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I. In the first of the above mentioned papers the author gives the 
theses which we reproduce here in a slightly altered form. 

Let [C] be an arbitrary system of curves. depending on one para~ 
meter; [T] be the system of the orthogonal trajectories. Let a straight 
angle XO Y move in such a way that the angular point 0 describes 
an arbitrary curve and 0 X and 0 Y continually touch the curve (C). 
resp. (T). of the systems [C] and [T] which pass through O. In this 
case a plane system fixed to OXY has a motion with two degrees of 
freedom and any infinitesimal movement starting from an arbitrary 
initial position. defines a momentary pole of rotation I. 

Now the theorems of FARID BOULAD read: "the locus of these poles I 
is a straight line d; if in the considered position (C) and (T) are the 
two curves of which 0 is the intersection. d joins the centers of curv~ 
ature of (C) and (T). If further 0 describes a curve (~) which cuts 
the curves of [Cl. hence also the curves of [T], under a constant angle. 
- while. as we supposed. OX and 0 Y continually touch curves of 
these systems -. I is at the same time the center of curvature of (~)". 

11. In a no te added to the above. the editor G. DARBOUX remarks 
th at the first thesis of FARID BOULAD is a special case of the follow~ 
ing one: 

"If the motion of a figure in its plane depends on two parameters. 
to any infinitesimal movement of which the figure is capable. there 
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corresponds a definite pole of rota ti on; the locus of these poles is a 
straight line". 

If the motion depends on the parameters u and v. it is easily seen - as 
DARBOUX remarks - that the projections of the displacement of a point 
(x. y) of the movable plane on axes fixed to this plane. are given by 
the expressions : 

Dx = (~I-WI y) du + (~2-W2 y) dv i I) 

Dy = (1]I+WI x) du + (1]2+W2x) dv \ 

in which the "translations" and "rotations" ~.1]. W do not depend on the 
coordinates x and y. 

A point which can be the center of rota ti on of any of these move~ 
ments. must satisfy the condition 

hence: 

or 

Dy=Dx =O. 

~2 - W2 Y I =0 
1]2 + W2 X 

~I 1]2 - 1]1 ~2 + (~I W2 - ~2 W I) x + (171 W2 - 1]2 W I) y = O. 

Consequently the locus of these points is a straight line. 
111. The above mentioned papers have led G . KOENlGS to publish his 

investigations on "les mouvements plans à deux paramètres". It would 
take too much space if. however briefly. we reproduced these extensive 
considerations; it is the less necessary as we shall refer to him repeatedly. 
We therefore only draw the attention here to the remarkable thesis of 
KOENlGS which we mentioned in § 8. 

Our aim is to derive the results of FARID BOULAD and KOENIGS. of 
the latter at least the main points. and a few more. in an entirely 
different way. so that for instance it becomes possible to treat entirely 
according to the general method the cases which require a special dis~ 
cussion of KOENIGS. Moreover we believe that the geometrical meaning 
of the used formulas appears more cIearly in our method. 

§ 1. Perhaps it is not quite unnecessary to draw the attention to the 
fact that by the movements with two degrees of freedom considered by 
DARBOUX and KOENlGS they always understand "holonomous" movements. 

It would be easy to give examples which fall outside these. Let us 
assume for instance a straight angle with a system fixed to it which 
moves over a fixed plane ; the path of the point 0 is entirely arbitrary 
whereas OX continually touches the path of O. Now 0 may coincide 
with any point AI of the fixed plane; but the position of OX does not 
only depend on AI but also on the path described by O . 

I) These formulas wiII he derived in § 5. 

43* 
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We shall also exc1ude such non~holonomous movements ; accordingly 
the position of the system ofaxes OXY is entirely defined by the point 
in the fixed plane which is reached by O. 

§ 2. We begin by remarking that DARBOUX gives a proof of FARID 
BOULAO's starting point to which we have no objection. but that he 
undervalues the significance of this theorem; FARID BOULAO's theorem 
is as general as the one proved by DARBOUX. 

Let II, be the fixed plane over which the plane IIm moves to which 
the system ofaxes OXY is fixed; the position of IIm or of OXY relative 
to a system ofaxes in II, depends on two parameters. We consider 
the line element (O.OX) of IIm defined by the point 0 and the direction 
of the X~axis. If IIm moves over II,. 0 wilI coincide with any point of 
II, and everywhere the line element (O.OX) will define a direction. 
In II, a singly infinite system of curves [C] is defined in each point AI 
of which the tangent coincides with the direction defined in that point. 
Let [T] be the system of the orthogonal trajectories. Now the movement 
of IIm over II, is entirely defined by the condition that OX must con~ 
tinually coincide with the tangent to a curve of [Cl. hence OY with 
the tangent to a curve of [Tl Accordingly any plane movement with 
two degrees of freedom may be defined by fixing to the movable system 
a system ofaxes which moves in the way indicated by F ARID BOULAO. 

§ 3. Now in the plane II, the systems of curves [Cl and [T] are 
given; the movable system ofaxes has a definite position in which OX 
touches a curve (C). OY a curve (T). 

We begin by accepting the proof given by DARBOUX of the first 
thesis of FARID BOULAO: the locus of the possible poles of rotation is 
a straight line d. These possible movements contain: 

1. a displacement of 0 along (C) wh ere OX continually touches (C). 
2. a displacement of 0 along (T) wh ere OY continually touches (T). 
It is known that In the former case the pole of rotation coincides 

with the center of curvature of (C). in the lat ter case with that of (T). 
Consequently. as also FARID BOULAO and DARBOUX remark. the line d 
is the join of these points. 

To this we shall add a few remarks. We have chosen OXYarbitrarily 
in the plane IIm; if we replace OXY by OXI yl where L.. XOXI =cp. 
also the line element (O.OXI) describes the whole plane II,; in the 
possible movements. the system of curves [C] is replaced by another 
system [C I]. formed by isogonal trajectories (cp~trajectories) of [C]. 

Whereas accordingly the two~dimensional system of possible movements 
which in the future we shall indicate by M 2 • is quite defined by the 
system of curves [Cl. the reverse. that M 2 quite defines this system 
of curves. is not true. If we replace rCl by rCIl. M 2 does not chanQe; 
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but th en d. the locus of the poles of rotation for an arbitrary position. 
has not changed either. 

Consequently any point I of d is not only a possible pole of rotation. 
but also the center of curvature of one of the isogonal trajectories of 
(C) in O. 

This is the last thesis of FARID BOULAD. We mayalso formulate its 
geometrical contents in the following way: 

The centers of curvature of (C) and (T) form with 0 the angular 
points of a right~angled triangle; the hypotenuse also contains the center 
of curvature of (Cl). If RI. R2 • Rl' are the radii of curvature of these 
th ree curves in O. we have: 

1 _cos q; + sin q; I) 
Rl' -Tt R; (1) 

(0. RI) and (-R2• 0) are the centers of curvature of (C) and (T). 

§ 4. This gives us at once the solution to the problem: to produce 
two mutually orthogonal systems of curves so that the ratio of the radii 
of curvature of two curves which cut each other in a given point. is 
constant. i.e. independent from the chosen point. 

Let m be this constant and cotg q; = m. We con si der an arbitrary 
singly~infinite system of straight lines together with the systems of their 
orthogonal trajectories ~ q;~ and (t n + q;)~trajectories. In any point the 
following re1ations between the radii of curvature exist: 

sin q; 
R'i' -RI/2'1r 

R(II27r+ 1') 

1 cosq; 
R(I/27r+'!') = RII2'1r; 

cotg q;= m. 

Accordingly the q;~ and the (t n + q;Hrajectories give the solution of 
the problem. 

§ 5. We shall now give a geometrical meaning to the quantities which 
appear in the note of DARBOUX. 

If on an arbitrary surface we choose orthogonal parameter curves 
v = constant and u = constant. and if we make a system ofaxes OXYZ 
move in such a way that 0 des cri bes this surface. OX and OY touch 
the u~ and v~curves and OZ coincides with the norm al to the surface. 

I) Cf. the more general theorem (LIOUVILLE. 1850): if on a surface po and pv are 

the geodetical curvatures of the orthogonal systems of curves u and v. we have for a 
curve which cuts the curves of the u-system (i.e. v = constant) under an angle 1': 

1 _ dq; + cosq; + sin q; 
eg - ds e::- e::-' 
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the movements of the trihedron OXYZ. hence also the infinitesimal 
displacement of a point (x. y. z) fixed to this trihedron. may be expressed 
by geometrical quantities that are related to the parameter curves. (Sy 
the u~curves we always understand the curves v = constant). 

If the parameter curves are at the same time lines of curvature. these 
expressions assume a more simple form. 

Let us apply this by assuming the systems [C] and [T] as u~ and 
v~curves; they may be considered as lines of curvature of IIf. In this 
case the possible infinitesimal displacements of a point (x. y) are ex~ 
pressed by I): 

Dx=VE(l - ]{)dU -VG ~2 dV~ 

Dy=VE ~ du+VG(l + ;2)dV~ . 
(2) 

Here du and dv are the increments of the coordinates of the point 
o in the plane IIf. Dx and Dy are the projections of the infinitesimal 
displacement of a point (x. y) on OX and OY; (0. RI) is the center of 
curvature of the u~curve (v = constant). (- R2• 0) that of the v~curve in 
the point 0 2). E and Gare the values which the coefficients in the 
expression for the line element of: 

assume in the point O. 
We remark that between E and G there exists arelation. the formula 

of GAUSZ. which indicates that the total curvature of IIf is zero: 

~(_l OVG)+~(_l oVE)_O' 
OU VE OU ov V G ov - .. (3) 

further that RI and R2 are expressed in E and G by 

loVE 1 1 oVC; 
RI=-VEGa;-; R2=VEGa;- (4) 

This enables us to write the formula of GAUSZ in the following form. 
which will appear to be more suitable for us: 

From (2) we find as the equation of the line d. the locus of the poles 
of rotation: 

I) G. DARBOUX: Théorie des Surfaces, t. 11, p. 398 : GAUTHIER-VILLARS, Paris: 1915. 
2) R2 mag therefore differ in sign from the radius of curvature of u = constant, if we 

wish to consider th is radius of curvature as a positive quantity. 
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x y 
- - + - -1=0 

R2 Rl 
(5) 

§ 6. We now investigate whether the possible movements always 
contain an infinitesimal translation. A necessary and sufficient condition 
is that for a definite ratio of du and dv the expressions for D" and Dy in 
(2) must be independent from x and y . This is the case for 

VE Va 
Rl du + R

2 
dv = O. 

where the displacement of an arbitrary point is defined by 

D,,=VEdu I; 
Dy=Vadv \ 

consequently according to (6) 

(6) 

(7) 

Accordingly in any position the possible movements contain one 
translation, de{ined by (6) ; the pole of rotation is the point at infinity 
of d ; the direction of translation is therefore at right angles to d, which 
appears at once from (7). 

We may give a slightly different form to the equations (6) and (7). 
If q; is the angle between the tangent to the path of 0 in II(, here at 
the same time the direction of translation, and the u~curve, and (t n - q;) 
the angle between this tangent and the v~curve, we have: 

VG 
tg q;= VE; 

hen ce we may replace (6) en (7) by: 

§ 7. Are th ere among the movements of the system M 2 {inite trans~ 

lations along a straight line? 
It is known and moreover it is easily seen th at the direction of the 

translation makes a constant angle not only with axes fixed to II( but 
also with the axes OXY fixed to IIm; the latter. however, coincide with 
the tangents to the u~ and v~curves. Henc~ for a translation along a 
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straight line gJ is constant. From (68
) it ensues besides that in the points 

of the path described by O. Rl and R 2 have a constant ratio. 
Inversely: if 0 moves along a straight line in lIr which cuts the 

u~curves under a constant angle gJ. the angle between a line in lIr and 
OX in lIm is constant so that the movement is a translation. According 
to (68

) in this case the ratio of Rl and R 2 is at the same time constant. 
Whereas a system M 2 generally does not contain any 6nite trans~ 

lations along a straight line. from what preceeds we may deduce the 
systems which contain a singly in6nite number of these translations. 

We assume a system of straight lines depending on one parameter t. 
and asystem of u~curves de6ned by the condition that any line is to 
be cut under an angle gJ (t) which only depends on tand not on the 
chosen curve. These curves de6ne M 2 in the way indicated before (§ 2); 
the system of straight Iines de6nes the translations in M 2• In the points 
of the same straight line the radii of curvature of the u~curve and of 
the v~curve have a constant ratio. 

A special case is that wh ere gJ is constant. In th is case the u~ and 
the v~curves are the gJ~ and the (t:n; + gJ)~trajectories of the system of 
straight Iines. 

§ 8. If 0 describes the plane lIr. the line d of which the equation in 
lIm is: 

x y 
--+--1=0 

R 2 Rl 

moves in lIr as weil as in lIm. As Rl and R 2 are as a rule independent 
from each other. its equation in lIm depends on 2 parameters; but it 
envelops a curve if there exists arelation 

For this case KOENlGS has proved the following fundamental theorem: 
"If the position of d in lIm depends on one parameter only. this is 

also the case with its position in lIi'. The two movements, to wit the 
one where d remains at rest in lIm and the one where it remains at 
rest in lIr, are independent from each other. 

In order to prove this theorem we shall 6rst answer the following 
question. 

We consider an arbitrary plane system lIm which moves over the 
6xed plane lIr; the movement depends on one parameter t. A line d 
moves relative to lIm ; its equation relative to the system ofaxes OXY 
6xed to lIm' is 

ax+ f3y -1 =0 (8) 

Which conditions must be satis6ed by a and f3 if d is to be at rest 
in lIr? 
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§ 9. If a point P (x. y). that is a point with coordinates (x. y) relative 
to OXY. is [ixed - i.e. if it is at rest relative to IIr -. these coor
dinates satisfy the conditions : 

V •. x - ~ - wy + ~~ = 0 t 
V x . y 1)+wx+~=o~ 

(9) 

Here. as always. ~ and 1) are the velocity-components of 0 and wis 
the rotation of the system ofaxes OXY. 

IE the line(8) is to be at rest relative to IIr. there must be an infinite 
number of pairs of values x and y which satisfy (8) and (9). hence also 
the equation which is found from (8) through differentiation: 

x da + d{J+adx+{Jdy =0 
dt y dt dt dt 

(10) 

B I·· . dx d dy f h' . d (9) fi d y e Immatmg dt an dt out 0 t IS equatlOn an • we n : 

( ~; - (Jw ) x + (~ + aw ) y - a~ - (J1) = 0 (11) 

Now an infinite number of values x andy must satisfy (8) and (11); 
for this it is necessary and sufficient that : 

(J a 
da 
--{Jw 
dt 

d{J +aw 
dt 

a~+{J1) =0 .. (12) 

This expresses the conditions in question. 

We shall now return to the considered system M 2 ; we choose a 
movement out of it which depends on one parameter. by considering v 
as a function of u. If we put: 

dv -2 
du- . 

the conditions that in this movement the line 

~+1L-l=O 
-R2 RI 

is at rest relative to IIr. are expressed by (12) on condition that we 
apply the following substitutions: 

1 
a=- R

2 
' 

1 
{J= RI 

VE VG 
w= RI +2 R

2 

. . (13) 
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The conditions found above assume the following form: 

. . . (14) 

If always the same value of ). is to satisfy them. in other words if in 
any position the system M 2 is to contain a movement which lets d be 
at rest in IIf • it is necessary and sufficient that: 

à 1 à 1 
àuRI àvRI 

=0. . (15) 
à 1 à 1 
àuR2 àvR2 

As we found above the condition which must be satisfled if M 2 is 
always to contain a movement in which d does not move in IIm • is 

(16) 

But the two conditions (15) and (16) have the same meaning. The 
flrst part of the theorem of KOENlGS is therefore proved. 

The movement where d is at rest in IIm. is given by: 

1 
RI = constant. 

or 
à 1 à 1 

àu RI du + àv RI dv = 0 ; 

the movement which lets d be at rest in IIf • is expressed by (cf. 14): 

These two movements are the same as: 

or as (cf. 3a): 



661 

If we restrict ourselves to real movements. this is only the case if 
1 1 

RI =R
2 
=0. 

Only i( all the movements are translations. the displacements (or 
which d is at rest in llm coincide with those (or which d is at rest 
in llr; except in this trivial case they are independent (rom each other. 

In this way also the second part of the theorem in question has been 
proved. 

The only point which is left is to draw the attention to the elegant 
construction of KOENlGS for these systems M 2 in which the motion of 
d depends on one parameter. Choose a curve Çr in llr and a curve 
Çm in IIm both of which touch d; let altërnately d roll over Çr and 
Çm over d; the system M 2 is linearly composed of these displacements. 

§ 10. We shall return a moment to the quantities of the second order 
which appear in the movements of a system M 2• which we now again 
assume arbitrary. 

In an initial position chosen at random 0 has again a definite situ
ation in llr. OX touches the u-curve through that point; the tangent 
to the path described by an arbitrary point of llm. only depends on 
the ratio of du and dv. the increments of the coordinates of O. We 
can begin by making 0 describe different paths which all have the same 
tangent in the initial position ; now the corresponding paths of the other 
points of IIm also have the same tangents in the initial position but 
different curvatures. 

In the future we shall . only consider infinitesimal displacements for 
which 

has a given value. whereas 

dV=À 
du 

may assume any value. The pole of rotation [ is always the same point. 

§ 11. In the movement of a plane fixed system llm of which the 
position is defined by one parameter. which for the sake of more con
venient expression we shall for the moment identify with time and 
indicate by t. the quantities of the first order are defined by the pole 
of rotation I. those of the second order by a point KJ. the other ex
treme of the diameter of the inflectional circle through [. 

For the velocity- and acceleration-components of a point fixed to 
llm, we have resp. 

V x ~-wy ~ 

V g = 1] + wx) 
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and 

The equation of the inflectional circle is in this case 

This gives us at on ce the center of the inflectional circle and at 

the same time the point KI. as 1(- :. ! ) is also known. 

We find 

dw d~ 2 
- dt~+dtw-w r; 

XKI 
w3 

If we return to the case under consideration we must make the 
following substitutions: 

V- V - VE Va 
~ = E; 17 = 1 G; w = RI + 1 R

2 

d 0 0 
dt=ou + lov' 

Then we must consider 1 as a constant. J.' as a parameter. In this 
way we find the locus of KI represented by 

I) G. KOENIGS : Leçons de Cinématique; p. 142; A. HERMANN, Paris; 1897. 
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If we eliminate À,' the equation of this locus is 

This represents a line h perpendicular to d; its interseetion with d 
we eall H. 

§ 12. If now we consider À, as a variabIe. land H move along d; 
the correspondence between land H has been elaborately treated by 
KOENIGS. We shall not enter into it but we shall only point out the 
following properties. 

Again we suppose À, to be a constant; land Hare fixed points of d 
and h is the locus of KI. As I K I is always a diameter of the inflect~ 
ional circle we have: 

for all the displacements with the same pole of rotation the infleet~ 

ional circles form a peneil with land H as base points; in eaeh of 
these displaeements H deseribes a point of infleetion in whieh the 
tangent coineides with h. 

For each of these displacements on d the pole of rotation as weil as 
the point of intersection with the inflectional circle are fixed; hence: 

In all these displaeements all points of d have the same radius of 
curvature. 




