
Mathematics. - "On RIEMANNia n Geometries admitting an absolute 
parallelism." By E. CARTAN and J. A. SCHOUTEN. (Communieated 
by Prof. JAN DE VRIES). 

(Communicated at the meeting of April 24. 1926). 

We will say that a RIEMANNian geometry admits an absolute paral~ 
lelism. if it is possible to define the parallelism of two directions in two 
different points in a manner, whieh is absolute (viz independent of the 
choiee of the coordinates) and satisfies the following conditions : 

1. A geodesie is in all her points self-parallel; 
2. The angle between two different directions in an arbitrary point P 

is equal to the angle between the two parallel directions in another 
arbitrary point Q. 

By the th us defined parallelism a connexion arises, which 
1. leaves invariant the tensor g i!,-

2. possesses the same geodesics as the given RIEMANNian connexion 
3. has zero curvature. 
This new connex ion is not necessary symmetrical. In such a RIEMANNian 

geometry eVidently through every non~singular point not situated on a 
given geodesie one and only one geodesie may be drawn , which is in 
each of her points parallel to the given one. 

In a previous paper we proved , that with every simple or semi~simple 

group such a RI EMANNian geometry corresponds and that the geometries 
corresponding with simple groups admit two different absolute parallelisms. 
The most simple case is the geometry of the elliptical S3' the two paral~ 
lelisms being those of CLiFFORD. 

We will prove presently that, supposing the fundamental form definite, 
there exists besides these geometries corresponding with the mentioned 
groups only one other geometry with the designed property and that 
this geometry is in close connexion with the non~a:;sociative number~ 
system of GRAVES-CAYLEY. 

§ 1. Fundamental relations . 
A connexion with the same geodesics as the given RIEMANNian geometry, 

has parameters of the form 

(1) 

where Pi is an arbitrary vector and S ;.:; an arbitrary in À/ I alternating 
o 

affinor ancl I ~" J are the parameters of the RI EMANNian geometry. 
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If we postulate 

it follows immediately 
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P = 0 }, 

(2) 

(3) 

(4) 

Si ", is therefore a trivector. For the quantity of curvature of the new 
conn'exion it follows from (1) 

and from (5) af ter some calculations 

o 
S . - 'V S - 11 S , S'" 1/ S , Sf'- I( S SZ 

' ... J II./"/ - ' ... J / J. /',/ - 13 7.P.I. . ~/.J + 3 ~/"J • / J.'/ J + 3 ~"J.'J. • ','I. 

From this latter equation it follows thatS'""i, is a quadrivector. 
differentiation we deduce from (6) and (7). usi~g the identity 

o 
'V, K " , ' = 2 'VI" K uli I) 

W ,Ul • • 

the equation 
o 

'V", K". }. =O. 

§ 2. The case of constant real p-directions. 

(7) 

By 

(8) 

(9) 

If a real p-direction is constant by the (O)-connexion. th en the ortho
gonal (n- p)-direction is constant also and it is well-known that V n is 
composed by oon- p V p which are totally geodesie and mutually (O)-parallel 
and also in oo p V n- p with the same proper ties orthogonal to the V p • 

The tri vector is the sum of two trivectors s;u, and 5';",. whieh are 
entirely situated in the V p and V

n
_

p 
resp. and tl~e transfo~mation (1) is 

composed by a geodesie transformation (viz. a transformation whieh 
leaves the geodesics invariant) of every V p in itself. given by 5 ;/1., and 

an analogous transformation of every V
n

_
p 

in itself. given by S;:u.,. I~deed. 
K,,"JÓ is divided. as is well-known. into two parts. which are situated 
entirely in V p and V n_ p resp. If therefore v' and W ' are two vectors 
Iying entirely in V p and V._p resp .. then from (6) it follows: 

o '" IJ. .. ' K u i,S " "S '" == v W ' v W WflJ,'J == W ' V 2-,11.i , W V 'J~J' • (10) 

The rea I vector w /' ViS ".'Ji is therefore zero. whence it follows that 

S",'J.' is divided in the described manner. 

I) R. K. p. 168. 



935 

In consequence of this proposition the case, where V p admits constant 
real p-directions is reduced to the case, where these p-directions do not 
exist. We will therefore suppose in the following, that there exist no 
constant real p-directions. 

§ 3. K . = cg .. !).J, IU , 

From this s!lPposition it follows that K/Ji must be equal to g ,,.;. but 
for a constant factor. Indeed, if th is we re not true, the principal regions 
of K.û would deflne constant p-directions in consequence of (9). The 
case K/Ji = 0 is to be excluded immediately, for in consequence of (6) 
we would have S",;" 8''-,'';' = 0 which is by a real trivector only possible 
for Si.", = 0, giving the trivial case KO,."J , = O. We have therefore 

K - cg . c = constant -I- O. 
/J.).- f.t.).' T (11) 

or 
(12) 

§ 4. BIANCHI'S identity . 
Applying BIANCHl's identity on (6), we ob ta in 

0 =9/1\7 1; K,"f' I; '= S,':< I:'- S"",ç l S,~ i, + SI' :< ; S'\ I'" S I\." I - Sfb S" i l",S I\."l (13) 

From S i:" we derive the covariants 

a) cg hl' = S~/ Sfi/ 
b) - S .. (l S ' , 'Y S .. " 

g "I'J- «" 1' 1' 'Y' 

(14) 

etc. 

and we remark that all these covariants admit cyclical permutation of 
the indices. From (13) it follows 

(15) 

By transvection of th is equation with SPr, and Sr,o,; arises 

2 2 S - 4 .... d + 2 S'X.ji'l S 
cg:J:~'" - C .":r!" - g l',,·r, I'; I."' l g""fl 'I.".'" (16) 

and 
(17) 

hence 
(18) 

Now it follows from (14b) by differentiation 

(19) 

and therefore 
,«fl_ C2 _ 

\7 g , S _ - \7 , _ 0 
V ',J _ I :I. ,C) ,u. 2 v", g l ,U. 

(20) 
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Consequently g ;,,- ; 5 :/ ~ {l is a tensor. which can differ from g ; " only by 

a constant factor. Writing for this factor - C(! . (! = constant. the~ it follows 
by substitution in (18) 

(21) 

Substituting this value in (15). it appears. that two cases are possible. 
either 

or 
c = -2e 

From (7) in relation with (22) we have 
o 

\} S = \} S =0 
~J ). /-L 'I W Af.1.".1 ' 

(22) 

(23) 

(24) 

hence the first case gives again the geometries for which c = + 2 e 
mentioned above and treated in our previous paper. 

For both cases. c = ± 2 (! . the following relations hold good : 

a) 

b) 

c) 

d) 

\}; KOJ.~ j , = 0 

\} ;- 5 ",0 1, 1 S,; )~,~= 0 

(c - n) K ' - g , - g , \ ~ "" 1.,"/ - ' ,J 'I , ", 'tl'J 'J). 

9 S .,,";, S'~ i'l.' 'I = - (c- 4e) S Z.'I; S z, ; '. - 4 g ju;:r,.' 

which are all a consequence of BIANCHi's indentity. 

(25) 

We have therefore as yet to prove. that the case C = - 2 (! leads to 
the elliptic geometry in 57, For th is it is necessary to use some pro
positions of the theory of groups. 

§ 5. The group of the RI EMANN-CHRISTOFFEL affinor. 
Just as in the previous communication we make use of a system of 

measure-vectors e k . i. k = 1 .. .. . n. that is constant by the connex ion (-). 
i 

To two surface-elements in two different points. each defined by two 
directions. which have in both points the same coordinates Xk . yk with 
reference to the system ek. corresponds the same RIEMANNian curvature. 

i 

defined analytically by the form 

R = Kijklx i yj xk y l . 

V n admits a translation. whereby every point moves along a linear 
element. given by a (- )-constant vector I). By this translation the 
change of the vector Xk is given by 

(26) 

I) It may easily be proved that the problem trea ted above is equivalent to the de ter
mination of the V no which admit n infinitesimal isogonal translations, not situated in one 
(n-I )-direction . 
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Since the RIEMANNian curvature of a surface-element do~s not cha:1ge 
by this translation. it follows easily. that the form is invariant by all 
infinitesimal transformations 

of af 
X f S · . k j - - Y f S ·· k j 

i = ij X Oxk; i = i j Y oyk 

applied simultaneouslyon the vectors Xk and yk . 

(27) 

The transformations (27). whose coefficients because of c = - 2 e 
change by the transition from one point of V n to another. form no 
group. But they are contained in the group I' of all rotations which 
leave the form Rinvariant. Especially the alternated combinations (Xi X) 
belong to this group I) : 

àf 
(Xi X j ) = (S ii/' Sj: - Sj ·,/' Si ;') Xk àxl (28) 

The differential 

d k - S ·.·. k i d e J x - IJ X c; 

obtained by displacing the vector Xk (O)-parallel. is half the differential 
(26). whence it follows. that the RI EMANNian curvature is invariant 
also by this displacement. Hence the V n belongs to an important class 
of V no viz those in which the curvature is invariant by pseudo-parallel 
displacements. 

Particularly the rotation. corresponding with a surface-element. will 
belong to the group r This is confirmed by calculation. With a surface
element with the coordinates p i j corresponds the rotation 

i . KIk - ~[ i · (I / S ·· >. S · I 2/ S ·· >. S · I + pJ ijkX Oxl = p J 3 kj i.'. - 3 ji k ," 

+ I/ S ··" S· I) k j f - 2/ ij S · . k X f I/ i j (X X ·) 3 ik j .J. XOxl- 3P ij k - 3P i J' 

(29) 

Hence it follows that the group of holonomy of V n is the group r 
or one of his subgroups 2). 

§ 6. The group r leaves invariant no p-direction . 
It has already been proved in § 2 that there cannot exist a real by 

rinvariant p-direction . If there were an invariant imaginary p-direction. 
the conjugate imaginary p-direction and the orthogonal (n-p)-direction 
would also be invariant. Hence it would follow. that there we re an 
invariant real q-direction. except in the case n = 2p and that the p
direction were totally isotropical. In this latter supposition we choose 
the system in such a way. that 

2 Xl X2 + ..... + 2 x n
-

I xn 

I) It may be verified easily that Xi and (Xi X) does form a group. but we will not 
use th is property , 

2) E. CARTAN. Ann. Ec , Norm. 3.42 (25) p. 21. It may be proved. that r is the 
group of holonomy itself. 
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is the fundamental farm. the given p-direction is defined by 

Xl = X3 = .... = x·- I = 0 

and the conjugate p-direction by 

x 2 = Xi = ..... = X' = O. 

Every infinitesimal transformation of / . contains then only coefficients 

a / I). whereby i + j is even and therefore only coefficients aij whereby 
i + j is odd. One of the Si j k can therefore only then be equal to zero. 
if not only i + j. but also j + k and k + i are odd . 

We find therefore S i jk = O. 

§ 7. The group I' is simpte. 
Every linear group which leaves na p-direction invariant is either 

simple or semi-simple 2) . 
In the latter case I' may be obtained from two simple or semi-simple 

groups i' 1 and i'2 in q variables XI . ... . X'I. resp. s variables yl •. .. • ys. 
which leave invariant na p-direction. The group is then the group of 
transformations of the n = qs products z(i') = x i y~ . i= 1. . . . . q. a = 1. .... s 
by the transformations of i' 1 and )'2 ' Every transformation of [' is of 
the farm 

Consequently in every vanishing coefficient A(i~(() of an infinitesimal 

transformation of I' either i = j or Il = p. moreover. if i '* j then we 
have 

A . (j") - A . (j r. ) 
(i ") - (i r ) 

for every value of ) •. 
The group r being a group of rotations. it leaves invariant a non

degenerate quadratic farm QJ (z(i , )) . Two cases are possible. either lP 
vanishes identically or lP dont vanish. In the first case by giving to the 
y~ fixed values. we obtain a quadratic farm ((Xi). invariant by i' 1. which 
is determined uniquely but for a constant factor and is not degenerate. 
since otherwise i'1 would leave invariant a p-direction. In the same 
manner a quadratic farm ", (y z) may be obtained. sa that lP(Xiy~) = {(Xi)rp(y~) . 

We may therefore suppose. that lP has the farm 

lP = I (Z(i:t))2 • (30) 
i. « 

I) By coefficients of the infinitesimal transformation ek X k f we mean the n2 expres

sions é,S'; i .i. i. j = I .. . . . n. 

2) To be compared by this and the following § §. E . CARTAN. Les groupes projectifs. qui 
ne la is sent invariante aucune multiplicité plane. Bull. Soc . Math. 41 (13) p. 53-96. 
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In the second case. setting 

<p (Zli«)) = g li ,.) (jl ) z li«) z(j ;) 

it follows 

g liX) Ijl) + g lil) Ij') = O. 

The bivector a ij = g(i«)(j ;) . in which expression to a and (I fixed values 
are to be given. is therefore invariant by 1'1 and so is by 1'2 the bi vector 
b",s = g (ix)(j ; ). in which i and j have fixed values. These two bivectors 
are uniquely determined but for constant factors and non-degenerate. 
for otherwise 1'1 resp. 1'2 would leave invariant a p-direction. The constant 
factors may be chosen so that for <P holds good 

Hence it may be supposed that <P has the form : 

<P = I Z (2i-1. 2x- 1) Z(2i. J",) _ Z I2i- 1. h ) zl2i. 2"'-1) • ) 

I. &t , 

1'- 1 q . (1- 1 s ( - .. " ' 2 ' - .... 2' ) 
(31) 

Now we will prove that the cases (30) and (31) cannot occur. In the 
case (30) we have 

S S · . Ik,,) 
li.) Ijl) Ik,,) = li x) Ijl) . 

If the coefficient S li2) Ij ;) Ik,,) is unequal to zero. then either j = k or 
(I =)'. likewise either i = j or (! = (3 and either i = k or (! = ". therefore 
either i = j = k or a = (3 = y. Now supposing f.i. i = j = k and (! :I:- (I. 
then we have for every value of k 

S liX) (i ' ) (i,,) = S ik" ) Ik l) (i,,) • 

For i :l:- k the condition mentioned above is not satisfied on the right 
side of this equation and the trivector S must therefore be equal to zero. 

In the case (31) we have 

where 
S - ( l)k +" S · . Ik ',,') 

l i«) Ijl) Ik,,) - - l ix) Ijl) 

,_) k + L k odd 
k - ( k - 1. keven 

, _ ) I' + 1. I' odd 
I' - ( I' - 1. I' even . 

Hence if the coefficient SliX) li l) Ik,,) :I:- 0 we have 

j = k' or (3 = 1"; i = k' or a = 1"; i = j' or a = (I' . 

N ow supposing f.i. i = j = k' with a = (3' . then we have for every 
value of ;. 

Sli") l i«') l i ',,) = (-1) "' + " Sli),) li ,,') )i' ,,). 

For ;. =f y we have for every value of k 

S (O,) li>.') li',,) = (-I)i + k Sli') Ik,') Ik ',,). 

Taking k =f i. we must have;' = 1" . i.e. every index;' different from 
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)', must be equal to /. This however is only possible if s = 2. lf ), = )" 

th en we have, supposing k =t- i. 

S uy' ! Iky ! Ik 'y ! = - SUy! !ky! Ik'')' ' ! 

from which it follows k = i'o From this we derive that q = 2 also. 
The only possible semi-simple group is therefore the orthogonal group 

in four variables. The following developments suppose r to be simpie, 
They would however be solid also for the orthogonal group in 4 
variables. We may however easily verify, that the case n = 4 cannot 
occur. Indeed for n = 4 it follows from (7) that S".',;, = 0, by which we 
return to the case C = + 2 (!. 

§ 8. The farm R derived from the infinitesimaL transformations of the 
group. 

Be 
.. k j àf J, f, K, L = I, . ... r. 

Zlf = alj x àxk ; i. j. k. L = l. .... n 

a system of r infinitesimal transformations with rea I coefficients of r. 
To each of these transformations we adjoin the bilinear form 

r . k ' / 'k 1,, 1 = aljk xJy = 2 aljk pJ 
From the equation 

it follows that 

Z1 ' / = cij K CK • 

Now we introduce the fundamental tensor 

(32) 

G I / = ' / 2aljkajjk ') (33) 

and by using this tensor we obtain from Ci i K the covariant components 

Cl! K' From (32) it follows that 

a i; 

from which we obtain by transvection with ai ij 

.. j .. k i 
- ali afj a~~ = CI / K 

The CI!K are therefore the components of a trivector . 
The form 

R = K ijkl Xi y j Xk y' = '/1 K ij kl p ij pkl 

is aquadratic form in C, .. . . . Cr' Indeed it follows from (29) 

(34) 

1 àR 2 .. k 

2 àpij = 3 S ij ~k - '/3 (j' (35) 

where ~k and Ei j are forms which correspond to the infinitesimal trans-

') Por this introduction it is evidentl y necessary that gij be known. 
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formations Xi f (27) and (Xi Xj) (28). Now we deduce the general form 
of aquadratic form R (Cl)' invariant by the group I: IE 

R (Cl) = All Cl Cl 

then we have 

and therefore 

C;j L A IK + Cli K AIL = O. 

These relations express that the adjoint group of r. which is generated 
by (est engendré par. erzeugt wird dureh) the transformations 

af 
Ed= Cjj K el oe K• 

leaves invariant the form Al I el el . Consequently. /' being simple a~d 
the adjoint group leaving invariant the form GIl el el. we have 

Alf = hGII 
therefore 

R (Cl) = h GIl e l ' I = he I , I' 

From this equation it follows that 

K :: ij nc 
IJ =2hr= - nc; h=- 2r 

§ 9. The order r of r is equal to 3 n. 

(36) 

(37) 

Taking for the inf1nitesimal transformations of r the n transformations 
Xi f and r - nother independent ones. then we have for i. j. k -=: n in 
consequence of (12) 

G - 'I SS ' ", - 'I ij - 2 i":' j - - 2 Cgij . (38) 

On the other hand it follows from (35) and (36) that 

1 aR ael 
_ ~ S .. k " 'I .. 1 '2 apij = hCI Opij - 3 ij "k - 3 Cij Cl' 

Hence 

a,,1 2 
h <, S ·· I ' I .. 1 apij = "3 f.1 i j - 3 Ci j 

aCI 2 .. k ' / G .. I h a--:-:- = -3 G lk Sij - 3 I1 Cij . p'} 

By (38) we have 

hence 

\l./ -= n 
EI = t o. / > n 

(39) 
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Now it follows from (34) that Cijk, i, j , k . -:::: n, is identical with the 
quantity gi j k defined by (14) so that we have derived in another way 
once more the identity (21) 

gijk = (! 5 ijk ' 

obtaining at the same time as a new result 

(2 = - (c + 3h). 

(21) 

Now it was proved in § 4 that C = ± 2 (2. Hence from (37) follows 
that the only possibilities are 

C 

C = + 2e, h = - 2' r = n 

giving the V n of the simple groups, and 

C 
c=- 2(! , h =- (;, r= 3n. 

§ 10. The group / ' is {or c = - 2 (! the arthaganaL graup in 7 varia bLes. 
Now rests only to examine for which types of simple groups,leaving 

invariant a non-degenerate quadratic form but no linear manifold, r may 
be equal to 3n . Previously we remark that the roots of the characteristic 
equation of an orthogonal group are in pairs equal and opposite. These 
roots are called by CARTAN the weights of the group I). It may be 
remembered that every simple group, which leaves invariant no linear 
manifold, is entirely determined by her principal weight (poids dominant). 

Type A. IE the rank of the group is I, then the order is r = L (1+2) 
and every weight is of the form 

mi (1) 1 + ..... + m l+ l W ' + I 

in which the sum of the rational coefficients mi is zero. The difference 
between two coefficients, corresponding with the same weight or with 
two different weights is a whole number. Since with every weight 
corresponds an equal and opposite weight, the coefficients mi are either 
all whole numbers or all half odd numbers. IE the m i are all whole 
numbers , the group contains all weights W i - W j and 0 and the number 
of the variables is therefore at least equal to r , which is not possible if 
r = 3n . If the m i are fractions, th en L is odd and all weights of the form 

1/ 2 ( W I + .... . + (0 ' + 1 - (01+ 1 - . . •. • - W I+ I ) 
_ __. +1 

2 2 

exist. Their number is therefore 

(l + I)! 

r 
from which it would follow n > 3' 

L (l + 2) 
> 3 

I) Loc. cito § 1. No. 3. We make use of the nota tions used there. 
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Type B. Here is 1 -2. r = 1 (21 + 1) and the weights are of the 
form 

in which the mi are whole numbers or half whole numbers. In the 
1(2/+ 1) r 

latter case is n ==- 2 1 > --3-- = 3" In the 6rst case the existence of a 

weight. ...hich is not of the form ± (Ui has as a consequence that 
all weights of the form ± (Ui ± (l)j exist. whence it follows that 

--=- 1(2/+ 1) r 
n - 2 1 (1-1) > - 2 - = 3' There remains therefore only the case where 

the weights have the form ± (Ui. This case corresponds with the orthogonal 

group in 21 + 1 variables. From the identity 21 + 1 = ~;+ 12 it follows 

that 1 = 3. so that the orthogonal group in 7 variables appears to be 
possible. 

Type C. Here is I ~ 3. r = 1(21 + I) and the weights have the form 

in which the mi are whole numbers. The group. for which the weights 
1(2/+1) r 

are ± (Ui. has 2 1 variables and 21 * --3 - = 3; the ot her groups have 

at least , rvariables. 
Type D. Here is 1 ~ 4. r = 1(21 - 1) and the weights have the 

form mI W I + ... + mi (UI. Is 1 =- 5. then the mi may be half odd numbers. 

and we have n :-=- 2/- 1 > ~ (2 ~ 12 = ; . If the mi are whole numbers. 

then we have in the 6rst place the system of weights that corresponds 

with n = 21 * U? ~ 1) = j and further other groups. for which n =- r. 

. r 
The types E. F. G give groups for WhlCh n > 3' 

There is consequently but one p01,sibility. /' is the group of all 
orthogonal transformations in seven variables. From the expression for 
R it follows that V 7 is an elliptical 57 , 

§ 11. The absolute parallelism in S7 ' 
It is indeed very easy to indicate in 57 an in6nity of parallelisms 

which satisfy the prescribed conditions. In the projective space of 7 
dimensions the absolute be defined by 

X02+XI2+ .••.• +xl=O. 

A point be given by 8 coordinates whose squares have the sum 1. 
The distributive. but not associative numbersystem of GRAVES-CA YLEY 

with the uni ties I, el' ... ,e7 is given by the rules of multiplication 
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With the point xo . . , . . ,X7 eorresponds the number 

X = xo + ~ Xi ei 
i 

with the module V xo2 + XI
2 + . .. + xl = l. .... 

XY being an arbitrary segment of a geodesie and X' an arbitrary .... .... 
point. we will eall the segment XY and X ' Y ' aequipollent. if 

Y' X ,- I YX- I (X- I ) = ; = X o - ~ Xi ei • 

Equalising the sealar parts of both members of (41) we obtain 

XO' YO ' + ... + x / Y/ = X o Yo + ... + x7 Y7 

(41) 

.... .... 
from which tollows the equality of leng th of the segments XY and X' V' . 
IE X and X' are given . the relation between the Yi and the y/ is linear 
and such. that with a vector in X corresponds a vector in X' with the 
same length. 

The aequipollence is therefore conformal. The geodesics of 5 7 are 
selfparallel. Indeed. if we put 

YX- I = Z . whence Y = ZX I) .... 
and if X ' is situated on the geodesie XY: 

th en we have 

so that 

X ' = ),X + /l, Y = ),X + fl,ZX 

Y ' = ZX' = lZX + ItZ (ZX) 

= lY +,/.1. (2zo - Z - I) ZX 

= (l + 2,lZo) Y - fl,x. 

We get another absolute parallelism by putting 

X ,- I Y'= X - Iy. (42) 

IE generally A is an arbitrary fixed number of the numbersystem. 
then we have two families of absolute parallelisms. each depending from 
7 parameters. by the equations 

Y' (X,-I A) = Y (X- I A) 

(A X '- I) Y ' = (AX- I ) Y 
(43) 

(44) 

lt may be foreseen that there exists an infinity of absolute parallelisms. 

I) This result remains val id. a lthough the multiplication is no long er associative. 
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Indeed. by the inflnitesimal translation (26) two (-)~parallel vectors in 
two different points are transferred into two vectors which are no more 
(-)-parallel. The metrical properties of S7 being invariant by translation. 
the (-)~parallelism is transformed into a (-)~parallelism different from 
the flrst. so that there exists a continuous family of (- )-parallelisms. 

In 5 7 there do not exist other absolute parallelisms than those deflned 
by (43) and (44). Let us consider a determined absolute parallelism and 
a congruence of geodesics invariant by this absolute parallelism. We get 
a translation by moving every point on the corresponding geodesie over 
a distance equal for all points. In an 5 n. wherein the equation of the 
absolute quadrie is XI 2 + ... + X" 2 = O. every inflnitesimal translation 
may be reduced to the form 

af af àf af 
XI aX2 - X2 (lXI + X 3 aX1 - X1 àX3 + ... 

and the trajectories of the translation all interseet the twoplane manifolds 
in the absolute 

XI + ÎX2 = X3 + ÎX1 = ..... = O. 

XI - iX2 = X3 - ÎX1 = ... .. = O. 

For n = 7 these two manifolds P3 are situated on the absolute quadric. 
there exist two different families and two conjugate imaginary manifolds 
belong to the same family . The P3 of the flrst family (Pi ) are characterised 
by the property that their equations being written in the form 

Yo + ÎYI = Y2 + iY3 = .. ... = Y6 + i Y7 = 0 

the determinant of the coefficients of xo . ... • X7 in Yo. ' ..• Y7 is positive. 
By the other family (P3) this determinant is negative. 

Reciprocally to every P3 and his conjugate corresponds a determined 
congruence of geodesie lines. to which belongs a group of translations 
with one parameter. 

An absolute parallelism may be obtained by choosing 00 7 manifolds 
P3 such that the corresponding congruences are isogonal. It may be 
proved. that in this manner no other absolute parallelisms are obtained 
than those which are deflned by (43) and (44). The (+)~ and (-)~ 

parallelisms are obtained by means of manifolds from (Pt) resp. (P3). 
The points of 5 7 • the (+ )- and (-)~parallelisms may be considered as 

e1ements of 5 7 , In the same way as we extend in the ordinary project~ 
ive space the group of projective point-transformations by adjunction 
of correlations. the group of motions and reflexions in 5 7 may be ex~ 
tended by adjunction of the four continuous families of transformations. 
which transform points in (+)~ and (-)~parallelisms . In th is manner we 
have in 5 7 a triality I) by whieh it is possible to deflne the distance of 
two (+)~ or two (-)~parallelisms, etc. 

I) E. CARTAN . Bull. Sc. Math . 2. 49 (25) p . 361-371. 



946 

§ 11. General conclusion . 
In a RIEMANNian geometry. in which the Iinear element is the sum 

of h Iinear e1ements. corresponding with geometries of finite groups and 
k linear e1ements. corresponding with the geometry of 5 7 , there exist. 
for k = O. 2h absolute parallelisms and. for k > O. 2h+k continuous families 
of 00 7k absolute parallelisms. 

This result remains valid. if a euclidian linear element of an arbitrary 
number of dimensions is added. 

P . S . We remark. that an error has been made in the deduction of 
(10) in the first note. the linear element having really the opposite sign. 
lience 

instead of - 1/2 C;,;·J. Also on page 807 the linear element sjdi corre

sponds with the transition from t k into fk - si tj C " k dt. hence in (18) c : .: ' 
I ) I , '"~ 

ought to be substituted by - c; .. ; '. The error has had no serious con
sequences. 




