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I
The Energy.

1. General Considerations.

In our foregoing paper we have made use of DEBYE's well-known
expression for the Energy of a solid substance, viz. — with the addition
of the terms referring to the potential Energy of the attractive and (static)

repulsive forces:

_9RT((1, 1 a_a\_[’h

;8 Lf2+w_0xwm+am 7)(f_bw“ (1)
0 ©

X

in which x, is = ﬂ%:% The quantity & occurring there (the so-called
“characteristic’’ temperature) is given by equation (4) of the paper
mentioned, viz.

6=Cvhaer™ . . . . . . . .. @

in which Cis=0,0025 f M ' In this f is a factor containing the
so-called POISSON modulus (to be replaced in gases and liquids by

d
l./c,,:c., ). Through o, :_(d_;> the value € will, therefore, in general

¢
still be a function of T and v.

We have seen that as long as p =0 for solid substances, the quantity
@ varies but little between the absolute zero and the ordinary temperature.
(for copper e.g. from 331 to 321; see § 5 of Chapter IV of the foregoing
Paper). When p approaches to o, in which the extreme limiting volume
veo is reached, # will rapidly approach oo, because then the coeflicient

of compressibility o :——i—(g—;) draws near to 0. Hence we have for
t

solid substances (e.g. copper):

330 (p:_o )till 0 (Pzao

v=vg v=v00,

Xm=T= T
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At comparatively high temperatures (not too far below the meltingpoint)
xn will, therefore, be comparatively small at ordinary pressures, so that
then the above formula (1) will fall, as regards the development into series,

A
in the so-called RT-region (E =3RT...+ Pot.; p+ o= ﬁi—RT—)

v v—>b

(on the right of the line A in the subjoined Fig. 1). But at very high

A

’
’

/N ¢ /
2

pressures X becomes great, and we shall gradually get, as regards the
development into series, in the so-called T*-region:

9 g 3R, A LA PTULY
(E_8R00+5 5Tt Pt pt f=Tt )

(on the left of line B; the part between A and B represents the inter-
mediary region, in which neither the development into series for small
values of x., neither that for large values of x, is valid, so that there
the general formula (1) would have to be used).

At very low temperatures we shall, of course, always be (in the solid
state) in the T*-region (on the left of B), also at ordinary pressures.

1) 6, denotes the value of 6 at T=0; this is, accordingly, still a function of
v(E= 53 (14, T4...); cf. foregoing Paper p. 170). 6, is supposed independent of wv.
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For liquids, where O is smaller than for solid substances, and T higher,
we shall always be in the RT-region, unless at very high pressures we
should cross the line A, i.e. in the case that this line cuts the line of
liquid-solid.

And finally for gases we shall always be in the RT-region, however
low the temperature should become, and even at 0. This is very essential,
because the opposite view has also been held, and the consequences of
this, e.g. with regard to the Entropy are very far-reaching. '

That what has been said is correct, will be clear on the following
considerations. For gases the .quantity & is exceedingly small at the
ordinary pressures, as at higher temperatures o,—! = — (j—%)t: }i—?
follows from p:?, so that then the quantity € becomes —C ‘%Ii—T

on account of (2), hence x, = %:%, in which T is great and v
very great. And at high pressures the same thing holds for the fuid
region as we have said before of the liquid phase.

How will all this be for gases at very low temperatures? Then the
quantity 8 will be either proportional to V'T: v':, or to T?: v's, ac-
cording as one supposes to be in the RT-region or in the T *-region.

X 6 . 1 . T
Hence the quantity Xn =5 with T ik OF with S In the latter case,

however, x™ woiild verge to 0 at T very small and v very great; i.e.
one is then not in the supposed T *-region, but in the RT-region. And
in the former case —as even on the saturation line solid-vapour it follows
from the wvapour-pressure-equation that v increases in a much greater
degree (and that exponentially) with T than T decreases, so that even
at T—0 x, will still approach to 1:(0Xe®), i.e. to 0 — this will be
the case in a much greater degree below the said saturation line, where
v is still much greater (.0 at p—=0 on the T-axis).

We have, therefore, proved that in the solid state the T*-region
exists only on the left of a certain line B, and that for liquids and gases
we are always in the RT-region, even if the temperature (for gases)
verges to 0. For in the first case x. is comparatively great, so that the
development into series with T* etc. is valid; in the second case x, is
comparatively small, so that the development into series with RT etc.
will be applicable.

Hence, whether one has the first case or the other, does not depend
only on T, but also on the quantity &, which will depend in a pretty
great degree on T and v. For it is after all only the value of x, =6:T
that is decisive, and not that of T.

We will just remark that in the above equation (1) not 1 has been
written, but */,, in accordance with Note 1) to § 2 of Chapter II of
the foregoing Paper, because otherwise the potential Energy of the

45*
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(static) repulsive forces would become infinite already for finite values
of v. For gases, where '(at ordinary pressures) v is very great, this term,
like ¢/.., disappears naturally. For liquids and gases the expressxon for
E must further still be divided by 2.

It may further still be mentioned that in the Figure we have assumed
the possibility of an (exceedingly small) zero-point pressure at the equili-
brium solid-vapour. This will be rendered probable in the following
Paper.-

2. Equation of Energy and Equation of State in the RT-Region
(x» small).

Though we already made some remarks on this subjects in our fore-
going Paper, we will now come back to it to discuss, what was treated
there, somewhat more at length.

For small values of x. we may write for (1) (when nothing else is
stated, it is supposed that we have to do with solid substances; the slight
modifications for the liquid and gas state have already been indicated
above):

9RT 1
E_f: l: 4—|—( 4—!— x3+36x"'5 5040x’z'"')]+P0t' Energ.

It is seen from this that the term corresponding to the zero-point

1
energy 8—x,‘,I is cancelled by the term ensuing from the integration of

1
the piece with e*—1, i.e. —8—xf", so that the zero-point energy will

no longer occur in the expression for E at higher temperatures (i.e. small
values of xn), which comes to this that E will then duly approach to
RT, without the addition of a constant term without T which remains
finite. We, therefore, get simply with x, =6:T:

. 1 62 1 6
E=3RT 1—|—20 T2 1680 T+ ~+ Pot. Energ.

But as 82 =6’ (1 + o, T+ %3—}— ; .), in which ¢;, ¢, etc. are still

functions of v (see the foregoing Paper, Chapter I § 3), the above
development into series with exclusively even powers of T—! will pass
into one with all whole powers of T, i.e. it will be of the form:

E— 3RT(1+A+7?2+7€3 ) (v—m——) f

. 1 1 1
in which A will be = 20 62 ¢,; B= %(ﬁf — 84 s o ); etc. The quan-

v (xn small), . (3)
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tities f., ¢, etc. can be calculated from the coefficient of compressibility
occurring in the equation (2) of § 1. And this coefficient can in its turn
be derived from the equation of state. It is, therefore, of the highest
importance accurately to know the form of this latter equation in con-
nection with (3). All this has already been set forth at length in our
preceding Paper, but we wish to give some more generality and extensjon
to it here.

As it is known, the following purely thermodynamic relation holds

for E:
fc(., ar+ ( (S") )du+ETfo., @

in which we have, of course, chosen « for the lower limit of -T, and
not 0, because (3) is only valid for small values of x. (high values of T).
With regard to v, we might also have chosen v =vy for lower limit;
Er—. would then have become Er—o.. We draw attention to this, that

v=o0 v =g
according to a theorem proved in our foregoing Paper (chapter II, §1,
Note 1) concerning the integration between definite limits of fotal differ-
entials (here dE), either at the limit of the first integral what stands
under it must be taken at the lower (constant) limit of the second integral ;
or inversely at the second integral what stands under it at the lower
(constant) limit of the first integral.

For c, the following equation evidently holds according to (3):

__(dE\ _ B 2C
Cv_(?d—t)v—3R(1—ﬁ—“]Tj>.

so that c,.—« becomes = 3R, as the coefficients B, C, etc. (see our pre-
ceding Paper) all become =0 at v= 0.
We may, therefore, write for p:

a, * , RT Q
2T s Ty (+T+T2+T3 )

or also:

_ /

in which the coefficients P, Q, S, etc. are in general still functions of
v, and can be expressed from the above thermodynamic relation (4) in
A, B, C, etc. We now get:
dp\_ RT Q S
T(dt) L _RI-RZ,...

hence

dp _ a *fo _ Q_ S
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so that we may now write:

E=3R(T—T.)+
dv—Rde —@fad —ﬁjsar J+ET5,

[-+f

In this the quantity Er—. is evidently =3RT_ + vi (the potential
00

v =00

energy of the (static) repulsive forces disappears at v — ), so that the
following equation is obtained:

E=3RT— dev—ngd —ngd (———)—f”" do.
Uoo " —b

If this is compared with (3), the following equations follow immediately:

_ . dA 1 dB 1dC
P——'3 -d—l;-, Q——3 ECI_ S 3 B—d—' etc., . (6)

(all the differentiations with respect to T const.), through which the

additional terms at lﬁ in the equation of state (5) have been brough:

b
in connection with the corresponding additional terms at 3 RT in the
Energy equation (3). If, therefore, A, B, C, etc. are functions of v —
and this is the case in the theory of DEBYE, because § depends, besides
on T, in a great degree on v — also the equation of state will neces-
sarily contain terms of “degeneration’”. It appears from the above that
those terms with P, Q, S etc. will in general not be equal to those
with A, B, C etc. This is only the case with ideal gases; then P becomes
—=A, Q =B, etc., as may be read in my preceding Paper.
If in general

A
E = w + Pot. Energ.; p:—v%—l-;_/_—"b—!—tp.

in which, therefore,  and ¢ are two different functions of T, it appears

from the above derivation that generally ((p’ means (%) ) must be:

, d
T¢—¢:(£>........(6-
t

This follows, of course, also from the well-known relation (Zj’)
t

’ d. do' y d
:T(C‘;P) yielding (w means (-Ectg)v) (d_c::),: Tq', ie. (-ﬁ)t

= T¢'— 9.

~
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If, therefore, w is no function of v, as in the earlier, simple PLANCK-
EINSTEIN theory, then T¢’ — @ = 0. The quantity ¢ will then simply be

=flv) XT (in our case %), and in the equation of state degenera-

tion-terms could never occur at finite values of T. This, accordingly,
condemns the said PLANCK-EINSTEIN theory.

N.B. In our preceding Paper we have kept the first integral in (4)
general, and the second at T = oo ; this, however, only gives P expressed
in A (cf. Chapter II, § 2 and 3), whereas Q, S etc. must then still be

expressed in B, C etc. by means of the equation with (Cfiiv) . Hence
¢

this method is less simple than the above, more direct one.

In the above we may also take the limiting volume vy, as lower limit
of v (we already alluded to this above), but this too would complicate
matters, though the result remains entirely the same.

3. Equation of Energy and of State in the T%-Region (x. great).
For great values of x. (see also our preceding Paper) follows from
the general equation (1):

3 Rn*

R90 -+ g 03 T*+ ...+ Pot. Energ,

in which 6, is the value of 8 at T =0 (hence still = f(v)), §, being

the value for T=—=0, v—=v,. Hence we have, when gRH(,:Eo (the so~

called zero-point energy), 3 }Z; = A, etc. is put:
Va
E—=E,+AT*+ BT®...+ (i—%)——]v_/"bdv (xm great), . 7)

in which A, B etc., i.e. all (through 6. etc.) are still functions of v.
For the equations of state we can write in this case:

__%Jrv.__/_vb_erTurQTB..., R )

in which P, Q etc. will be functions of v, which by means of the
thermodynamic equation (4), now in the form

E= ,,dT+ ( (j—"— )dv+ET=o.

(v=vp0) v=uvp

we shall express in A, B, etc.
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We now have for c,:
c, —=4AT?*+8PT"..., hence c,, =4A,T>+8B,T?...,

in which, therefore, A, B, etc. represent the values of A, B etc. at v =uv,,.
Further

T(Z_i’):4pr4+8pT8...,

hence

dp _a_
T(zﬂ)v—p_v2 3Pt

and therefore:

E—=(A,T*+ B,T®.. )+

a a l""/.,

T [;(;,—;)—Jv_b
v0o

* U0
A
In this Er— is evidently = E; — f ; _/_" 5 dv (now the potential energy of

v=vp0

dv+3T‘dev+7Tajbdu...]+ETfo .

oo

the attractive forces disappears at v —wvy), so that we get:

E:Eo+(Ao+3 Pdv)T4+(Bo+7dev)T5...+

voo

And from this follows immediately by comparison with (7):

148
7 dv

1d

A
P:gﬁ; Q setc, .« . . . . . (9

(the differentiations with respect to v again to be taken at T constant),

for then becomes e.g. A, -+ 3dev =Ay-3. _;_ (A—A) =A; etc.

Y00
Also at low temperatures (large values of x.) the coefficients P, Q

etc. in the equation of state depend, therefore, in a very definite way
on the coefficients A, B, etc. of the equation of Energy; in which in

general (comp. § 2) (%) will again be = T¢'—g, they again not being
t

equal to each other.
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Recapitulating, we have for the Energy (x»=©:T):

E=3RT ( 14 %—f— TB—z) + Pot. Energ. (x. small : RT-region).

9RT (71, 1
E= = f(§+e‘ — 1) x3dx 4 Pot. Energ. (general).
|
E=E,+ (AT‘W) + Pot. Energ. (x. great: T*-region).
(Occurs only for solid substances at low temp.; cf. Fig. 1).

In this A, B, etc. are still functions of v, and the Pot. Energ. is

va

everywhere :(f——i)— [ Js dv. The coefficients P, Q, etc. of the
Voo VU Jv—b

equations of state (5) and (8) are dependent on A, B, etc. by means

of the simple relations (6) and (9).

II
The Entropy.

1. The Entropy in the T*-region (x. great).

In the calculation of the Entropy greater difficulties, chiefly on account
of the so-called “Entropy constant”, are to be surmounted than in that
of the Energy. What we have found above in Chapter I concerning
the equation of Energy, is now required for the calculation of the
Entropy from the thermodynamic relation holding for it, because we
cannot draw up the expression for the Entropy — as was the case with
the Energy in equation (1) — in an independent way outside statistic,
i.e. thermodynamic considerations.

We now start with the T*-region, because this presents no difficulties.
This region is — see Fig. 1 — exclusively assigned to the solid state.
As we have shown, it does not occur for liquids and gases, unless at
exceedingly high pressures. As

dQ dE—I—pdv
T~ T

dp
dt

ds == +Pd

in which dE = ¢, dT + ( T( )——p) dv, we have also

dS =" dT + ( )du.
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and hence

T
— Cy
=/

0

dT-f— {(-di)) dv -|" ST:O ’

J\de ), v=vr0

vo0 (T=0)
in which we have chosen the natural limits 0 and vy, as lower limits
for the two integrals, and have further taken what stands under the
second integral at the lower limit of the first integral, according to a
theorem proved by me in the foregoing Paper. (See also above with
the Energy). We might also inversely have taken the first integral at
v = vy, but this would have been more complicated; the result remains,
of course, exactly the same.

From ¢, =4AT?®+4 8BT"... and (d?g) =4PT?*+ 8QT"...(comp.§ 3

of Chapter I) follows therefore:

T v
S=[(4AT?+8BT*...)dT+ [0.dv+0,
| ]

v00

dt
lute zero and at the extreme limiting volume must necessarily disappear,
as then the probability of the appearance of a molecule or atom in the
elementary limiting space vy, :IN has become the unit, and accordingly
the log. of it = 0. Hence there remains simply:
T‘*-region)

Xn great

because (@) disappears at T—0, and also the Entropy at the abso-

s:§AT3+§BT7...( (10)

which, therefore, duly becomes =0 for T=0. As long as T is not
yet absolutely —0, S will still be dependent on v through A and B,
though in a very small degree.

2. The Entropy in the RT-region (x, small).
This case comprises the entire gas- and liquid states, and besides also

part of the solid state at comparatively higher temperatures (Fig. 1,
right of A). Let us now write:

~

dp
dt

© voo (T=e)
. B 2C d R Q S
then with ¢, = 3R(1 T T ) and (d—i,)vzm —R TZ—ZRT@

(see § 2 of Chapter I) the equation becomes:

T v
(/3R B 2C R
S—f(T—3RT3—3RT’)dT+fv—b

) dv + ST=0=:

V=000

dU + ST:on ’
v=vg0
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because at T —oo the terms with Q/r: etc. all disappear. Hence, as

St=w will evidently be of the form 3Rlog£°3+ S., in which 7 re-

v=uvg
presents a constant temperature to be defined later, and S. a possible

additional constant:

S= 3R(logT—1— $+§7% >+Rlo -}—(3Rlog—"°-}—3.>,

ie.

S=3Rlog — +3R( 2+§%...)+Rlog%+s.,. (a)

in which @ is the exceedingly small elementary volume vyy—by, which
does not become — 0 (even at the absolute zero there is always left the
small space of the zero-point paths round the states of equilibrium),
but remains = (byy + w)—bgy = w.

In order to get a closer indication about the nature of the constants
v and S., we take, instead of the function of DEBIJE for E,, which in
general cannot be integrated (i.e. the part of E that bears relation
to the temperature, hence outside the potential Energy), the simpler

PLANCK-EINSTEIN function E,—= E, + 3RT;;'11 =Byt b

, which can be
e—1°

4
integrated; in which now in x=mr the characteristic temperature 6 —fg»

is a constant, independent of T and v. Then we get c,,:(%—t—

=3R (ef el)z because Z—':: — % = % Consequently, as x becomes
—oo for T=0, and =24 is __ci._x
T x
T £
Co S xe* — _ -
.deﬁ_”‘ g 3gﬁ e 3R[ bﬂelq
0 0 ©
i.e.
T
T dT=3R [——— — log (e*—1) —l

because [] becomes —x— x—=0 for x—=o0. We may, therefore, also
write :
T

ldeT—3R[

0

1] —3R log x,
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so that finally (see above, as regards the term with v):

_ xe*
s_3R[ex_

__loge_xf»l —|—3Rlogxg+Rlogv-b’ . (b)

1 x w

as St— is again —O0 (see § 1).!) This would therefore represent the

v=vqq
quite general value of S, if the PLANCK-EINSTEIN function were valid.
At low temperatures this is certainly not the case, but at high tempera-
tures the DEBIJE function almost coincides with that of PLANCK-EINSTEIN,
and when, therefore, we determine S at higher temperatures (in any
case small values of x) from (b), we shall obtain the right expression.

Then we find (x=0):

S:3R—|—3Rlog§—l—Rlogl—]-;—b (csmall), . . . (o

because the expression between [] becomes —

=(0+4x)—4x=1

x(14x) logx—}—‘/;.x2
x

x+hpx

Comparing (c) with (a) we accordingly see that the quantity 7 intro-
duced there is nothing but &, for which in the DEBIJE theory of course
its constant limiting value §, at T =0, v =y, must be substituted, the
constant S, appearing to be =3 R. We may, therefore, finally write:

P

S:3Rlog0l—i—3R(l B >+3R+Rlog~—(RT'regi°n>, (1)
0

2T w \ x,n small

in which now everything is determined, for also ® (see below § 3) can
be easily calculated. The quantities B, C, etc. are the volume functions
in the Energy equation (3), which we can determine by means of the
equation of state (see preceding Paper).

For ideal gases v=—o0 or very great; then B, C, etc. are =0, and
we get, substituting !/, R for R in the temperature part:

S:%Rlog%o—%%R-{—Rlog? (ideal gases), . . . (119

in which v may now also be written for v—b.

1) As we have used the general function, valid for all values of T and v, we have,
purposely, chosen the lower limits, so that ST=0 occurs, of which we know that it is
: v=vpo .
dp
= 0. Now the quantity {7. under the second integral sign must, however, be taken at
v
T =0. But we have already seen in I, § 2, that on assumption of the PLANCK-EINSTEIN
v—

function (5—-”) is always = sz , without additional degeneration-terms (hence P =Q =
t)o

= S= etc. =0).
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Now by an entirely different way the following form has been found
for mon-atomic gases (LORENTZ PLANCK TETRODE, and many others):

:%RlogT—l—Rlog(v— ) + R—I—R R log R+ Rlog ——(—zhn—m) J,

which we may also write in the more homogeneous form:

3[2 3/2
»ngﬁ + R+ R log (v—b)+ R log ;"-—‘9-,(1—?'"—)—,

for R=Rloge and — Rlog R— — R log Nk. This is, therefore, in
perfect harmony with (119), if only we assume for the elementary volume
= vy — by

N h3

w— W . . . . . . . ‘ (12)

That this really represents a volume, is easy to see. For the dimensions
of the different quantities are h —erg. sec., k —erg.: T, hence k6, = erg.,

so that the dimensions of ® will be (N is the number of molecules in
a Gr. mol).:

erg’»sec®  (erg'zsec\* | [ ml? ";. i P
e U el O R

3. Calculation of w from the cyclic movement round the states of
equilibrium in connection with the zero-point energy.

That the elementary volume w — which will, of course, be the same
for all states of aggregation — is really equal to the above expression
(with a difference of a numerical factor, which is near 1), so that we
might have immediately written this value for it, even without statistic
and other considerations — and through which the Entropy-constant
would come into our possession without any difficulty — may appear from
what follows.

In the neighbourhood of the absolute zero the molecule centres in
solid substances (which we choose for convenience sake) will still describe
paths with exceedingly small distances round the positions of equilibrium
in consequence of the periodically acting attractive and repulsive forces ).

1
The vis viva of this movement is 2 X z—muz, when u is the velocity with

which the path is passed through. Now u=2nmr», when » represents
the number of revolutions per second, which quantity is evidently identical
with the frequency » of the elastic waves introduced by DEBYE, the
quasi-linear vibrations of which may be considered as projections of the
said revolutions round the positions of equilibrium on the path-diameters
(=2r). Thus we have:

4n2r2mv2:§k00—|—aT"...,

) Cf. also These Proceedings 21, 1184 (1919), 23, 887 (1920) and especially These
Proceedings 24, 294 (1921).
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as the zero-point energy according to DEBYE is — 82R 6y: N :% k6,

for one molecule. The terms with aT¥, etc. (a— A : N, etc.) remain, so
long as T has not yet become =0. (In this the coefficients a etc. are still
functions of v). As further fv — 6, we may write — now passing to the
limit T=0:
2
47’5 m Z—g:% k68,
ie.

9 kB9 R 9 h?

=327 mb, 3222 km6, 167 kB,.2xm"

because #—h: k. (Accordingly the quantity h appears here for the first
time in consequence of the equation § — f»). The volume of the space
thought spherical, which the molecule centres thus leave in their circular
paths (in all possible planes) round the positions of equilibrium, will be =
%nrf, so that for the limiting space indicated above by w = vyy—byg
(w refers to 1 Gr. mol. = N molecules) we get:

B 4 9 \% h2 N
“’_in"(lsﬂ) (kﬁo.an>'

o2 N K
=161 7 (kOof: @am) *

ie.

(122)

which in fact — except for a numerical factor — is in harmony with

the value (12) found in an entirely different way!). Instead of 1

e 272
9 . 1
there stands T as fore-factor, i.e.

_ 1 L
7 78X 1,77 3,15 “hich is 1,16

times smaller. But this does not greatly affect the matter itself in my
opinion, seeing that there is no absolute agreement in the statistic theory
either, concerning the numerical factors which occur in the proportionality
of w to h3 Our considerations form a bridge, so to say, between the
Entropy constant and the theory of the cyclic movements in the sense
of HELMHOLTZ.

In conclusion we may still remark that our equations (11) and (11%)
are now also perfectly homogeneous: S has the dimensions of R. Under
the log sign there stands, below T, duly another (constant) temperature
6,; below v—b another (constant) volume w.

1) This derivation was already found by me many years ago, and is inserted in my
book on the thermodynamic functions of simple substances and of mixtures with a number
of new things. But for various reasons the completion of it has been much delayed, so
that 1 avail myself of this opportunity to make these considerations public, which, I
believe, are new.
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As appears from the derivation, (11) holds of course only for the
RT-region. Hence for gases (see fig. 1) T—=0 and v = vy can never
occur simultaneously, but T—0 and v =0 (at very low temperatures),
or T—oo (great) and v arbitrary (in the so-called fluid region). For the
T*-region, which occurs only for solid substances (Fig. 1, left of B),
formula (10) of § 1 is wvalid, and this gives S—0 at T—0. But for
gases S can never become — 0. Here follow some limiting values.

a) T=0, v=oo (Fig. 1, at O): S— log0+Rlogeo oo,
as v then varies *.* e!/T (on the saturation line), or (below it) in a still

greater degree, so that log v becomes °.- 7—1.. The first term of S (.. logT)

will accordingly be very small with regard to the second term, which

is .. % Hence the volume is predominant.
b) T—o», v—=oo (Fig.1 on the T-axis, quite on the right):

‘ S =00 4 00 —on.
¢ T=o, v=w (Fig.1 quite on the right above at p—o0):

Just as in Chapter I for E we give in conclusion the following sum-
mary for S!).

—b (xmsmall: RT -region).

N —
el

—3Rloga +3R( )+3R+Rlog
o

(in general, accord-

—b i P :
3Rlo. Riog2—2 ing to PLANCK
* 7o + 7w EINSTEIN).

e—1

_3R[ -—log

=

\ S:% AT? +% BT*... (according to DEBIJE) (x. great: T *-region).

8
et

dt)du (in general, according to thermodynamics).

1) It is self-evident that for the temperature part of S in general 3 R must be replaced
by ¢, when by c is represented the specific heat at constant infinitely great volume. For
mon-atomic solid substances c¢ is then 3 R, for multi-atomic substances >3 R; for mon-

v—b
atomic gases ¢ =3/, R, for multi-atomic gases >3/, R; etc. The R before log 0 always re-

mains R, because it results from the RT of the equation of state and only the progressive
Energy plays a part here, but » is modified. It is further noteworthy that for convenience

" dv
we have always put here log (v—b) for / b’ neglecting the volume variability of b.

If this is taken into account, the term with log (v—b) becomes somewhat more intricate.

A
(See the note concerning | —— dv in § 2 of Chapter Il of our foregoing Paper).
v—b 9
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And now we have completed our considerations on Entropy and the
Entropy-constant, and in a fourth (concluding) Paper we can draw up
the vapour-pressure equations, both for the equilibrium liquid-vapour and
for solid-vapour, the latter up to the absolute zero-point — making use
of the expressions for E found now (required for the calculation of the
melting-point and evaporation heats) and for S (required for the vapour
pressure constants). At the same time the question concerning the so-
called “zero-point vapour pressure’’ will then be discussed.

Tavel sur Clarens, 1926.





