
Physics. - P . EHRENFEST and G. E . UHLENBECK : "On the connection 
of different methods of solution of the wave equation in multi
dimensional spaces" : 

(Communicated at the meeting of April 2i. 1926) , 

Introduction. 
The general equation for wave motion in space under the influence 

of an external force k (t. x y z ) : 

1 à2 s 
c2 àf - 6.s = k(t. xyz) 

has. wh en for t = - oo everything is at rest (S t =_ Oo =(~:}= _Oo=O)
the weil known solution. the retarded potential : 

r 
1 + 00 k(t -~. ~1J') 

s = 4n .I Ir . r d~d17dC . 
- 00 

The pecularities of this solution. especially its close connection to the 
th ree dimensional space. become apparent when we consider the analo
gous problem for the wave equation in multidimensional spaces : 

à2s ~ à2s 
àt2 - L àx\ = k(t. XI ' . . x n ) • (1) 

h = 1 

Various methods are available. but they all give the solution in very 
different analytical forms. whose identity unlike the case with three 
dimensions is not at once c1ear. In the following we will endeavour to 
show the connection and the identity of these solutions. I) The difference 
between spaces with an even and an odd number of dim·ensions will 
be especially brought to the front. 2) 

§ 1. Method of HERGLOTZ 3). 
Putting t = i w. in (1). then the latter is transformed to the equation 

of POISSON in n + 1 dimensions. Now the use of the known solution 
for this. suggests in our case the trial of : 

..(t.x, . . . x.) r(~ f~rd',d'. 2~J k(H. " ;;d.' dO . (2) 
2n2 2 _ 00 -oo i (r2-rF) 2 

as a solution. By transforming the integration path of the last integraI. 
we can write it without complex variables. Here enters the difference 
between spaces with even and odd numbers of dimensions. 



1281 

a. When n is odd (put n = 2p + 3). we transform the path of integration 
to a small circle round one of the poles {} = + r or {} = - r of the 
integrand. and obtain with the help of the theorem of residues the 
solution represented by a "retarded" or an "advanced" potential respec~ 
tively. In the first case for example : 

+ '" 

s(t. XI ... X2 p + 3) - --+-1- ... d~I ··· d~2p + 3 H 2p + 3 - r(P + I)[ f 
27TP 

, 

(3) 

- '" 
is obtained. where : 

H - 1 ~ (2p-/)! 1 k(l) (t-r. ~1 • •• ~n) 
2p + 3 - P ! ~ I! (p_/) ! . 22p- 1 + 1 r2p- 1 + 1 . 

o 
(4) 

b. When n is even (put n= 2q). we can no longer close the integration 
path. as {} = ± rare now also branching points. and we can only 
transform it to a loop round {} = + r or I} = - r. The real expressions can 
now be written with the help of the so called "partie finie" of an infinite 
integraI. as defined by HADAMARD.1) We obtain : 

where 
(-l)q 

H 2q= - 71- - (6) 

the bracket indicating the "partie finie" . This becomes then in ordinary 
symbols : 

(-I)qJ'''' {({}) - [{(rl + (1'f-r) ['(rl + ... + ~{}q r~~2 ((q-2) (r) l 
H 2q = - - . (7) 

7l r (1'f-r) q-t. 

where : 
k(t-{}) 

{({}) = ({) + r)q-t 

Remarks : 
1. If the solution for a certain n is known. th en the solution for 

n - 1 can always be found by the consideration of the cylindrical problem 
(the so called "methode de la descente" of HADAMARD). Formula (6) can 
be derived in this way from the solution (3). 

2. The application of this method to (2) gives the solution in one 
dimension lower again in exactly the same form. 

3. Still (2) and the transformations of the integration path indicated 
under a and b must only be considered as a heuristic method of arriving 
at the real expressions (3) and (5). which as can be shown are really 

83* 
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the solutions of our problem. It is difficult to give the exact meaning 
of (2) and the justifkation of the transformations. 

§ 2. .. Polarisationmethod". 5) 
Physically the solution of our problem can be represented as the 

superposition of all the .. spherical waves" excited in the various points 
of the phase space by the "force" k(t. XI ... X n)' It can be easily shown 5) 

that. in analogy to cp (t - r) for three dimensions. a solution of the equa-
r 

tion for spherical waves in (2 p + 3) dimensions is given by : 

(
1 d)P 

u2p + 3 = -;: ,)r 
cP (t-r) 

r 
(8) 

which at once suggests as a solution : 

+ 0:> 

f J " (1 d)P k(t-r. ~I .. . ~2p + 3) 
s(t. XI ... X2p + 3) = A 2p + 3~ ... del' .. dè2p + 3 -;: ,)r r (9) 

00 

Here A 2p + 3 is a constant. The solution is essentially limited to an 
odd number of dimensions. 

The identity of (9) and (3) can be shown as follows: 

Let: ( 
1 d)P k(t-r) 

P2p + 3 = ---;: dr -r-' 

From the definition of Hn: 

H3 = 2~i.r d~'} :~t ,:1 = ~ k(tr r)= ~ P 3 

and therefore 

(10) 

. (11) 

Equation (11) can also be derived by direct differentiation. H 2p + 3 

then being given by (4). From (3) and (11) th en follows the constant 
in (9): 

(12) 

§ 3. Method of RIEMANN-HADAMARD 6). 
This method starts from the identity of GREEN. and is therefore in 

many ways analogous to the usual method of solving POISSON's equation. 
Hence in our case it is actually not very different from the method of 
HERGLOTZ. except that now everything is kept real from the beginning. 
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HADAMARD, however, has applied it to much more general hyperbolic 
equations and boundary conditions. Specialising his results to our problem 
then: 

a) for an even number of dimensions (n = 2q) 7) : 

(- l)q + I r(q-t) J' J' 1 
s(t, XI'" X2q) = --2nq + t -- ... rq-t k(r, ~I" .~2q) d~l' .d~2qdr (13) 

T 

where: 

and T is the cone r= O. Putting t-r = {j, we get (5) and (6), i. e. the 
solution of HERGLOTZ for an even number of dimensions. 

b) for an odd number of dimensions (n = 2p + 3) 8) : 

s(t, XI .. . X2p + 3) = (;-~;:: I r ~'"o [!:J:. J' k(r, ~I .. . ~2p + 3) dO] (14) 

where 0 represents the surface of the hyperboloid: 

r = (t-r)2-r2 = r 
and the element do thereof is defined by: 

dodr= d~1 ... d~2p + 3 dl. 

Hence : 

d~1 .. . d~2p + 3 d~1 ... d~2p + 3 
do - - ----- - - ----''----= 

- 2(t-r) - 2 V r 2 + r 

r=t-Vr2+r 

- '" 

+'" 
(-l)p J' r ( b )P k(t-r) 

= 2p+ 2 n P + I • • J dçl ' " d~2p + 3 rtJr - r- ' 

-00 

We thus get the polarisationsolution (9). 

§ 4. Method of FOURIER~POISSON 9). 
From the identity of FOURIER, we have : 

+ '" + '" 

k(t, XI .. • x n) = (2~)nJ . JdV I ••• dl'~r . Jd~1 .. . d~neiLllh(Xh-~h)k(t, ~I • • ~n).(15) 
-00 
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Similarly we now put for the solution : 

s(t. XI ... x n ) = 

- 00 

where H(t . . .. Çl . .. çn. VI ... Vn) is an unknown function . Substituting (15) 
and (16) in (1). we get for H the equation: 

/J2H 
lJt2 + v2H = k(t. Çl •• • ; n) . (17) 

With the Iimiting values Ht=-oo=(àH) =0. we get: 
àt . t=- .. 

n 

wh ere v2= I v~. 
I 

t 

J' sin y(t-l ) 
H = dl V k(r' ;1 . . ';n)' 

as the solution of (17). 
This in (16) gives the required solution. lf we introduce polar coordinates 

into the l'~space . then we can easily perform all the integrations except 

those over the radiusvector }' and one angle 'Y [defined by cos 'Y = 0 = 

= ~ I Vh (Xh - ;h)J . Also putting t - l = il. then : . vr 
- + 00 

s(t. XI ' •• x n) = n- l ( + I)J .Jd;1 .. . d;n Fn 
2n-1 n tn + t r _n _ _ 

2 -00 

(18) 

where: 
00 00 I 

Fn Jdvvn-fdl't sin 1'1'tk(t-I}. ; 1 .. . ;nUd0(1_02)n-;-3 cos vro (19) 

o 0 0 

For an odd number of dimensions the identity of (18) with (3) and (4) 
can be shown by direct calculation of (19). For optional values of n the 
demonstration . of the identity with (2) can also be given (perhaps not 
mathematically irreproachable *)) as follows: The comparison of (2) with 
(18) and (19) shows. that we must demonstrate : 

+ ooi 

_I J' k(t-~ d {} = 
2n i (2 0.2)n-1 . r -lf 2 - 00 , I 

1 Joo Joo fl n- 3 \. = --- (n-l) dVl'n- 2 dl} sin Vl'tk(t-I'f) do (1-02
) 2 cos vro 

2n - 3 nr2 --2 0 0 0 

(20) 

*) In the transformations of the integration paths we have the same incertainties as in 
§ 1. (See remark 3). 
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We start Erom the identity (a > 0) : 

00 1 2n-3r2 (n-l) 
f j

" n-3 . 2 
dvvn-2e-~' da(1-a2) 2 cos Jlra = ----n-=l 

o 0 (r2 + a2)- 2-
(21 ) 

Now putting in (20) sin Vl~ = ~i (eiy~ - e I iy~), we can divide the right 

hand side into two integrals. Instead 
of the interval (0.00) we now take in 
the first integral for ,t} the path OAB, 

A Band in second the path OCD. Chang~ 
o ing in each integral the integration 

over 'f} with that over v, th en the 
c ~-----------]) resulting integrals are convergent and 

can be calculated by (21). Finally, by 
combining both integrals into one over 
the loop DCAB, (20) is demonstrated. 
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