Mathematics. - "A Special Congruence of Twisted Cubics". By Prof. Jan de Vries.
(Communicated at the meeting of May 29, 1926).

1. The twisted cubics ϱ^{3} through the points A_{1}, A_{2} and A_{3} which have the straight line b as bisecant and the straight lines c_{1}, c_{2} as secants, form a congruence [ϱ^{3}]. Let the plane of the points A be indicated by α, the transits of b, c_{1}, c_{2} through a by B, C_{1}, C_{2}.

To this congruence there belongs the pencil of nodal curves k^{3} which have a node in B and which pass through $A_{1}, A_{2}, A_{3}, C_{1}, C_{2}$. This pencil contains two cuspidal curves with cusp B and five figures consisting of a k^{2} and a straight line.
2. In order to arrive at a representation of [ϱ^{3}], I assume two pencils (p) and (q) in one plane with vertices L and M, and I establish a projective correspondence between the point range (P) of c_{1} and (p), and likewise between (Q) of c_{2} and (q). As the image of the curve through P and Q I consider the point $R \equiv p q$.

If P^{\star} and Q^{\star} are associated to the rays $L M$ and $M L$, the ϱ^{3} defined by them is represented on the point range of $L M$; this curve is, therefore, singular.

All the curves through P^{\star} have their image in M, all the curves through Q^{\star} are represented in L. Hence L and M are singular points for the representation.

If p_{0} and q_{0} are associated to the points C_{1} and C_{2}, their point of intersection S_{0} is the image of any curve k^{3} (§ 1). Accordingly also S_{0} is singular.

Let α_{1} be the plane through A_{1} and b, A^{\prime} the transit of $a_{1}\left(A_{2} A_{3}\right)$, $C^{\prime}{ }_{1},\left(C^{\prime}{ }_{2}\right)$ the transit of $c_{1}\left(c_{2}\right)$. Each conic ϱ^{2} through $A_{1}, A^{\prime}, C^{\prime}{ }_{1}, C^{\prime}{ }_{2}$ forms with a_{1} a configuration belonging to $\left[\varrho^{3}\right]$; all these ϱ^{3} have their images in the point of intersection S_{1} of the rays p^{\prime}, q^{\prime} corresponding to $C^{\prime}{ }_{1}, C_{2}{ }^{\prime}$. The planes α_{2} and α_{3} contain analogous systems. Also the points S_{1}, S_{2} and S_{3} are singular.
3. The surface Γ formed by the ϱ^{3} which rest on a line c_{3}, is represented on a curve γ of which we shall determine the order.

Let P be a point of c_{1}. Through P and the points A there pass four ϱ^{3} which cut b twice and which rest on c_{2} and $c_{3} .{ }^{1}$).

[^0]Accordingly by Γ four points Q of c_{2} are associated to P; hence a ray p cuts γ in four points outside L. In the same way four rays p are associated to the ray $M L$; hence γ has a quadruple point in L. It may, therefore, be indicated by the symbol $\gamma^{8}\left(L^{4}, M^{4}\right)$.

If we replace c_{3} by a line c_{3}^{*}, hence γ by γ^{\star}, the points of intersection of the two curves outside the singular points are the images of the curves ϱ^{3} which rest on c_{3} and on $c_{3}{ }^{\star}$. Accordingly through A_{1}, A_{2}, A_{3} there pass 28 curves which have b as bisecant and which cut four given straight lines; $P^{3} B v^{4}=28$. Consequently the surface Γ is of the degree 28.
4. The congruence contains still other composite configurations:
a. Any conic β^{2} in α through A_{1}, A_{2}, A_{3}, B forms a ϱ^{3} with any of the three lines $r(P Q)$ which rest on β^{2}, b, c_{1} and c_{2}. The lines r form a quadratic scroll $(r)^{2}$; to each r there corresponds one β^{2}. As (P) and (Q) are projective this system has as image the conic through the singular points L, M, S_{1}, S_{2} and S_{3}.
b. The conic $\gamma_{1}^{2},\left(A_{1} A_{2} A_{3} B C_{1}\right)$ is completed to configurations ϱ^{3} by any transversal r of b and c_{2} which rests on it. These lines form a cubic scroll $(r)^{3}$ of which b is the double directrix. The system $\left(\gamma_{1}^{2}, r\right)$ has as image the point range on $p_{0}(\S 2)$.

Analogously q_{0} is the image of the system $\left(\gamma_{2}{ }^{2}, r\right)$.
c. The conics $\delta_{1,1}^{2}$ through A_{2} and A_{3} which rest on b, on c_{1}, and on the transversal $t_{1,2}$ of b and c_{2} through A_{1}, form a cubic dimonoid with double points A_{2} and A_{3}. The line $t_{1,2}$ forms a ϱ^{3} with any $\delta_{1,1}^{2}$. This system has as image the point range on the ray $q_{1,2} \equiv M S_{1}$, which corresponds to the point of intersection of c_{2} and $t_{1,2}$.

There are five analogous systems; for we may interchange c_{1} and c_{2} and replace A_{1} by A_{2} or A_{3}.

The images of these systems are the point ranges on rays which may be indicated by $p_{1,1}, p_{2,1}, p_{3,1}$ and $q_{2,2}, q_{3,2}$.
d. The conics $\varepsilon_{1}{ }^{2}$ through A_{2} and A_{3} which cut b, c_{1} and c_{2}, form a dimonoid of the fourth degree with triple points A_{2}, A_{3}. To each $\varepsilon_{1}{ }^{2}$ the transversal t_{1} through A_{1} of b and $\varepsilon_{1}{ }^{2}$ is associated. Any ray of the plane pencil $\left(t_{1}\right)$ corresponds to three conics. As again (P) and (Q) are projective, the system $\left(\varepsilon_{1}{ }^{2}, t_{1}\right)$ has as image a conic through L, M and S_{0}.

Analogously there are the systems $\left(\varepsilon_{2}{ }^{2}, t_{2}\right)$ and $\left(\varepsilon_{3}{ }^{2}, t_{3}\right)$.
5. The degree of the surface $\Gamma(\S 3)$ may also be determined by the aid of the intersection of Γ with α. This contains in the first place the curve k^{3} which rests on $c_{3}(\S 1)$. Further the lines $a_{1}, a_{2}, a_{3}(\S 2)$, a conic $\beta^{2}(\S 4, a)$, which is triple, a $\gamma_{1}{ }^{2}$ and a $\gamma_{2}{ }^{2}(\S 4, b)$, which are likewise triple, and finally two conics β^{2} of which the completing lines r rest on c_{3}. Apparently the complete intersection is of the order 28.

On Γ there also lie 18 conics $\delta^{2}(\S 4, c), 21$ conics $\varepsilon^{2}(\S 4, d)$ and 3 conics ϱ^{2}, which are completed by $a_{1}, a_{2}, a_{3}(\S 2)$. Further Γ contains the 9 straight lines corresponding to the above mentioned conics $\beta^{2}, \gamma_{1}{ }^{2}, \gamma_{2}{ }^{2}$
and the 2 lines r resting on $c_{3}(\S 4, a)$; also the 6 lines $t_{k, l}(\S 4, c)$, which are triple, 3 lines $t_{k}(\S 4, d)$, likewise triple, and 12 single lines t_{k}.

The curves ϱ^{3} which have c_{1} as bisecant, lie on the quadratic surface defined by A_{1}, A_{2}, A_{3}, b and c_{1}. Each of the two points of intersection of this scroll with c_{2}, with each of the two points of intersection with c_{3}, defines a ϱ^{3} which belongs to the congruence and which cuts c_{1} twice. Hence Γ contains twelve cubic nodal curves.

The lines c are quadruple on $I^{\prime}(\S 3)$.
The intersection of Γ with the plane α_{1} (through A_{1} and b) consists of a $\varrho^{2}(\S 2)$, the triple lines $t_{1,1}$ and $t_{1,2}$ (§4.c), the triple line t_{1}, which rests on $c_{3}(\S 5, d)$, four rays t_{1}, which are single, and the line b. Consequently the line b is thirteen-fold on Γ.

The consideration of the intersection of I with the plane α readily shows that A_{1}, A_{2} and A_{3} are fourteen-fold points.
6. Let A_{4} be a point of c_{1}. The curves ϱ^{3} through the four points A_{k} which cut b twice and which rest on c_{2}, form a surface of the $4^{\text {th }}$ degree (§3). The intersection of this surface with the plane through three of the points A_{k} consists of two conics; hence the points A_{k} are double points.

Consequently through A_{4} there pass two curves of the $\left[\varrho^{3}\right]$ which cut a line g through A_{1} outside A_{1}. If A_{4} describes the line c_{1}, these two curves describe a surface which has a curve $\gamma^{4}\left(L^{2}, M^{2}\right)$ as image. For any ray p contains two image points besides L, and the images of the ϱ^{3} through $Q^{\star}(\S 2)$ lie in L. This surface contains two conics, which are represented in S_{2} and $S_{3}(\S 2) . \gamma^{8}\left(L^{4}, M^{4}\right)$ and $\gamma^{4}\left(L^{2}, M^{2}\right)$ have 14 points in common besides the singular points L, M, S_{2}, S_{3}; accordingly the line g cuts Γ in 14 points besides A_{1}. This again shows that A_{1}, A_{2} and A_{3} are fourteen-fold points.

[^0]: ${ }^{1}$) This well known number may be found in the following way by applying the principle of the conservation of the number. If the four points lie in a plane φ, in the first place the curve k^{3} satisfies the conditions which has the transit of b as double point and which rests on the two secants. Further the 3 given lines define a hyperboloid which has three more points in common with the conic in φ passing through the given points and resting on b. With the straight lines of the scroll through the said points of intersection this k^{2} forms three configurations p^{3}. Hence in the notation of SCHUBERT $P^{4} B \nu^{2}=4$.

