—by,
l[bcol v +b ( +log v ’

which now remains finite for finite values of v, as it should.

A
In consequence of the substitution of — for A (which has practically very littie influ-
v

ence for solid substances (at p = 0) on the different calculations, because v varies only

little between the melting-point of solid substances and T =0), not A stands next to RT,
A
in (1), but - in consequence of which — RT being of the dimensions of % — A now

a
becomes analogous to a, and not to e
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must be found. A will, therefore, have to disappear for v—o0 (see
above), and we have for the quantity P in the equation of state (7):
3 dA

P:—Z—z—(v——b)g . . . . . . . (10)

1
20
to calculate &2¢; (in Chapter III). It may still be mentioned, that the
quantities 1 and a can never be determined by means of thermodynamic
relations; these quantities can only be calculated on the basis of mole-
cular-theoretical considerations.

In this A is— 6? ¢, according to (6°), and we shall therefore have

3. For the calculation of Q, S, U etc. in (7) we start from the well-

known equation
d’®p\ _ (dc.
T(gtz )U——(E)t . . . . . . . . (11)

In this is, according to (7):

(d_p)_R IRQ 2RS 3R U
dt

To—b TPo—b T v—b T'v—b

hence

dp\_12R Q 23R S , 34R U
T(d?)v_ T o—bt T ob T o—b T

Further follows fromec, =2. % R (1 1B_2C_3D )

de,\ 3 (1 (dB\,6 2 (dC\ ,6 3 (dD
( do ),— —2.5R (T‘Z (as)ff'fs (% o (d—))

We find, therefore, immediately:

3v—bdB __ 3v—bdC ,,
27 g STy g, U=

v—bdD
T dv’ (12)

Q=—-2

which expressions are in perfect harmony with (10). The factor 2 dis-
appears for liquids and gases.
The quantities P, Q, S, U, etc. in the equation of state

a_ 1 P Q 6 S M
p+;i—v_b[A+RT(1+7+Tz+ﬁ+F+...)],

in which the quantity 1 only appears in solid substances, are therefore
not equal to the corresponding quantities A, B, C, D, etc. of the equation
of Energy
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E—= RT(I +A —l—TBz—l—7C:3-}—?4 +.. )—}— Pot. Energy,

but there is a simple relation between them (expressed by 10)and (12)!).
II1.

Calculation of A —= 21—0 62 ¢, and@

o at Higher Temperatures.

1. For the calculation of 2 ¢, in (5), viz. ?=62(1 + ¢, T), we must
determine #>= C?v's 7' according to (4). But for this it is necessary

in the first place to know the value of o, :—(3—;). Taking (10) into
account, the equation of state becomes:

___a ART 3 .,dA A-RT 3 dA
P=—50T % 2. 2Rdv T 2+v—boo( +v> 2, R_” ’

from which follows:

dp 2a #/, ¥/ 3 Jd?A
(dv) (1+Rr)( Tk + )-2.712%3....

(v v— by,

hence

i dp d’A 1 @  @v—b
o l=— (dv) [ +2 R ] +( boo)z(l-i—;‘f‘;—v—@)] +
RT @  @uv—by
¥ (V—boo)z(1 +;+;—V—)'

so that from 2= C?v"s 07! =62 (1 + ¢, T) follows:

2
GZZCZU‘I’[ 3+2 Rd:zl—l— ( +2 +‘P vvboo)
and "
o =CRi (1+ +"’ z Ub°°) ... (13)
FromA—iaﬂ @, follows therefore:

dA_1 ., 4 o' v'h @ , ¢ v—by
& 20 CR [(?(v—boo)z ~ 2 o—bep )3) (‘ Tty o )—

vt ¢p v— boo v—by 1
o5 ()

1) Expressions, as among others have been drawn up by K. BENNEWITZ, Z. f. phys.

u
Ch. 110, p. 725 (1924), i. e. (for ideal gases) pv = RT (1 +Eo)' and by many others,

must therefore be absolutely rejected.
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or

d_é_i 2 L i_ P v— boo @ v—byo
dv —20 C R(U—boo)z[(3 Zv—boo)(1+ + ) 2 v v )}'

or also with ﬂ@:z’ and ¥ = w:

v v
dA_ 1 ., s 4 2 4 2 N
E‘ECR(Ui&F[(?_7)+“’((’3‘_7)(1+z)_2’)]'

i.e.
dA_L g, o [(4 2 ,(2,2.2,
dv CR (v—>bgp)? |:(3 z') w(3+z,—|——3—z).
Withv—boo:(v—b)(l—l—w)andv—

hence

e e e Exa et “(1+0)) |

b:z we get 2/ = z (1 + w),

dv ( b)2(1+w)? z14+o 1+
or
dA 1 P 1 2
E;_%CZRV o—bp (1) [ z(l4+w)—2—w (52(1+w)+2+
+ %zz (l—i—w)z)].
so that we get with —2 —2w=—2(1 4 w): _

— g dv — 1022(1+w)?\ "~ 3 2\2—m)+ %ZZ . (1+(u)). - (o)

dA_ 1 C°R v—’“( 1

1

3

da?A T
From this we see, that the calculation of ——- 2 occurring in @, will be-
come very complicated, so that we will omit the calculation of Q, in
which% occurs, because B contains #? according to (6°). And the
same thing applies to the following coefficients in a still greater degree,
where, besides, the coeﬁicients @, etc. would have to be calculated

according to (5). For A = 20 6%, we found above according to (13):

1 ) —b
A= O s (1 ato ),

or with v —b,, = (v — b) (1 4 w), U:b:z:
. 1 C?R v
A= (1+m)(+wz). N
Putting
1 C2Rv—s

A= (14)

20 22(1+w)? °
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we get according to (a), (8) and (10):

A=A,(14w)(1+wz2) ; P:Z.3A0(l—%z(2—w)—{—%zzw(l—l-w)),. (15)

through which the quantity P of the equation of state
a . p
(p+v—2) (v—b)—l+RT(1+ T)
is expressed in the quantity A of the equation of Energy

E=2 .%RT(I —!—?) + Pot. Energy.

As we already remarked in Chapter II: P is by no means equal to
A, and this will also apply to the following coefficients. Only in the case
of ideal gases (see further below) the different coefficients would become
equal to each other (z=1, w=0), thus A =P = A, (the factor 2 in P
(and E) appears only in solid substances).

2. In ordinary liquids (e.g. in benzene) z = %and (022% in the
neighbourhood of the point of solidification (5,°5 C.), hence

A=3624A,; DP—=3,045A,.
In molten copper z —= 381—2 w =2 at 1083° C., through which A and P

become :
A=3157A, : P=3,004 A,

%, w=0,6, (20° C.), hence

A=1760A, : P=5,587 A,

And in solid copper z =

Accordingly in the two liquids mentioned, P is only slightly smaller
than A, whereas in solid copper P is more than 3 times as great as A.
Let us now determine the different values of A, according to the above
expression (14). C being = 0,0025 f X M~ (see I, § 1), C%% =

= 6% .10=¢ . M=l D% with f—1, because v = M : D. Therefore in liquid
benzene (5°,5C.):

C?Rv—" =6 }1— 10—6 < 83,17 . 106 XX (78,05)" XX (0,9)s = 519,8 : 1425 X

< 0,9322 =0.3400.

Hence
1

2
A, = % X 0,3400 X (14)? :(3-7—> — 0,3373.

In molten copper at 1083° C. we have:
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C?Rv—*+=519,8 XX (63,57)—" X (8,40)"* = 519,8 : 1013 X 4,132 = 2,121,
so that we get:
Ay= % X 2,121 X {(38,23)%; 32=17.22,

In solid copper (20° C.) evidently

8,933

2|3
C?Rv—:=12,121 X (—871(-)) = 2,121 X'1,042 = 2,210,

in consequence of which becomes
Ay= 21—0 X 2,210 X (6)?: (1,6)2 = 1,554.

‘We then get finally:

A 1 p 1

. . o — 2 — 7 P i —

liquid Benzene (5°5 C.) | A=1,222 P=1,02 = 778 = 271
A 1 p 1

o 6 3 == =

molten Copper (1083°C.) | A=54,3° P=51,7 = 75 T 26
A 1 p 1

. o — 5 — 2 — R
solid Copper (20° C.) A=273 P=28,68 T =107 T 33

In substances as benzene the correction in the equation of state is

accordingly only about 0,49/, at T:%. but in liquid (T = % T ) and

in solid (T:% Tk) copper already resp. 49/, and 3°9/,, hence about

10 or 8 times greater. But in the calculation of C we took above the

factor f=1. In liquid benzene and copper f?=c,:c, is only slightly

greater than the unit, but in solid copper f? wil become — 0,4 (with

1n=20,36, f = 0,63). Consequently % becomes only — 8_15 i.e. 1,29/, instead
) .

of 33 39.

In gases, where v is so many times greater than in liquids, the cor-
rection P: T will appear to be a great many times smaller at the same
temperature, and even approach 0. The quantity @ =@ :v can be put
— 0, whereas z becomes = (v—b): v= 1. In consequence of this we get
for gases simply:

A:Ao; p:3A0 (1—%.2):140.

If in benzene vapour v is taken 1000-times greater than in liquid

benzene, A, becomes:

Ay= 216 C?Rv— = % > 0,3400 : (1000)*s = 0,00017 ;
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hence at T — about 280° absolute the correction quantity ; will

become =0,6.10—%, i, e. perfectly negligible. And the following terms
with Q will appear to be still much smaller.

IV.
The Equations of Energy and State at very Low Temperatures.

The development into series (3) is now replaced by the DEBYE develop-
ment holding only at very low temperatures

-

f=3nas 1

when by E; we represent the temperature part of the Energy. For the

total Energy the potential energy of the attractive and repulsive forces

of static nature (see Chapter II) have to be added. The expression (16)

applies to solid substances; the question in how far it is also applicable

to liquids and gases at very low temperatures, and whether in these cases

we have to do with open or closed paths (in the former case we should
have still to divide by 2) may be left undecided for the present.

T*— .o, . . . . . (16)

Now the zero point energy % RO, remains outside the terms with T4, T®

etc. Of course 6, should be put in it and not §, because with the cor-
Xm
responding term 9x3ﬂ' f % x’dx:% RTx, the quantity Tx,— fr.—§6
" o

will refer to T—0 according to the definition (since this term must repre-
sent the energy at T —0). The quantity »., hence also #, however,
remains a function of v.

From the equation of state (see further below) the following equation
will follow as an analogon to (5):

F=6004+¢,T..), . . . . . . . (17)
so that we get:

9 3 R~*

E, = Rao + -5_ 0(3’ (1+¢‘T4 . .)3[,

=3 T*—BT®...,

ie.
_9 3R . 3 4 i_RBTS
Er——?Rao“!’—s——aT(l 2(]71T...)T BT & & Wi
Confining ourselves, theretore, to terms with T, the following equation
remains:
3 Rn!

__9 il St 4_2 4
Et —?Rﬁo‘l‘ 5 03 T —_— 8 R00+AT . . . . (18)
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Instead of (7) we may write for the equation of state:

a_ A+ PTH...
p+_5—T' B 1))

v

in which we shall try to express P in A. For this purpose we start
again from the formula
d’p\ _ [(de,
T(W)v—( dv );
12 PT

dA
3 3

v

giving

from which follows:

3(—b)(‘f£) ..o
2. As A depends on v through 6, we must again determine
the quantity 8= C?0' o=, je, ot = — (ji:); From (19), ie. (withu_l =
=em(17) )
4
=S4T (1,2,
follows

dp\_2a_ 4 _ ) «d (P
(dv)t_ v} (v—Dbgo)? (1+v+v v )+T dv\v—b),

which (with (20)) passes into

dp\_ 2a A 1 d’A
(@)=% = ( )57 (@),

so that we get:

ey 2a A 1., (d?A
rmon Breka( )4r(E)

consequently
g=cwu| 22, 4 (1 2, 2vbu)] (a)
° v’ (v—>bgo)’ v v v :
1
As according to (18) A— ?3 Ig’: , we have (%? t:: —% }g_]g(%%’)‘

But from (a) follows:

2o (@) =e5 (e (=) |

The last differentiation has already been carried out in § 1 of Chapter III
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in the expression (a), when this is divided by —%) C?R (v—b). Hence we
get:

dé, 10 a vl 1 1
20 (dv C2[3 08/3 21(;1——?)22(1——'—60)2(1 ‘—“3‘2(2—(0)—1—32260(1—{-(1))):],

or also

()= ekt “aTJ;w—)z(‘—§Z<2—w>+gz2w<1+w>)}

v—>b
—z. We have, therefore:

dA\_OR~C[_5a 1
dv)fs g o Lﬂrmmz( )]

In this 6y? has been given by (a), consequently (cf. § 1 of Chapter III)
by

as

43_ A
62 = C /[ o+ T )(1—}—(02)]
1. e.
_C 2a 1+wz
ag_v—%[ =X 2(1+w)] 31

We find, therefore, for P according to (20):
p_3R” c2v2h b[ 22 ( ;z(Z—w)—}-%z’w(l—!—w))].

56 la 22 (14w)?
And as
3 Rnt

(see above), we finally get with (v—b):v= z and 6,* according to (21):

5a y) 1 ‘
—3 5+ mpep (13 eI t3 e (o)
DP=Az

(23)
a Y}
v T 21 Fw) (1+o2)

If, therefore, A is known through (22), combined with (21), Pcan be
calculated from (23). Again — no more than at high temperatures —
the coefficient P of the equation of state is nof equal to the corres-
ponding coefficient A of the equation of energy.

3. We will now carry out the calculation for the case of solid copper
at very low temperatures. We know that the quantity 1 is determined by

a vo b0 a
vo—be) = —Z
2( 0 0) Vo Vo 0r
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as immediately appears from the equation of state (19), when (at p=0)v
approaches to vy. In the neighbourhood of T—0 z and z;, w and w,,
v and v, may be put equal to each other without the slightest hesitation.
For already at comparatively high temperatures, e. g. at 20° C,, the
difference is inappreciable; at 20° C. v —=7,12 and v, =7,05; z = (v—b):
:v=1,18%:7,11°=1:6,00 and z,=1,13%:7,04°=1:6,19? (see Chapter II
of our first Paper), so that the differences between these quantities at T
in the neighbourhood of T, and at T, itself will no doubt be quite
negligible.

If, therefore, we write simply 22%2 with omission of the indices 0,

then
,_ C?a 1—2(24w)

0 phy  2(14-w)

—320—a) = 3 7 (1o 5+40)

(1+o) (1—2(2+4-w))
With 2—=1:6,19?2, « = 0,6 X (7,116 : 7,046) = 0,6060 this becomes:

C2a
o3=2233 32

. (29)

bP=A

P=0,8830 A

In this C?: J’a:s% .107° X (63,57)" XX (7,046)"5<0.3969, because

in C? the factor f? is—=(0,63) 0,3969 (see § 2 of Chapter III). Hence
C?: 0™ =0,01062 . 10~° is found. Further % — 32,63.10" : 7,046 =
= 4,631.10'2, so that for &5 is found:

62=12,233X0,01062 . 106X 4,631 . 10'2=10,1098.10¢,

so that 6,—331,3, 63 — 36,38.10°.
Therefore, according to (22):

6
A:é 83,17 . 10° XX 97,41

5 3638 106 —1336: P=1180.

According to (16) and (19) we have therefore for solid copper in the
neighbourhood of T=0:

9

E. =3 R+ 134 T*
a_A+118T*
p+v_2— v—>b

In this the zero-point energy %Rﬂo_—_’% X 83,17 . 108X 331,3 =
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= 0,03100. 10'2, 1 being :—‘Z—X z = 4,631 . 102 : 6.192 =0,7479 . 102,

Hence we have:
E. =0,031.10'2+ 134 T"?
Solid copper (25)

(p+,%)(u—b):0,75.1012+118T4§‘ T-0 -

If T=20° absolute, the equations become:
E, =0,031.102 4 21,4.10°¢ )

»' T: o X
(p—f—l;)(v—b):0,75.10‘2+18,9.106 \ (7'=20° abs)

so that the first terms are then still resp. 1450 and 40000 times greater
than the terms with 7% Hence at 20° abs. the temperature energy is
already almost equal to the zero point energy, the temperature exercising
hardly any influence in the equation of state, so that the coefficient of
expansion has become exceedingly small.

4. For the calculation of the coefficient of expansion in the neigh-
bourhood of T—0 we start from the known expression

Ao\ _ _ (o) oy () _ o 1L (e
(dt )u_ — (dv)tx (dt )p_ v RS (dt );,

From this follows:

o l\dt val—‘.

i) -

dp) . , __4PT?® 4719
In this (——)u is according to (19) = o—b —1.138

3 3
a T3=414,7 T3. And

69 being—= C?v' 07!, vo!=62: C?v's, For C?: v" we found above the
value 0,01062 . 10—5, so that C?%'s becomes = 0,01062.10—¢ X v =
=0,01062 . 106+ 7,046 = 0,07483 . 10—5. Hence we calculate 0,1098 .
.10%:0,07483 . 10—6= 1,467 . 10'2 for ve;'. Thus

414,7 T3
1,467 .10°¢
Por the specific heat follows from (25):

¢, =534,4 T* abs. units.
But as 1 gr. cal. —41,86. 10% Ergs, ¢, becomes
c, = 12,77 . 10—6T3 gr. cal. (T = 0).
According at very low temperatures the coefficient of expansion runs

entirely parallel with the atomic heat, but is numerically (i. e. 10°a)
22,14 times greater than c, expressed in gr. cal.

At 20°

106a= —282,6.10—°T7T3 (T-0).

106a=2,261 ; c,=0,1021 (7 =20° abs.)
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would be according to the above. At 20°,7 abs. ¢, = 0.122 has been found
according to KEESOM and K. ONNEs!). This is in pretty good agreement,

for c, must be = 0.102 XX (22007) =0.102 X 1.11 = 0.113 at 20.°7. Also

the coefficient of expansion can be right, for 33,9 =11,7 has been
found by LINDEMANN between 20° and 80° abs., while 106a =3 < 6,8 =
—20,4 at 85° (there the T-law is no longer valid), so that duly 11.7
lies intermediate between 2.26 and 20.4 (the mean value would be 11.3).

We remark that at 20° C. (T—=293) 10a =3 XX 17=51, and ¢, is = 5.8.
The coefficient of expansion 10%a is at these higher temperatures numeri-
cally only 8.8 times greater than c, in gr. cal, against 22.1 times at

very low temperatures (see above).

5. Above in (24) we found for 62 an expression, which is quite iden-
tical with that found by us in our first paper (see chapter V, equation
(8) foro™!=wo7!) at higher temperatures for #*= C? “s0;'. This is
self-evident, because, as appears from the derivation, at higher tempera-
tures 1 + RT has been replaced by its value ;2 (v—>b) from the equation
a
v
(vo—by), while T—=0 was put. Through this the expressions for 62
(with T) and 6?2 (with T—=0) have become identical; with this difference,
however, that the values of v will be slightly different in the two cases.
Consequently at 20° C. with z = 1: 6,00, ®« = 0,6 is obtained

2
6*=2,125 vc—2/3 " instead of 2.233 X ibid (see above). We have therefore:
6 . Gi— 2,125 2, 233 2,125 X(7 046)’/3

of state (p=—0), the same thing having been done above with (p=0) 1=

@ecy (=0 (7.116)% (7 046)s~ 2,233 7,116
ie.
62 (T=0)= 67 (20° C.) X 1,051 X (1,010f%s = 63, ¢ X 1,068.

And as 6,(T=0)=331.3 was found (see § 3), 6 will be 331.3:
1.034 = 320.6 at 20° C (= 293° abs.) ?). The difference in valueat T =0
and T =293° is therefore small.

And the same thing will be the case with the coefficient of compres-

sibility 0. As 6? = C%' o' = C%'s X vo;™!, the values of vo;! = —v %
will be to each other as those of 62:v's i.e. those of 6 = — ;:—; as

those of v's: I'2, Hence
¢ : o=(1,010)"s< 1,068 = 1,072.

(20°C) (T=0)
1) Comm. 147a, p. 8 (1915).
2) KEESOM and KAMERLINGH ONNES (Comm. 143, 1914) have found between 15° and
22° abs. the value 323.5. Later on (Comm. 147a, 1915) the somewhat smaller value 315
was found between 14° and 90° abs.
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As at 20° C o is found = 0,730. 10" (see Chapter V of the previous
paper), the value of o will only be 0,681.10—" at T — 0, again not
very different. Hence we have:

T =0 (abs.)
T=293(20° C)

¢—=331; ¢—=0,68.1012
6—=321; =0,73.10"12,

The differences are so small, that it may safely be said that(p supposed
=0) the values of # and o practically vary little between the absolute
zero and the ordinary temperatures.

And as the values of the coefficients of expansion have been given

by (see § 4)
a:((gz .,X o,

the values of a (6 = constant) will about vary with those of (Z—F:) ; ie.

the values of a at ordinary temperatures will be to those at very low

temperatures as R 6 to Ll
v—>b v—b
= 1,186 and 1,138) as (R : 4 PT?):1,042 < 1,072 (see above).
We have accordingly :
a=(20° C.): a (20° C. abs.)=283,17.10°: (471,9 XX 203 XX 1,029 = 22,7.
In § 4 we found about this ratio 51: 2,261 — 22,6.

o, hence (the values of v—b being resp.

In a concluding article we will briefly discuss the calculation of the
heat of melting and the heat of evaporation for solid substances, and also
the derivation of the equation of the vapour pressure at higher and lower
temperatures. Besides, the dimensions of the closed paths round the posi-
tions of equilibrium will be treated; and then there only remains to test
the equation of state drawn up by us by all other metals of which
BRIDGMAN has determined the coeflicients of compressibility and their
coefficients of pressure and temperature with so great accuracy. By the
aid of these two papers this can now easily be done, and may, if need
be, be left to others.

N.B. It is self-evident, that in all that precedes there is only question
of solid substances, which with regard to the three principal directions
show identical properties. Otherwise the quantities b, , by, and 1 will
have different values in the said directions, and properly speaking there
are three equations of state, or, as it may also be expressed, one mean
equation of state. '

Tavel sur Clarens, Suisse, Dec. 1925.





