Mathematics. - "A Representation of the Bisecants of a Rational Twisted Curve on a Field of Points." By Prof. Jan de Vries.

(Communicated at the meeting of February 27, 1926)

1. The points A of a rational twisted curve a^{n} may be brought into a projective correspondence with the points C of a conic γ^{2}. If C_{1} and C_{2} correspond to A_{1} and A_{2} and if B is the point of intersection of the lines c_{1} and c_{2} which touch γ^{2} at C_{1} and C_{2}, B may be considered as the image of the bisecant b which joins A_{1} to A_{2}.

Now the point range (B) on c_{1} is the image of the cone $(b)^{n-1}$ which projects α^{n} out of A_{1} and C_{1} is the image of the tangent at A_{1}.

The scroll of the bisecants which rest on a line l, has $(n-1)$ bisecants in common with the cone $(b)^{n-1}$; hence its image cuts the tangent c in ($n-1$) points B and is a curve λ^{n-1}.

The curves λ^{n-1} and μ^{n-1} have $(n-1)^{2}$ points in common; accordingly on the lines l and m there rest $(n-1)^{2}$ bisecants and the scroll which is represented on λ^{n-1}, is of the degree $(n-1)^{2}$. As, evidently, a plane through l contains $\frac{1}{2} n(n-1)$ chords, l is a multiple directrix of which any point carries $\frac{1}{2}(n-1)(n-2)$ chords.

If l cuts the curve a^{n} in A, the said scroll consists of the cone $(b)^{n-1}$, that has A as vertex, and a scroll of the degree $(n-1)(n-2)$, etc.
2. We shall now consider the case $n=4$ more closely.

To l as directrix of bisecants b of an α^{4} there corresponds a scroll Λ^{9} represented on a λ^{3}. As λ^{3} contains six points of γ^{2}, the tangents to α^{4} form a scroll of the sixth order.

The curves λ^{3} form a system ∞^{4}. Through four points B_{k} chosen at random there pass two curves, for the corresponding bisecants b_{k} have two transversals l.

To a secant s with point of intersection A there corresponds the system of a scroll Σ^{6} and the cone $(b)^{3}$. Now the curve λ^{3} consists of a conic σ^{2} and a tangent c to γ^{2}. The curves σ^{2} form a system ∞^{3}.

The hyperboloid through three bisecants has 2 more points in common with a^{4}; through each of these points there passes a secant s, which rests on the three lines b. Consequently three points B generally define two conics σ^{2}.

The chords b_{1}, b_{2}, which are represented in B_{1}, B_{2}, are cut by one chord d. For b_{2} cuts the scroll $\triangle_{1}{ }^{3}$ corresponding to b_{1} in one point outside α^{4} and through this point there passes one generatrix of $\triangle_{1}{ }^{3}$, which is a chord resting on b_{1} and b_{2}. Hence any straight line δ represents a scroll \triangle^{3}.
3. For a trisecant t the scroll Λ^{9} consists of three cones which have the points of intersection A_{k} of t with α^{4} as vertices.

The line t is represented in the angular points B_{k} of a triangle circumscribed about γ^{2}. As each point of α^{4} carries only one trisecant, the corresponding points C_{k} on γ^{2} form a cubic involution and the same is the case with the tangents c_{k}. Accordingly the trisecants are represented on a conic β^{2}, the "involution curve" of the second cubic involution.

The points of intersection of β^{2} with a curve λ^{3} form two triplets of the cubic involution of the image points B_{k}. Hence two trisecants rest on l and the lines t form a quadratic scroll.

The points of intersection of β^{2} and γ^{3} are the images of four trisecants which touch α^{4}.

Any conic σ^{2} is an involution curve; for the planes through a secant s define a cubic involution on α^{4}, so that the images B of the chords in one of these planes form a group of an I^{3} on σ^{2}. Evidently the conic β^{2} belongs to the system of the σ^{2}; but it belongs to ∞^{1} secants (these form the second scroll of the hyperboloid of the trisecants).

Also the curves λ^{3} are involution curves, for any plane through l contains six chords and these are represented in the angular points of a quadrangle circumscribed about γ^{2}.
4. Through any point of the chord d there pass two chords b_{1}, b_{2}; the planes $b_{1} b_{2}$ pass through the single directrix e of \triangle^{3}.

The pairs of points B_{1}, B_{2} form an involution I^{2} on the image line δ; its double points are the images of the torsal lines k of \triangle^{3}. These are bisecants which join the points of contacts of two intersecting tangents and which, therefore, lie in a double tangent plane to α^{4}. Hence the directrix e is the intersection of two double tangent planes.

To any line e there corresponds a definite bisecant d; it rests on the tangent chords k of the two double tangent planes.

For a bisecant $k \triangle^{3}$ is a scroll of Cayley; for in this case k is a directrix and at the same time a generatrix, hence a directrix e.
5. The image δ of a \triangle^{3} contains the images K of two chords k; consequently the system of the tangent chords is represented on a conic k^{2}. As this has six points in common with a λ^{3}, the tangent chords form a scroll of the sixth degree.

To the image δ of a \triangle^{3} there corresponds the image D of the chord d on which the bisecants b of \triangle^{3} rest. Evidently D and δ correspond to each other in a polar correspondence. The image K of a chord k lies on the line δ^{\star} corresponding to k; hence D and δ are polar relative to the conic k^{2} and two points D_{1} and D_{2} harmonically separated by k^{2}, are the images of two intersecting bisecants.

A polar triangle corresponds to three bisecants which come together in a point outside α^{4}.
6. Two point triplets chosen at random on α^{4}, define a cubic involution I^{3}. Any group of the I^{3} defines three straight lines b of a scroll
(b), the involution scrolt. This is represented on an involution conic $(B)^{2}$ of γ^{2}. The conics $(B)^{2}$ form a system ∞^{4}; the bisecants which are represented in four arbitrary points B_{k}, define two I^{3} on α^{4}; accordingly through four points there pass two conics $(B)^{2}$.
$(B)^{2}$ has six points in common with a λ^{3} : hence the involution scroll is a $(b)^{6}$.

Through the angular points of a triangle circumscribed about γ^{2} and two arbitrary points B, there passes only one $(B)^{2}$; for an I^{3} is quite defined by a triplet and two pairs.

Two triangles circumscribed about γ^{2} also define only one $(B)^{2}$, hence one I^{3} on a^{4}.
7. The involution scroll of an I^{4} is represented on a curve $(B)^{3}$ which is circumscribed about ∞^{1} quadrangles formed by tangents to γ^{2}. As $(B)^{3}$ has nine points in common with λ^{3} the scroll (b) has the degree 9 .

As two groups of the I^{4} are equivalent to 6 pairs, the curves $(B)^{3}$ form a system ∞^{6}. Through the angular points of two quadrangles circumscribed about γ^{2}, there passes one $(B)^{3}$; also through the angular points of three arbitrary triangles circumscribed about γ^{2}.
8. Let φ^{2} be an arbitrary conic in the image plane. The tangents c through its points to γ^{2} define on this curve an involutory correspondence $(2,2)$, hence also a $(2,2)$ between the points of α^{4}. The bisecants through associated points form a scroll $(b)^{6}$, for φ^{2} has six points in common with a curve λ^{3}.

An involutory (2,2) is defined by 5 pairs; consequently the conics φ^{2} form a system ∞^{5}.

The bisecants resting on a conic ε^{2} through four points E_{k} of α define a $(2,2)$ on a^{4}. For the cone $(b)^{3}$ which has a point A of a^{4} as vertex, cuts ε^{2} outside E_{k} in two more points and therefore contains two chords which rest on ε^{2}.

The scroll (b) ${ }^{6}$ of the bisecants resting on ε^{2}, has a^{4} as double curve and ε^{2} as triple curve.

