Mathematics. — "A Representation of the Bisecants of a Rational Twisted Curve on a Field of Points." By Prof. JAN DE VRIES.

(Communicated at the meeting of February 27, 1926)

1. The points A of a rational twisted curve a^n may be brought into a projective correspondence with the points C of a conic γ^2 . If C_1 and C_2 correspond to A_1 and A_2 and if B is the point of intersection of the lines c_1 and c_2 which touch γ^2 at c_1 and c_2 , c_2 may be considered as the *image* of the bisecant c_2 which joins c_3 to c_4 .

Now the point range (B) on c_1 is the image of the cone $(b)^{n-1}$ which projects a^n out of A_1 and C_1 is the image of the tangent at A_1 .

The scroll of the bisecants which rest on a line l, has (n-1) bisecants in common with the cone $(b)^{n-1}$; hence its image cuts the tangent c in (n-1) points B and is a curve λ^{n-1} .

The curves λ^{n-1} and μ^{n-1} have $(n-1)^2$ points in common; accordingly on the lines l and m there rest $(n-1)^2$ bisecants and the scroll which is represented on λ^{n-1} , is of the degree $(n-1)^2$. As, evidently, a plane through l contains $\frac{1}{2} n(n-1)$ chords, l is a multiple directrix of which any point carries $\frac{1}{2} (n-1)(n-2)$ chords.

If l cuts the curve a^n in A, the said scroll consists of the cone $(b)^{n-1}$, that has A as vertex, and a scroll of the degree (n-1)(n-2), etc.

2. We shall now consider the case n=4 more closely.

To l as directrix of bisecants b of an a^4 there corresponds a scroll Λ^9 represented on a λ^3 . As λ^3 contains six points of γ^2 , the tangents to a^4 form a scroll of the sixth order.

The curves λ^3 form a system ∞^4 . Through four points B_k chosen at random there pass two curves, for the corresponding bisecants b_k have two transversals l.

To a secant s with point of intersection A there corresponds the system of a scroll Σ^6 and the cone $(b)^3$. Now the curve λ^3 consists of a conic σ^2 and a tangent c to γ^2 . The curves σ^2 form a system ∞^3 .

The hyperboloid through three bisecants has 2 more points in common with a^4 ; through each of these points there passes a secant s, which rests on the three lines b. Consequently three points B generally define two conics σ^2 .

The chords b_1 , b_2 , which are represented in B_1 , B_2 , are cut by one chord d. For b_2 cuts the scroll \triangle_1^3 corresponding to b_1 in one point outside a^4 and through this point there passes one generatrix of \triangle_1^3 , which is a chord resting on b_1 and b_2 . Hence any straight line δ represents a scroll \triangle^3 .

3. For a trisecant t the scroll Λ^9 consists of three cones which have the points of intersection A_k of t with α^4 as vertices.

The line t is represented in the angular points B_k of a triangle circumscribed about γ^2 . As each point of α^4 carries only one trisecant, the corresponding points C_k on γ^2 form a cubic involution and the same is the case with the tangents c_k . Accordingly the trisecants are represented on a conic β^2 , the "involution curve" of the second cubic involution.

The points of intersection of β^2 with a curve λ^3 form two triplets of the cubic involution of the image points B_k . Hence two trisecants rest on l and the lines t form a quadratic scroll.

The points of intersection of β^2 and γ^3 are the images of four trisecants which touch α^4 .

Any conic σ^2 is an *involution curve*; for the planes through a secant s define a cubic involution on α^4 , so that the images B of the chords in one of these planes form a group of an I^3 on σ^2 . Evidently the conic β^2 belongs to the system of the σ^2 ; but it belongs to ∞^1 secants (these form the second scroll of the hyperboloid of the trisecants).

Also the curves λ^3 are involution curves, for any plane through l contains six chords and these are represented in the angular points of a quadrangle circumscribed about γ^2 .

4. Through any point of the chord d there pass two chords b_1 , b_2 ; the planes b_1b_2 pass through the single directrix e of \triangle^3 .

The pairs of points B_1 , B_2 form an involution I^2 on the image line δ ; its double points are the images of the torsal lines k of \triangle^3 . These are bisecants which join the points of contacts of two intersecting tangents and which, therefore, lie in a double tangent plane to α^4 . Hence the directrix e is the intersection of two double tangent planes.

To any line e there corresponds a definite bisecant d; it rests on the tangent chords k of the two double tangent planes.

For a bisecant $k \triangle^3$ is a scroll of CAYLEY; for in this case k is a directrix and at the same time a generatrix, hence a directrix e.

5. The image δ of a \triangle^3 contains the images K of two chords k; consequently the system of the tangent chords is represented on a conic k^2 . As this has six points in common with a λ^3 , the tangent chords form a scroll of the sixth degree.

To the image δ of a \triangle^3 there corresponds the image D of the chord d on which the bisecants b of \triangle^3 rest. Evidently D and δ correspond to each other in a polar correspondence. The image K of a chord k lies on the line δ^* corresponding to k; hence D and δ are polar relative to the conic k^2 and two points D_1 and D_2 harmonically separated by k^2 , are the images of two intersecting bisecants.

A polar triangle corresponds to three bisecants which come together in a point outside a^4 .

6. Two point triplets chosen at random on a^4 , define a cubic involution I^3 . Any group of the I^3 defines three straight lines b of a scroll

- (b), the involution scroll. This is represented on an involution conic $(B)^2$ of γ^2 . The conics $(B)^2$ form a system ∞^4 ; the bisecants which are represented in four arbitrary points B_k , define two I^3 on α^4 ; accordingly through four points there pass two conics $(B)^2$.
- $(B)^2$ has six points in common with a λ^3 : hence the involution scroll is a $(b)^6$.

Through the angular points of a triangle circumscribed about γ^2 and two arbitrary points B, there passes only one $(B)^2$; for an I^3 is quite defined by a triplet and two pairs.

Two triangles circumscribed about γ^2 also define only one $(B)^2$, hence one I^3 on α^4 .

7. The involution scroll of an I^4 is represented on a curve $(B)^3$ which is circumscribed about ∞^1 quadrangles formed by tangents to γ^2 . As $(B)^3$ has nine points in common with λ^3 the scroll (b) has the degree 9.

As two groups of the I^4 are equivalent to 6 pairs, the curves $(B)^3$ form a system ∞^6 . Through the angular points of two quadrangles circumscribed about γ^2 , there passes one $(B)^3$; also through the angular points of three arbitrary triangles circumscribed about γ^2 .

8. Let φ^2 be an arbitrary conic in the image plane. The tangents c through its points to γ^2 define on this curve an involutory correspondence (2,2), hence also a (2,2) between the points of α^4 . The bisecants through associated points form a scroll $(b)^6$, for φ^2 has six points in common with a curve λ^3 .

An involutory (2,2) is defined by 5 pairs; consequently the conics φ^2 form a system ∞^5 .

The bisecants resting on a conic ε^2 through four points E_k of a define a (2,2) on α^4 . For the cone $(b)^3$ which has a point A of α^4 as vertex, cuts ε^2 outside E_k in two more points and therefore contains two chords which rest on ε^2 .

The scroll $(b)^6$ of the bisecants resting on ε^2 , has α^4 as double curve and ε^2 as triple curve.