Chemistry. - "Equilibria in systems, in which phases, separated by a semipermeable membrane". XVIII. By F. A. H. Schreinemakers.
(Communicated at the meeting of November 27, 1926).

Influence of the pressure on osmotic systems.
We take a system E_{P} (of one or more phases) under the pressure P. We bring this system, while its temperature and total composition remain constant, under the pressure $P+d P$. Then a new system $E_{P+d P}^{\prime}{ }^{\prime}$ arises, in which the phases can differ a little in composition with those of the first system; this difference in composition is defined by the value of $d P$.

In order to compare the $O . W . A$. of the two systems:

$$
E_{P} \quad E_{P+d P}^{\prime}
$$

we represent the total thermodynamical potential of the first system by Z and that of the second system by Z^{\prime}. We then have:

$$
\begin{equation*}
Z^{\prime}=Z+V d P \tag{1}
\end{equation*}
$$

in which V represents the total volume of system E under the pressure P. The O.W.A. of the first system is defined by:

$$
\begin{equation*}
\varphi=\frac{\partial Z}{\partial w} \tag{2}
\end{equation*}
$$

if viz. $\frac{\partial Z}{\partial w}$. δw represents the change of the thermodynamical potential, which the first system receives, if this takes in $\delta \boldsymbol{w}$ quantities of water. The O.W.A. of the second system now is:

$$
\begin{equation*}
\varphi^{\prime}=\frac{\partial Z^{\prime}}{\partial w}=\frac{\partial Z}{\partial w}+\frac{\partial V}{\partial w} \cdot d P . \tag{3}
\end{equation*}
$$

We now put:

$$
\frac{\partial V}{\partial w}=\Delta V_{E}
$$

Hence is apparent that $\triangle V_{E} . \delta w$ represents the change, which gets the total volume V of system E, if this takes in δw quantities of water. If we put further $\varphi^{\prime}=\varphi+d \varphi$ then (3) passes into:

$$
\begin{equation*}
d p=\triangle V_{E} \cdot d P \tag{4}
\end{equation*}
$$

by which the change of the $O . W . A$. is defined. We can also deduce (4) at once from (2) by differentiating this with respect to P.

As φ and the O.W.A. of a system change in opposite direction, we shall substitute in the following φ by $-\xi$; then the ξ and the O.W.A. of a system change in the same direction; then they become viz. at the same time larger or smaller. Consequently we may write instead of (2) and (4)

$$
\begin{equation*}
\xi=-\varphi=-\frac{\partial Z}{\partial w}\left(5^{a}\right) \quad d \xi=-d \varphi=-\triangle V_{E} \cdot d P \tag{b}
\end{equation*}
$$

It follows from $\left(5^{b}\right)$:
the O.W.A. of a system E becomes smaller on increase of pressure, if $\triangle V_{E}$ is positive, and larger if $\triangle V_{E}$ is negative.

If we indicate by an arrow the direction, in which the water diffuses, then we can express this in the following way:

$$
\begin{array}{ll}
\Delta V_{E}>0 & E_{P} \stackrel{\perp}{\leftarrow} E_{P+\Delta P} \\
\Delta V_{E}<0 & E_{P} \xrightarrow{\longrightarrow} E_{P+\Delta P} \tag{b}
\end{array}
$$

in which E_{P} represents the system under the pressure P and $E_{P+\triangle P}$ this same system under the pressure $P+\triangle P$, and in which $\triangle P$ is positive.

If both the systems E_{1} and E_{2} have the same O.W.A. under the pressure P, then we have the osmotic equilibruim :

$$
\left(E_{1}\right)_{P}\left(E_{2}\right)_{p}
$$

If we raise the pressure to $P+d P$ then both systems will have no more the same O.W.A.; that of the left system will increase with:

$$
d \xi_{1}=-\triangle V_{E_{1}} \cdot d P
$$

and that of the right system with:

$$
d \xi_{2}=-\triangle V_{E_{2}} \cdot d P
$$

If we take $\triangle V_{E_{1}}>\triangle V_{E_{2}}$ then, on increase of pressure, the $O . W . A$. of the right system becomes greater than that of the left system; consequently water will diffuse from left to right. We can represent this by:

$$
\begin{equation*}
\Delta V_{E_{1}}>\Delta V_{E_{2}} \quad\left(E_{1}\right)_{P+\triangle P} \xrightarrow{l}\left(E_{2}\right)_{P+\triangle P} \tag{b}
\end{equation*}
$$

in which $\triangle P$ is positive. Consequently we may say:
if we increase the pressure of an osmotic equilibrium, then the water diffuses in such direction that contraction of volume occurs.

We can deduce also in another way the influence of a change in pressure on the O.W.A. of a system. In previous communications (f.i. in Comm. VI) we have seen a.o. that the O.W.A. of a system E :
in which one or more liquids occur, is equal to the O.W.A. of each of those liquids;
in which by taking in - or losing a little water a liquid arises, is equal to the O.W.A. of this liquid ;
in which by taking in - or losing water a phases-reaction occurs, is equal to the O.W.A. of a liquid with which that system can be in equilibrium.

The same is true also for systems with a vapour or for those which can be in equilibrium with a vapour.

If we represent the composition of the liquid or vapour, abovementioned, by:

$$
\begin{equation*}
x X+y Y+z Z+\ldots+(1-x-y-z \ldots) W \tag{a}
\end{equation*}
$$

or f.i. by:

$$
\begin{equation*}
w W+x X+y Y+\ldots+(1-w-x-y \ldots) Q \tag{b}
\end{equation*}
$$

in which X, Y etc. (except W) may be components or composants, then the O.W.A. of the system E is, therefore, defined by:

$$
\begin{gather*}
\xi=-\varphi=-\zeta+x \frac{\partial \zeta}{\partial x}+y \frac{\partial \zeta}{\partial y}+\ldots \tag{9a}\\
\xi=-\varphi=-\zeta-(1-w) \frac{\partial \zeta}{\partial w}+x \frac{\partial \zeta}{\partial x}+y \frac{\partial \zeta}{\partial y} . \tag{b}
\end{gather*}
$$

If we bring the system E from the pressure P to $P+d P$ then the O.W.A. of this system changes with:

$$
\begin{equation*}
d \xi=\frac{\partial \xi}{\partial P} \cdot d P+\frac{\partial \xi}{\partial x} \cdot d x+\frac{\partial \xi}{\partial y} \cdot d y+\ldots . \tag{10}
\end{equation*}
$$

It now depends on the number of freedoms of the system E whether $d x d y$ etc. are completely defined by the change in pressure $d P$; if this is not the case, then we can put still different conditions, which must be satisfied by the changes of the system.

In order to apply those general considerations to some simple cases, we take the systems:

$$
\begin{equation*}
E=G\left(11^{a}\right) \quad E=L . \tag{b}
\end{equation*}
$$

which consist each of one phase only; the change of the O.W.A. at a change of pressure is defined by (5^{b}). For system (11 $) \triangle V_{E} . \delta w$ now represents the increase of volume, which gets one quantity of vapour, if this takes in $\delta \boldsymbol{w}$ quantities of water; for system (11^{b}) it is the increase of volume if one quantity of liquid takes in δw quantities of water. This increase of volume is positive for vapours and also in general for liquids, excepted in the special case that the contraction occurring with the mixture would be still greater than the volume of the taken δw quantities of water. In the following, unless the opposite is precisely said, we shall take this increase of volume positive. We then find:
the O.W.A. of a vapour and that of a liquid becomes smaller on increase of pressure and larger on decrease of pressure.

In the osmotic systems:

$$
\begin{equation*}
G_{P} \stackrel{\perp}{\leftarrow} G_{P+\triangle P}\left(12^{a}\right) \quad L_{P} \stackrel{\perp}{\leftarrow} L_{P+\triangle P} \tag{b}
\end{equation*}
$$

the water diffuses, therefore, in the direction of the arrows [compare also system ($\left.6^{a}\right)$].

In order to express the change in volume $\triangle V_{E}$, mentioned above, we take a vapour G or liquid L of the composition:

$$
\begin{equation*}
x M o l X+y M o l Y+(1-x-y) M o l W \tag{13}
\end{equation*}
$$

with the volume V. If we mix this with $\delta \omega$ quantities of water, then arise $1+\delta w$ quantities of a new vapour or liquid, which differs infinitely little ($d x$ and $d y$) in composition from the original. Consequently we have:

$$
\begin{equation*}
\triangle V_{E} \cdot \delta w=(1+\delta w)\left(V+x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}\right)-V \tag{14}
\end{equation*}
$$

For $d x$ and $d y$ we find:
$d x=\frac{x}{1+\delta w}-x=\frac{-x \cdot \delta w}{1+\delta w} \quad d y=\frac{y}{1+\delta w}-y=\frac{-y \cdot \delta w}{1+\delta w}$.
If we substitute those values in (14), then follows:

$$
\begin{equation*}
\Delta V_{E}=V-x \frac{\partial V}{\partial x}-y \frac{\partial V}{\partial y} \tag{16}
\end{equation*}
$$

the second part of which in the case of a vapour, which follows the gas-laws, passes into the volume V of that vapour.

We are able to deduce this also in the following way, The O.W.A. of a vapour or liquid (13) is defined by:

$$
\begin{equation*}
\xi=-p=-\zeta+x \frac{\partial \zeta}{\partial x}+y \frac{\partial \zeta}{\partial y} \tag{17}
\end{equation*}
$$

Hence follows, in connection with the value of $\triangle V_{E}$ from (16):

$$
\begin{equation*}
d \xi=-\triangle V_{E} d P+(r x+s y) d x+(s x+t y) d y \tag{18}
\end{equation*}
$$

If we keep constant the composition of this vapour or liquid, so that $d x$ and $d y$ are zero, then (18) passes into (5^{b}).

As we can give still arbitrary values to $d x$ and $d y$ in (18), we choose them in such a way, that the new system E^{\prime} arises from E by taking in or losiag a little water. We then have to put:

$$
\begin{equation*}
d x: x=d y: y=d \lambda \tag{19}
\end{equation*}
$$

so that $d \lambda$ is positive if the liquid or vapour loses water. With the aid of (19) now (18) passes into:

$$
\begin{equation*}
d \xi=-V_{E} d P+\left(r x^{2}+2 s x y+t y^{2}\right) d \lambda \tag{20}
\end{equation*}
$$

We define the system E^{\prime} in such a way that its $O . W$. A. under the pressure $P+d P$ is equal to that of system E under the pressure P. As then $d \xi$ must be zero, follows from (20)

$$
\begin{equation*}
d \lambda=\frac{V_{E}}{r x^{2}+2 s x y+t y^{2}} d P \tag{21}
\end{equation*}
$$

in which the denominator, as long as we consider stable states, is positive. As, therefore, $d \lambda$ and $d P$ have the same sign, it follows:
if we increase the pressure of a liquid or vapour with a definite amount $d P$, then this must lose a definite quantity of water, in order to keep the same O.W.A.

We take a liquid cof fig. 1 under the pressure P; all liquids, which have under this same pressure the same O.W.A. as this liquid L_{c} are situated on the isotonic curve acb going through point c. If we take the same liquid L_{c} under a pressure $P+d P$, then all liquids which have the same $O . W . A$. under this pressure $P+d P$ as L_{c}, will be situated also on an isotonic curve $a_{1} c b_{1}$ going through point c, which curve, as follows from the previous considerations, does not coincide with acb.

If we take viz. an arbitrary liquid q of curve $a c b$, then this is isotonic with L_{c} under the pressure P; consequently we have the osmotic equilibrium :

$$
\begin{equation*}
\left(L_{c}\right)_{p}\left(L_{q}\right)_{p} \tag{22}
\end{equation*}
$$

If we represent the increase of volume of the liquids L_{c} and L_{q} when

Fig. 1. taking in δw quantities of water, by $\triangle V_{c}, \delta w$ and $\triangle V_{q} . \delta w$, then, if we bring the pressure of (22) to $P+d P$, the O.W.A. of the left system increases with $-\triangle V_{c}$. . $d P$ and that of the right system with $-\triangle V_{q} \cdot d P$. As $\triangle V_{c}$ and $\triangle V_{q}$ are differentin general, L_{c} and L_{q} are no more isotonic, therefore, under the pressure $P+d P$. The isotonic curve of the pressure $P+d P$ which goes through the point c must be therefore, an other than that of the pressure P.
We are able to show this also in the following way. For the osmotic equilibrium (22) is true:

$$
\begin{equation*}
\left(\zeta-x \frac{\partial \zeta}{\partial x}-y \frac{\partial \zeta}{\partial y}\right)_{c}=\left(\zeta-x \frac{\partial \zeta}{\partial x}-y \frac{\partial \zeta}{\partial y}\right)_{q} \tag{23}
\end{equation*}
$$

For an osmotic equilibrium :

$$
\begin{equation*}
\left.\left(L_{c}\right)_{P+d P}\right|_{\left(L_{q}^{\prime}\right)_{P+d P} P} \tag{24}
\end{equation*}
$$

in which L_{q}^{\prime} represents a liquid, which differs infinitely little ($d x$ and $d y$) from L_{q} then follows from (23):

$$
\begin{equation*}
\Delta V_{c} \cdot d P=\Delta V_{q} \cdot d P-(r x+s y)_{q} d x-(s x+t y)_{q} d y \tag{25}
\end{equation*}
$$

If we choose L_{q}^{\prime} in such a way that it is represented by a point q^{\prime} (fig. 1) on the line $W q$ then $d x$ and $d y$ satisfy (19); (25) now passes into:

$$
\begin{equation*}
\left(r x^{2}+2 s x y+t y^{2}\right)_{q} d \lambda=\left(\triangle V_{q}-\triangle V_{c}\right) \cdot d P \tag{26}
\end{equation*}
$$

$\left(\triangle V_{q}-\triangle V_{c}\right) \delta \boldsymbol{w}$ is the change in volume if $\delta \boldsymbol{w}$ quantities of water diffuse from L_{c} towards L_{q}. As in general this change is not zero, $d \lambda$, therefore, has a value, different from zero. If $d \lambda$ is positive, then point q^{\prime} is situated as is drawn in fig. 1.

If L_{q} proceeds along the curve $a c b$, then the value of $\triangle V_{q}-\triangle V_{c}$ changes; if q coincides with c, then this value is zero of course. If we take this value positive, if q is situated between a and c and negative if q is situated between c and b, then we can represent the isotonic curve of the pressure $P+d P(d P>0)$ by $a_{1} c b_{1}$. For small values of $d P$ those curves $a c b$ and $a_{1} c b_{1}$ have the same direction with approximation in the point c.

Above we have seen that both the liquids of (22) are no more in equilibrium with one another under a pressure $P+\triangle P$. If we keep constant the total composition, then, as we have deduced already above in general for system $\left(7^{a}\right)$ in $\left(7^{b}\right)$, the water will diffuse under the pressure $P+\triangle P$ in such direction that the total volume decreases. If we take $\Delta V_{q}>\Delta V_{c}$ then a little water must diffuse, therefore, from L_{q} towards L_{c}; we shall represent this, just as in $\left(7^{b}\right)$ by:

$$
\begin{equation*}
\Delta V_{q}>\Delta V_{c} \quad\left(L_{c}\right)_{P+\triangle P} \stackrel{\perp}{\leftarrow}\left(L_{q}\right)_{P+\Delta P} . \tag{27}
\end{equation*}
$$

Under the pressure $P+\triangle P$ a new osmotic equilibrium:

$$
\begin{equation*}
\left(L_{c}^{\prime}\right)_{P+\triangle P} \quad\left(L_{q}^{\prime}\right)_{P+\triangle P} \tag{28}
\end{equation*}
$$

is formed, therefore.
If we represent the liquids of this latter osmotic equilibrium in fig. 1 by c^{\prime} and q^{\prime}, then the line $q^{\prime} c^{\prime}$ must go through the point (situated on the line $c q$) which represents the complex of the liquids L_{q} and L_{c}. The position of the points q^{\prime} and c^{\prime} depends, therefore, not only on the value of $d P$, but also on the ratio of the quantities of the two liquids. We can deduce this also as follows.

For the osmotic equilibrium (22) equation (23) is valid; for an osmotic equilibrium (28), of which pressure and composition of the liquids differ a little from (22) then is valid:

$$
\left.\begin{array}{rl}
\Delta V_{c} \cdot d P-\cdot & (r x+s y)_{c} \cdot d x_{c}-(s x+t y)_{c} \cdot d y_{c}= \tag{29}\\
=\Delta V_{q} \cdot d P-(t x+s y)_{q} \cdot d x_{q}-(s x+t y)_{q} \cdot d y_{q}
\end{array}\right\}
$$

In our case we have to define in such a way the changes of the concentrations: $d x_{c}$ etc., that $L^{\prime}{ }_{c}$ arises from L_{c} by taking in δw quan-
tities of water and $L^{\prime}{ }_{q}$ from L_{q} by giving $\delta \boldsymbol{w}$ quantities of water (δw positive or negative). If there are n quantities of L_{c} and m quantities of L_{q} then we find:

$$
\left.\begin{array}{ll}
d x_{\mathrm{c}}=-\frac{x_{c}}{n} \cdot \delta w & d y_{\mathrm{c}}=-\frac{y_{c}}{n} \cdot \delta w \\
d x_{q}=+\frac{x_{q}}{m} \cdot \delta w & d y_{q}=+\frac{y_{q}}{m} \cdot \delta w
\end{array}\right\}
$$

If we substitute those values in (29) and if we put:

$$
\left(x^{2} r+2 x y s+y^{2} t\right)_{c}=K_{c} \quad\left(x^{2} r+2 x y s+y^{2} t\right)_{q}=K_{q}
$$

then follows:

$$
\begin{equation*}
\left(\frac{K_{\mathrm{c}}}{n}+\frac{K_{q}}{m}\right) \delta w=\left(\triangle V_{q}-\triangle V_{\mathrm{c}}\right) d P \tag{31}
\end{equation*}
$$

so that δw has the same sign as $d P$. In accordance with (27) we find, therefore, that for positive values of $d P$ the water diffuses from L_{q} towards L_{c}, (31) defines, however, also δw and in accordance with (30), therefore, also $d x_{\mathrm{c}}$ etc., as function of the quantities n and m of both the liquids.

If we take infinitely large the quantity of L_{c} in (22) then its composition rests unchanged when taking in $\delta \boldsymbol{w}$ quantities of water; equilibrium (28) then is the same as (24). As n becomes infinitely large, $K_{c}: n$ in (31) becomes zero, therefore, and as $\delta w: m$ in (31) is equal to $d \lambda$ in (26), then (31) passes into (26).

In the osmotic equilibrium

$$
\begin{equation*}
(W)_{P}:\left(L_{1}\right)_{P_{1}} \quad \text { (fig. 1) } \tag{32}
\end{equation*}
$$

we find at the left side of the membrane pure water under the pressure P and at the right side of the membrane a liquid L_{1} under the pressure P_{1}. In this special case, therefore, $\pi=P_{1}-P$ is the osmotic pressure of the liquid L. The osmotic equilibrium (32) is defined by:

$$
\begin{equation*}
\left(\zeta_{W}\right)_{P}=\left(\zeta_{1}-x_{1} \frac{\partial \zeta_{1}}{\partial x_{1}}-y_{1} \frac{\partial \zeta_{1}}{\partial y_{1}}\right)_{P_{1}} \tag{33}
\end{equation*}
$$

If we consider stable states only: then we can show in a similar way as f.i. in communication I that (33) can be satisfied only if $P_{1}>P$. We now give a definite value to both pressures; then it follows from (33) that the liquids L_{1} of (32) are represented by a curve, f. i. curve $w_{1} v_{1}$ in fig. 1.

As under this pressure P_{1} all liquids of the region $W w_{1} v_{1}$ have a smaller O.W.A. than the liquids of curve $w_{1} v_{1}$ under this same pressure P_{1} and as those of the region $w_{1} v_{1} X Y$ have a greater $O . W . A$ than the liquids of curve $v_{1} w_{1}$, it follows, therefore:
under a pressure $P_{1}>P$ all liquids
of curve $w_{1} v_{1}$ have the same.
of region $W \omega_{1} v_{1}$ have a smaller,
and of region $w_{1} v_{1} X Y$ have a greater,
O.W.A. than that of pure water under the pressure P.

If we take, therefore, the osmotic systems:

$$
\begin{equation*}
(W)_{P} \stackrel{1}{\leftrightarrows}\left(L_{m}\right)_{P_{1}} \quad(W)_{P} \stackrel{\perp}{\leftarrow}\left(L_{n}\right)_{P_{1}} \quad \text { (fig. 1) } \tag{34}
\end{equation*}
$$

then in the first system the water diffuses from the pure water towards the liquid; in the second system, however, water diffuses from the liquid towards the pure water; the liquids m and n move in fig. 1 , therefore. in the direction of the arrows, till they reach curve $w_{1} v_{1}$ (if in the first of those systems a sufficient quantity of pure water is present). Then the systems (34) pass into the osmotic equilibria:

$$
\begin{equation*}
(W)_{P}\left(_{m_{1} 1}\right)_{P_{1}} \quad(W)_{P} \quad\left(L_{n_{1}}\right)_{P_{1}} \quad \text { (fig. 1). } \tag{35}
\end{equation*}
$$

We now take in fig. 2 , in which $w_{1} v_{1}$ represents the corresponding curve of fig. 1 , a liquid L of curve $a b$. If $a b$ is an isotonic curve of the pressure P, then all liquids of this curve $a b$ have the same O.W.A. under the pressure P. If we replace in (32) the pure water by this liquid L, then an osmotic equilibrium:

$$
\begin{equation*}
(L)_{P}{ }_{\left(L_{1}\right)_{P_{1}}} \tag{36}
\end{equation*}
$$

arises, in which of course the liquids L_{1} now must have an other composition than in (32). As the O.W.A. of the liquids of curve $a b$ under the pressure P is greater than that of the pure water under this same pressure, curve $a_{1} b_{1}$ which represents the liquids L_{1} of (36) must be situated in fig. 2 further from the point W than curve $w_{1} v_{1}$.

Every arbitrary liquid L of curve $a b$ has, therefore, under the pressure

Fig. 2.
P the same O.W.A. as every arbitrary liquid of curve $a_{1} b_{1}$ under the pressure P_{1}; we may call those curves $a b$ and $a_{1} b_{1}$ conjugated isotonic curves of the pressures P and P_{1}. The same is true for the curves $c d$
and $c_{1} d_{1}$, for ef and $e_{1} f_{1}$ etc. Consequently we find in fig. 2 a.o. the osmotic equilibria:

$$
\begin{array}{l:ll:ll}
(W)_{P} & \left(L_{l}\right)_{P_{1}} & \left(L_{a}\right)_{P} & \left(L_{a_{1}}\right)_{P_{1}} & \left(L_{a}\right)_{P}\left(L_{b_{1}}\right)_{P_{1}} \\
\left(L_{g}\right)_{P} & \left(L_{h}\right)_{P_{1}} & \left(L_{q}\right)_{P} & \left(L_{d_{1}}\right)_{P_{1}} & \left(L_{k}\right)_{P}
\end{array}\left(L_{f_{1}}\right)_{P_{1}}
$$

If we consider two conjugated isotonic curves of the pressures P and P_{1} f.i. the curves $c d$ and $c_{1} d_{1}$ then follows from this:
under a pressure $P_{1}>P$ all liquids
of the isotonic curve $c_{1} d_{1}$ have the same
of the region $W c_{1} d_{1}$ have a smaller
and of the region $c_{1} d_{1} X Y$ have a greater
O.W.A. than the liquids of curve $c d$ under the pressure P.

Hence follows that in the osmotic system:

$$
\begin{equation*}
\left(L_{g}\right)_{P} \xrightarrow{l}\left(L_{m}\right)_{P_{1}} \quad \text { (fig. 2) } . \tag{37}
\end{equation*}
$$

the water must diffuse from left to right. It now depends on the ratio of the quantities of both liquids on which conjugated isotonic curves the equilibrium will be formed. If this is the case f.i. on the curves ef and $e_{1} f_{1}$ then is formed the osmotic equilibrium :

$$
\begin{equation*}
\left(L_{g}^{\prime}\right)_{P}:\left(L_{m}^{\prime}\right)_{P_{1}} \quad \text { (fig. 2) } \tag{38}
\end{equation*}
$$

in which the left liquid in fig. 2 is represented by the point of intersection of the line $W g$ with curve ef and the right liquid by the point of intersection of $W m$ with $e_{1} f_{1}$.

This conversion of (37) into (38) is possible, of course, only then, when the complex of the liquids L_{g} and L_{m} is situated within the region eff e_{1}; if this is not the case, then the system (37) also can not be formed on the curves ef and $e_{1} f_{1}$.

We now take the osmotic systems:

$$
\left.\begin{array}{lll}
\left(L_{g}\right)_{P} & \left(L_{g}\right)_{P} & \left(L_{q}\right)_{P} \tag{39}\\
\left.\left(L_{q}\right)_{P} \xrightarrow{\longrightarrow}\left(L_{q}\right)_{q}\right)_{P} & \left(L_{q}\right)_{P} \leftarrow\left(L_{n}\right)_{P}
\end{array}\right\} \text { (fig. 2) }
$$

in which in all at the left side of the membrane the liquid L_{g} is present; the pressure is equal on both sides of the membrane, viz. P. It appears from fig. 2 that both the first systems then form osmotic equilibria, in the third system the water diffuses towards the right and in the last system towards the left.

If, however, we bring at the right side of the membrane the pressure from P to P_{1} then all liquids, at the right side of the membrane are situated within the region $W c_{1} d_{1}$ of fig. 2 ; consequently they have all a smaller $O . W$. A. than the liquid L_{g} under the pressure P. Instead of (39) we then get the systems:

$$
\left.\begin{array}{ll}
\left(L_{g}\right)_{P} \stackrel{1}{\leftarrow}\left(L_{g}\right)_{P_{1}} & \left(L_{g}\right)_{P} \underset{\leftarrow}{\leftarrow}\left(L_{q}\right)_{P_{1}} \tag{40}\\
\left(L_{g}\right)_{P} \underset{\leftarrow}{\leftarrow}\left(L_{l}\right)_{P_{1}} & \left(L_{g}\right)_{P} \underset{\leftarrow}{\leftarrow}\left(L_{n}\right)_{P_{1}}
\end{array}\right\} \text { (fig. 2). }
$$

in which the water diffuses towards the left. If the ratio of the quantities of both liquids in each of those systems is chosen in such a way, that the equilibrium is formed on the conjugated isotonic curves $a b$ and $a_{1} b_{1}$, then the left liquid is represented by the point of intersection of the line $W g$ with curve $a b$; the right liquids are represented by the points of intersection of the lines $W g, W q, W l$ and $W n$ with curve $a_{1} b_{1}$.

We now take the osmotic equilibrium :

$$
\begin{equation*}
(G)_{P} \quad\left(G_{1}\right)_{P} \tag{41}
\end{equation*}
$$

in which on both sides of the membrane a vapour under the pressure P. If we bring the pressure on both sides of the membrane to $P+\triangle P$, then [comp $\left(7^{a}\right)$ and $\left(7^{b}\right)$] the water must diffuse in such direction, that the total volume decreases. If, however, those vapours, follow the gaslaws, then the total volume does not change at diffusion of water, consequently (41) passes, without diffusion occurs, into the osmotic equilibrium,

$$
\begin{equation*}
(G)_{P+\triangle P}:\left(G_{1}\right)_{P+\triangle P} . \tag{42}
\end{equation*}
$$

This appears still also as follows. In the previous communication we have seen that two vapours are in osmotic equilibrium, when the partial vapour-pressure of the water-vapour is equal in both. If this is the case under the pressure P then this is also the case under the pressure $P+\triangle P$; if (41) is an osmotic equilibrium, then (42) it is also, therefore.

At last we still consider the osmotic equilibrium :

$$
\begin{array}{l:l}
G_{P} & L_{P} . \tag{43}
\end{array}
$$

We now imagine that fig. 1 (XVII) is valid for this pressure P; then the vapour G is represented by a point of the gas-branch and the liquid L by a point of the liquid-branch of an isotonic curve; if, therefore, G is represented by a point f.i. of curve hc then L is situated anywhere on curve $c_{1} l_{1}$.

We now bring the pressure of (43) to $P+\triangle P$ and we take $\triangle P$ positive; we then get the osmotic system:

$$
\begin{equation*}
G_{P+\triangle P} \xrightarrow{\mathrm{l}} L_{P+\triangle P} \tag{44}
\end{equation*}
$$

in which both the phases have no more the same O.W.A. That of the left system decreases viz. with $\triangle V_{G} . \triangle P$ and that of the right system with $\triangle V_{L} . \triangle P$ and as in general we may assume that $\triangle V_{G}>\triangle V_{L}$, the right system has a greater O.W.A. than the left, therefore. Consequently the water diffuses in (44) in the direction of the arrow. This follows also, when applying the rule, that the water on increase of pressure diffuses in such direction that the total volume decreases.
(To be continued).

