
Chemistry. - "Equilibria in systems. in which phases. separated by a 
semipermeable membrane" . XV. By F. A. H. SCHREINEMAKERS. 

(Communicated at the meeting of February 27. 1926). 

Ternary systems in which dimixtion into two and three 
liquids occurs. 

We now shall con si der the case that also th ree liquids can be in 
equilibrium with one another. In the figures 1 and 2 in which only the 
angle-point W of the components-triangle is drawn. q\ q2 and q3 represent 
the th ree liquids being in equilibrium with one another. As each point 
within the triangle q\ q2 q3 represents a complex of those three liquids. 
we may call therefore. triangle q\ q2 q3 also the region of dimixtion of 
three Iiquids. 

At each side of triangle q\ q2 q3 joins a region of dimixtion of two 
liquids; . consequently there are three of those regions of dimixtion and 
also. therefore. three binodalcurves. In fig. Ion the binodalcurve q\ a q2 
a critical liquid a is drawn. 

The branches of the binodalcurves are drawn in the figures. as if 
they terminate in the points q\ q2 and q3; this is. however. not the case. 
they continue viz. within the region of dimixtion I). If we limit ourselves 
to stabie states. then we may leave out of consideration those parts. 
situated within the reg ion of dimixtion. which represent only metastable 
and unstable states. 

For the position' of two binodalcurves in the vicinity of their point 
of intersection is true: 

both curves are situated either both within the conjugation-angle or 
both within the supplement-angle; if the one curve touches the one leg. 
then the other curve touches the other leg. 

As liquid q\ can be in equilibrium with the liquids q2 and q3' angle 
q2 q\ q3 (and its opposite angle) is the conjugation-angle in point q\. 
The two binodalcurves are drawn in the vicinity of q\ (figs 1 and 3) 
within the supplement-angle; this is also the case in the other points 
q2 and q3 of those figures. excepted in the point q3 of fig. 2 in which 
both curves are situated within the conjugation-angle q\ q2 q3' 

In the previous communication we have deduced: 

\) For considerations more in detail compare : F. A. H. SCHREINEMAKERS. Die hetero­
genen Gleichgewichte von H. W. BAKHUIS ROOZEBOOM. Drittes Heft; Zweiter Teil. 
pg. 297 and following. figs. 120-124. 
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the O. W. A. of the liquids of a binodalcurve increases in that direc~ 
tion in which we move away from the point W along th is curve. 

If we apply this rule to the binodalcurve ql a q2 (fig. 1). then follows 
that the O. W. A. of the liquids must increase starting from a towards 

~ , , 

• 

\ 
\ 

6 , ql and q2' conse~ 
\t quently in the direc~ 

" tion of the arrows; 
it follows for the 
branches q2 C2 and 
q3 C3 that the O. W. 
A. increases starting 
from q2 towards C2 

'" and starting from 
~ q3 towards C3 and 

for the branches 
\, q3 a3 and qt a1 

, '\ ' starting from q3 and 
, , ql towards a3 and 
I , 
I I : al' If we apply this 

3 .y '6 rule also to the 
Fig. 1. binodalcurves of fig. 

2. then we see that the arrows in both figures indicate the direction in 
which the O. W. A. increases along the binodalcurve. 

The dotted curves of those figures represent isotonic cUrves; they are 
only drawn so far as they represent stable states and are situated. 
therefore. out of the region of dimixtion. In the previous communications 
we have discussed al ready the parts of those curves situated within the 
reg ion of dimixtion and we have also deduced the conditions which 
must be satisfied by binodalcurves and isotonic curves in the vicinity of 
their point of intersection. 

Let us firstly consider fig. 1. The isotonic curve 3. which touches the 
binodalcurve in the critical point a. is curved in this point in the same 
direction as the binodalcurve; the isotonic curve 4 consists of two branches. 
which are united with one another by the conjugationline bi b2• As the 
liquids ql' q2 and q3 can be in equilibrium with one another and have. 
therefore. also the same O . W . A " the isotonic curve 5 consists still also 
of the isolated point q3 besides of the two branches. which are united 
by the conjugationline ql q2' Consequently all liquids of .curve (5) have 
the same O. W. A. as liquid q3' If we represent an arbitrary liquid of 
curve 5 by Ls. then we can have. therefore. the osmotic equilibrium: 

I 
LSI L q \ + L q2 + L q3 fig. 1. 

Of course herewith it is immaterial which is the ratio of the quantities 
of the liquids at the right side of the membrane and wh ether one or 
two of those are totally failing. 
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The isotonic curve 6 consists of three branches. which are united with 
one another by the conjugation~lines C2 C3 and al a3' If we represent a 
liquid of curve 6 by L6' we can have a.o. the following osmotic 
equilibria: 

1 1 1 
L61 Lc. + LC3 L6 1 L.} + L'3 L.} + L'3 1 LC2 + LC3 fig. 1. 

Of the many phenomena. which may occur in osmotic systems. we 
only shall discuss a few of them. 

Let us take the osmotic system: 
1 

Lr Lq} + Lq~ + Lq3 fig. 1 (1) 

in which L represents a liquid. which is situated at the same side of 
curve 5 and the line ql q2 as point W. As. therefore. the O.W. A. of 
the system at the right side of the membrane is larger than that of the 
Iiquid L. the water in (1) diffuses. therefore. from left towards right. as 
is indicated by the arrow. Consequently. in the system at the right side 
of the membrane. as appears at once from fig. 1. the reaction: 

water + Lq3 .... Lq} + Lq. fig. 1 (2) 

occurs. so that the quantity of the liquids ql and q2 increases. but that 
of q3 decreases. We now assume that so much of the liquid q3 is present. 
that the system at the right side of the membrane remains. Then it 
depends on the composition of liquid L. which osmotic equilibrium will 
be formed from (1). If we take f.i. the liquid f then (1) passes into: 

fig. 1 . (3) 

in which L'f is the point of intersection of the line Wf with the iso tonic 
curve (5). If we take in (1) for L f.i. the liquid g or the critical liquid 
a or a complex of the liquids bI and b2, then is formed at the left side 
of the membrane the same system as at the right side. or the system 

L q } + L q2• 

We now take a liquid L which is situated at the other side of curve 
5 and the lines ql q3 and q2 q3 than point W. As the O. W. A. of this 
liq~id is greater now than that of the complex of the three liquids, we 
now have. therefore. an osmotic system: 

1 
L ~ Lq} + Lq2 + Lq3 fig. 1 . (4) 

in which water diffuses from right to left. At the right side of the 
membrane th en occurs the reaction: 

Lq} + Lq2 - water .... Lq3 fig. 1 (5) 

so that the quantity of liquid q3 increases, and that of ql and q2 decreases. 
We now assume that there is present so much of the liquids ql and q2. 
that the system at the right side of the membrane remains. If we 
take in (4) for L f.i. the liquid Lh, th en is formed the osmotic equilibrium: 

L~ : Lq} + Lq2 + Lq3 fig. 1 . (6) 

46* 
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in which V h is represented by the point of intersection of the line Wh 
with curve 5. If we take in (4) for L the liquid K then is formed at the 
left side of the membrane the same system as at the right side or the 
system L q2 + L q3• 

Let us take once more the osmotic system: 
I 

Lf -r Lq1 + Lq2 + Lq3 fig. 1 . (7) 

in which the water diffuses in the direction of the arrow. so that at the 
right side of the membrane reaction (2) takes place. If no sufficient 
quantity of the liquid q3 is present. so that this disappears totally. then 
it depends on the ratio of the quantities of the liquids which osmotic 
equilibrium will be formed. We imagine the complex of the three liquids 
at the right side of the membrane to be represented by a point Q (not 
drawn) which is situated anywhere within the triangle ql q2 q3' The 
complex of the total system (7) is represented then by a point R (not 
drawn) which is situated anywhere on the Hne fQ. The position of the 
point R now defines on which isotonic curve the osmotic equilibrium 
which must arise from (7) will be formed. If this is the case f.i. on the 
isotonic curve (2) then arises the osmotic equilibrium: 

L' I L' 
f I Q 

in which L'f and L~ represent the points of intersection of the Hnes 
Wf and WQ with curve 2. If the equilibrium is formed on the isotonic 
curve 3. then L'f and L~ 
represent the points of 
intersection of the Hnes 
Wf and WQ with curve 3. 
If it is formed on the 
isotonic curve 4. th en may 
arise the osmotic equili~ 

brium 

fig . 1 

in which. Lr is the point 
of intersection of the line \", , 
Wf with curve 4. The ~ , 

.:~ ... 

, 
ratio of the quantities of , , 
both liquids at the right , 
side of the membrane iS~. ~ \ 
defined by the point of 
intersection of the lines 
WQ and ql q2' 

\.t" ...... 
.... ... 

Fig. 2. 

We now take fig. 2. The isotonic curve 2 consists of th ree branches. 
which are united by the conjugation~lines al a3 and C2 C3; the isotonic 
curve 3 consists. besides of two branches. which are united with one 
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another by the conjugation~line ql q2. still also of the isolated point q3; 
the iso tonic curve 4 consists of the two branches. united by the conju~ 
gation~line ql q2' 

We now consider the osmotic system: 
I 

L I L ql + L q2 + L q3 6g. 2 (8) 

If herein L represents a liquid or a complex of two liquids. which is 
situated on the same side of curve 3 and the lines ql q3 and q2 q3 as 
the point W, then L has a smaller '0. W.A. than the system of the 
th ree liquids. In (8) water diffuses. therefore. from left to right. It appears 
from 6g. 2 that then at the right side of the membrane the reaction: 

L ql + Lq2 + water ~ L q3 6g. 2 (9) 

occurs. If L is situated in (8) at the other side of curve 3 and the line 
ql q2 than the point W. th en the water in (8) diffuses from right to left. 
Then at the right side of the membrane the reaction: 

6g. 2 (10) 

occurs. The reader now can easily deduce the osmotic equilibria. which 
may be formed from system (8) and other osmotic systems of 6g. 2. 

If we compare the 6gs 1 and 2 with one another. then we see that 
in both th ree regions of dimixtïon of two liquids join at the reg ion of 
dimixtion q. q2 q3 of three liquids. 

Starting from the region of dimixtion of the th ree liquids in 6g. 1 
the O. W.A. increases along two of the binodalcurves and it decreases 
along the third. in 6g. 2. however. the O. W.A. decreases along two of 
the binodalcurves and it increases along the third. 

One could still imagine two other cases viz. that the O. W.A. either 
increases or decreases along each of the three binodalcurves; this is 
impossible. however. If we consider viz. the position of point Wand 
of triangle ql q2 q3 with respect to one another. th en we 6nd only the 
two cases. represented by 6gs 1 and 2. As long as we assume viz. that 
the diffusing substance W is a component. point W cannot be situated 
within the triangle q. q2 q3' We shall refer to this later. 

The change of the O. W.A. of the liquids of a saturation~curve of 
asolid substance. 

In the communications 111 and IV we have deduced a rule for the 
change of the O. W.A. of the liquids of a sáturation~curve. We found 
that the O. W.A. in the 6gs 1. 2 and 3 (Comm. lIl) in which w v 
represents the saturation~curve of the solid component y, increases in 
the direction of the arrows viz. from w towards v. The same is true 
for curve w v which represents in 6g. 1 IV the saturation~curve of a 
hydrate Hand for curve w v. which represents in 6g 2 IV the satura~ 
tion~curve of a ternary compound F. If the diffusing substance is 
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another than water. as f. i. the component Y in the figures of the com­
munication XI and XII. then a corresponding rule is valid. 

In fig . 3 (of this communication) a q\ and q\ f represent two parts of 
the saturation-curve of the sub stance F. This curve intersects the binodal­
curve q\ a q2 in the two conjugated points q\ and q2 50 that also an 
equilibrium : 

fig. 3 

can exist. Of course the saturation-curve does not finish in q\ and q2' 
but it passes through the reg ion of dimixtion. If the saturation- and the 
binodal-curve intersect one another only in two points. then it goes. as 
is indicated in the figure by the dotted curve q\ m n q2' from q\ towards 

F q2 l This part. situated 
within the region of di­
mixtion represents only 
metastable and unstable 
states. 

The ru Ie • mentioned 
above. for the change of 
the O. W.A. of the liquids 
of a saturation-curve is 
true only for stabIe states. 
consequently in fig. 3 for 
the parts a q\ and q2 f. 

W· On those parts the O. W. 
Figuur 3. A . must increase. there-

fore. from w towards a and towards q\ and from q2 towards f. As q\ 
and q2 are conjugated liquids and have. therefore. the same O. W. A., 
it appears. also from this at once that the rule above-mentioned cannot 
be valid for the part q\ m n q2' In order to examine this more in detail. 
we represent the composition of an arbitrary liquid L by: 

x quant. W + y quant. F + (l-x-y) quant. N . (11) 

in which N is an arbitrary liquid of the saturation-curve. It is clear, 
however. that we are not allowed to take for N the liquid w or a 
liquid in the immediate vicinity. Consequently we have a system of 
coordinates with the point N as origin. the line NW as X-axis and 
NF as Y-axis. 

If the liquid L defined by (11) is saturated with the solid substance 
F. th en is satisfied: 

àC àC C - x - + (I-y) - = CF 
àx ày 

(12) 

\) For the case there are more points of intersection. compare F . A . H. SCHREINEMAKERS 

J.c .. fig5. 136-139. Examp1es of similar diagrams are found in the system : water + 
phenol + anilin. 
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while the O. W. A. of this liquid is defined by: 

q; = C + (I-x) àC _ y àC ox oy 
With the aid of (12) we can also write for this: 

q; = àC _ oC + CF ox oy 

(13) 

(14) 

For a liquid; which differs infinitely little from L. are valid. therefore: 

[- xr + (l-y) s] dx + [- xs + (l-y) t] dy + A = 0 (15) 

6q; = (r-s) dx + (s-t) dy + B . (16) 

in which A and B contain terms of higher order. If liquid L coincides 
with the point N. so that x = 0 and y = O. then they pass into: 

s dx + t dy + Ao = 0 (17) 

6q; = (r-s) dx + (s-t) dy + Bo (18) 

so that we may write for (18) also 

6q; = r dx + s dy + Ao + Bo (19) 

Limiting ourselves to magnitudes of the first order. th en follows from 
(17) and (19): 

dy_ s 
dx t 

. rt-s2 

6q; = ---- dx . 
t 

(20b) 

The equations (17) and (19) and consequently also (20a ) and (20b) define 
the direction of the saturation~curve and the change of the O. W. A. in 
each arbitrary point (excepted in the vicinity of the point w). 

We now take an arbitrary point of the saturation~curve outside the 
region of dimixtion f. i. . the point b. As t is positive in this point. s: t 
can never be infinite1y large. therefore; it now follows from (20a ) that 
the saturation~curve in b cannot touch the Y~axis. viz. the line b F. 

If we take d x positive. th en we go along the curve from b towards 
w; if we take d x negative. then we go from b towards a. As the 
coefficient of d x in (20b

) is positive. it follows that q; decreases starting 
from b towads a. so that the O. W. A. increases from b to a. If we apply 
this same to other points of the saturation~curve situated outside the 
reg ion of dimixtion. th en we see that the O. W. A. increases in the 
direction of the arrows. viz. in that direction. in which we move away 
from the point w along the saturation~curve. 

If we go along the saturation~curve from q\ towards q2 th en we 
intersect the spinodal~curve in the two points 1 and p. in which. therefore. 
r t - S2 = O. In accordance with (20a ) the saturation~curve shows nothing 
particular in those points. In accordance with (20b) the change of the 
O. W. A . is zero in those points. however, and the O. W. A. itself a 
maximum or minimum. therefore. 
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If we go from 1 towards p. then t 
1. can remain always positive 
2. become zero in the points mand n. As t is zero in those points. 

l' t - S2 is negative; consequently the points mand nare situated within 
the spinodal~curve. the same as the part m n. on which t is negative. 

As s: t in the points mand n becomes infinitely large. it follows 
from (20") that the saturation~curve touches in those points the lines 
m F and n F. Those tangents. situated always within the reg ion of 
dimixtion. are the only ones which can be drawn from F to the satura~ 
tion~curve. If t is positive in all points between land p. then those 
tangents m F and n F fall away also and the retracing part m n of the curve. 

It now follows from the previous: 
the O. W. A . increases from q! to I. it decreases from 1 to pand it 

increases again from p to q2 in order to become in q2 the same again 
as in q! . In the one point of intersection with the spinodal~curve the 
O. W. A. is maximum. in the other it is a minimum. The isotonic curves 
going through the points land p must touch. therefore. the saturation~ 
curve in those points. 

The latter appears still also in the following way. In the previous 
communication we have seen that an isotonic W~curve is defined in 
every point by: 

dy_ l' 

dx- s . (21) 

As 1't - S2 is zero in the points land p. it follows that (20") and (21) 
have the same value. so that iso tonic curve and saturation~curve touch 
one another. 

In order to define the change of the O. W. A. in the vicinity of the 
point w (fig. 3) we might take the liquid w as fundamental composant; 
for the two other composants we can choose F (or W) and an arbitrary 
other phase. We shall keep. however. the same composants as above: 
for the liquid w is then true: x + y = 1. 

Substituting in (15) x = 1 - y then follows for (16): 

(l-y) 6rp = A + (l-y) B (22) 

As A and B contain only terms of higher order than the first. 6 rp 
is zero at first approximation. Consequently the O. W. A. is in w a 
maximum or minimum. In order to eXé.\mine this more in detail. we 
write for A the terms of the second order and put herein also x= 1- y. 
We then find: 

A = - -1'-(1-y) --- dx + -s-(I-y) --- dxdy + 1 [ (à1' às)] 2 [ (à1' àS)] 
2 dx àx dy ày 

+ - -t-(1-y) --- dy. 1 [ (àS àt)] 2 
2 ày ày 
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It follows for B: 

B=l(àr _àS)dX2+(àr _àS)dXd +l(às_àt)d 2 
2 àx àx ày ày Y 2 ày ày y 

so that (22) passes into: 

(l-y) 6<p = (~rdx2 +sdxdy+ ~ tdy2). . . . (23) 

If the point w is situated out of the reg ion of dimixtion. the second 
part of (23) is always negative. If. as in fig. 3. the point w is situated 
between Wand F then l-y is positive. Consequently 6 qJ is negative. 
qJ is a maximum. therefore. and the O. W. A. in w a minimum. If w is 
situated at the other si de of point F as f. i. point v in fig. 2 IV. then 
1 - y is negative; the O. W. A. is then a maximum in this point. 

(To be continued). 




