
Physics. - Investigations on the free energy of a mixture of ions. 
By H . A. KRAMERS. (Communicated by Prof. P. EHRENFEST). 

(Communicated at the meeting of December 18, 1926). 

J. Statement of the problem. Main results. 
In 1923 DEBYE and HUECKEL 1) published a simple and elegant method 

of calculating the influence of the electrostatic forces acting between the 
ions in the solution of an electrolyte. They arrived at the result that 
the free energy 1; of a solution is decreased on account of the electro~ 
static forces by an amount which. for sufficiently small concentrations, 
can be represented by: 

6. t.= _ ~ !:'Ii z~ e2 
" __ 1_. 

- i 3 D 1 +" al 
(1 ) 

In this formula NI'" N s denote the numbers in which ions of 
the kind 1 .... i ... s are present in the solution; while Zi e is the 
charge (e = elementary quantum of electricity) and ai an "effective" 
radius belonging to an ion of the i th kind. D is the dielectric constant 
of the solvent and finally. " is a quantity of the dimensions of a reciprocal 
length. def1ned by: 

(2) 

In this formula T is the absolute temperature. k BOL TZMANN's constant 
and ni the number of ions of the kind i per cm3• 

Imagining the ions as spheres of radius ai plunged in a continuous 
medium of dielectric constant D. we can. by means of the methods of 
statistical mechanics. establish an exact expres sion for 6.1; in the form 
of a definite integral in which the integration has to be extended over 
the coordinates of every ion in the solution 2) : 

6; E 

VN e- kT =f .. . fe- kT dXI dYI dZI ... dZN (3) 

Here E denotes the electrostatical energy (if D depends on temperature. 
the electrostatical free energy) of a given configuration of the ions in 
the solution: 

(4) 

I) Phys. Zs. 2., 185, 1923. 
2) Comp. W. GIBBS. Principles in statistical mechanics, p. 33, form. 92, and Chapter XIV. 
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Ek and El denote the charges of the k'th and ['th ion, while rkl is the 
distance between these ions. The integration variables XI"" ZN in (3) 
are the cartesian coordinates of the ions, and the integration has to be 
extended over all possible configurations in the total volume V. The 
fact that E is a homogeneous function of the coordinates of the degree 
- 1 involves (at any rate if the influence of radii of the ions may be 
neglected) that the value of ,6. (I T for a mol of the solved substance 
depends on the temperature Tand on the concentration n = Ini in the 
form of a function of n/T3. I) 

The explicit calculation of ,6. ( by means of (3) meets with mathema~ 
tical difficulties, mainly due to the fact that the ordinary method, develop~ 
ment in decreasing powers of T, does not give a series the first terms 
of which suffice. In the case wh ere the ionic radii are very smalI. the 
terms of that series become very large. although a simple consideration 
shows 2) that for sufficiently sm all concentrations ,6.( converges asymptotic~ 
ally to a function which does not depend on these radii. This property 
is clearly expressed in the formula (1) of DEBYE and HUECKEL. If we 
take the radii exactly equal to zero, however, the integral (3) diverges; 
the model involves in that case that the positive and negative ions will , 
in the state of equilibrium. be groupwise associated. 

Starting from formulae equivalent to (3). MILNER, in 1912, tried by 
long numeri cal calculations to find the values of ,6. ( for very small 
ionic radii. He introduced several approximations which were difficult to 
control. and as regards their practical applicability his results fall short 
of DEBYE'S and HUECKEL's 3) elegant formulae. 

DEBYE and HUECKEL do not start from the integral (3) but they apply 
an ingenuous artifice. They consider the statistical distribution of the 
ions surrounding a definite ion land establish a partial differential 
equation which the mean potential at a distance r from I must obey. 
This method. however. could only give a first approximation. One might 
especially suspect that for not too small concentrations the distribution 
in the nearest neighbourhood of I is not accounted for with sufficient 
exactness. 

In the next chapter we shall. starting from the methods of statistical 
mechanics, try to determine the influence of the electrostatic forces as 
far as it does not depend on the ionic radii, i.e. for small radii. For 
small concentrations we refind the expression of DEBYE and HUECKEL. 
For larger concentrations, however, we find peculiar deviations. Thus 
our formulae seem to show that a state of statistieal distribution of the 
ions whieh is independent of the atomie radii and which is established 

I) O. KLEIN. Medd. fr. K . Vet. Nobelinstitut, 5, 1919. See also p. 148 of this article. 
2) S. R. MILNER, Phil. Mag. 23, 551, 1912, and especially N . BJERRUM, Copenhagen 

Academy, Mat. fys . Medd. 7. 9. 
3) Compare what MILNER himself states about it in NONHEBEL and HARTLEY. Phil. 

Mag. 7 2. 586. 1926. 
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if from the random distribution at very small concentrations we pass to 
larger concentrations can only be realised below a certain maximum 
concen~ration. For an electrolyte of the KCI type in water at 15° C. 
th is concentrations corresponds to about 0.03 mol. KCI per litre. The 
consequences of this seem to be 1. that. conforming with DEBYE' s and 
HUECKEL'S results. a description of the phenomena in which the radii 
are neglected, is only possible at extremely small concentrations. and 
2. that is useless. for higher concentrations. to apply DEBYE'S and 
HUECKEL's I) formulae as a correction factor. 

II. Calculation of the free energy. 

As our starting point we choose a canonical ensemble of a more 
general type than that on which (3) was based. A sample of the latter 
was specified by definite positions of the centres of the N ions in the 
volume V, each ion carrying its corresponding charge. Our generalized 
ensemble. however. will be such that. for a given configuration of the 
centres of the N ions. the charge on the kth ion may still assume any 
value of which the charge of an arbitrary ion in the solution is capable. 
The chance that an arbitrary ion belongs to the kind i is expressed by 
the fraction Ni/N. We will therefore allow NN samples of our ensemble 
to correspond w ith a given configuration of the ions in the volume 
under consideration, in such a way that for given charges of the ions 
1. 2 .. .. k - 1. k + 1 . . .. N . there will be N i samples in which the 
kth ion carries the charge Zi e. i taking the values 1 . .. . s. Our ensemble 
forms th us a part of the so~called grand~ensemble introduced by GIBBS 2). 
namely that part for which the number of ions in V just equals N. 

If now we proceed to calculate mean values in our generalised ensemble ' 
we must remember that the integrals over all possible configurations of 
the N ions will diverge if the radii are taken infinitely small. This 
difficulty may be met in two ways. We may in the first place assume 
the radii to be finite (method A). In th at case the extension over which 
the variabeles XI • • • • Z N are to be integrated will depend on the charges 
attributed to the ions. Formally all configurations of the centres of the 
N ions are permissible if we add to the energy expression (4) a function 
which becomes infinite if the centres of two ions with charges ei and ej 

are nearer to each other than ai + aj . Only if all the radii a i were 
equal it would be permissible for all samples of the ensemble. to integrate 
over the same extension in the XI •• • ZN space. 

In the second place (method B) we might apply a less physical 
treatment. not comparing the ions to solid spheres. but modifying the 

1) For the literature compare F. HUECKEL, Zur Theorie der Elektrolyte, ' Ergebnisse der 
exakten Naturwissenschaften JII, 1925. 

2) Principles in statistical mechanics. eh. xv. See especially p. 190. The quantities I"; 

of GIBBS are in our terminology equal to kT log N J N . 

10* 



148 

expression (4) in another way. This may be done so that the integrals 
representing the mean values over all configurations no longer diverge 
but that at the same time the property of the energy to be a homogeneous 
function of the coordinates of the degree - 1 is preserved. For this 
purpose we may choose for the energy function: 

where gkl is equal to 

1 
gkl = - (1 - e-}'hkl). 

rkl 
h2 _ ~_ (Xk - Xl)2+ (Yk - yr)2+ (Zk - Zr)2 

- 4 R~l - (Xk + Xl)2+ (Yk + Yl)2+ (Zk + Zl)2 

(5) 

(6) 

If the origin of the system of coordinates is taken somewhere outside 
the vessel so th at Rkl is always of the order of magnitude of the linear 
dimensions of the vessel (d ~VI/, ). À. can always be taken sa large that 
the energy expression (5) practically coincides for all configurations with 

(4) . Deviations will only occur if }, ~ is of the order 1 or smaller. As 

the mean distance of two neighbouring ions is of the order dn- I
/ , we 

need only take À. of the order n l
/, or n"/' 1). 

We wil! now replace the expression (3) for 6 C by the mean value 
over our generalised ensemble: 

6 Ç E ' 

VN e - kT = J . .. J N-N ~ e- kT dXl . .. dZN (7) 

Here ~ den ot es the summation over the NN samples corresponding 
to a given conflguration. The considerations of KLEIN cited above will 
now hold exactly if the method B is assumed. whereas they will hold 
approxiniately if A is applied. In fact if every coordinate is multiplied. 
by an arbitrary factor {. and if. at the same time. the temperature is 
chosen f times smaller. the value of the exponent in (7) does not change. 
From this it follows that. by the introduction of the factor {. the value 
of integral has been multiplied by f3N since the volume of the vessel has 
become f3 times as large. If we remember. moreover. that for N sufficiently 
large and for a given concentration n (= number of ions in unit volume) 
the integral in (7) wil! depend on N only in the form of an Nth power 
(this holds exactly with method A. but approximately with method B). 
we see that (7) can be written in the form: 

(8) 

The deduction shows that this result under all circumstances stands 
as an approximation. which can be applied only as far as a statistical 

1) The occurrence in (5) of Rkl' the distance of the geometrical centre of two ions from 
the origin. means that th is centre is attracted towards. or repelled from, the origin. Only 
for a pair of ions which !ie very near to each other (r kl- Rkl / Ä) and which for small 
concentrations are very rare. will these forces have a perceptible inlluence. 
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distribution of the ions exists, whi<:h does not depend on the ionic radii. 
We will now transform the integrand in (7). 
We consider the expression (5) for E' as aquadratic function of the 

N variables EI' E2 . . . l'.N, and we imagine this function to be given the 
canonical form by a so-called " transformation of principal axes": 

E'- 1 _I/ Nb 2 - D ~ I Ek EI gkl- 2 f mYm. (9) 

The quantities bm are the roots of the following equation of the NIh 

degree: 

~ (b)=O, (10) 

~ being a determinant I ~kll of the order N, the diagonal terms of 
which are equal to b whereas the other terms are given by ~kl ~ -gkljD' 
Let the relation between the E'S and the y's be represented by : 

(11) 

the coefficients Ymk obeying the weIl known conditions of orthogonality: 

~ y2k= 1. 
k m 

~ YmkYm'k=O 
k 

(12) 

The b's as weIl as the y's dep end only on the ionic configuration. 
The summation in th~ integrand in (7) has now become a summation 
over the different values which the y's can assume as a consequence of 
the different discrete Ek-values in our ensemble. This summation, however, 
can be written in the form of an integral if we may assume th at all 
quantites Ymk are small compared with unity, an assumption which will 
be fulfilled, independent of the concentration, for the large majority of 
possible configurations. In that case the quantities Y can practically 
assume all values between - 00 and + 00, and the probability that y 
lies between ym and Ym + dYm will be given by a GAUSS error function. 
The mean value of Ym is equal to zero since the mean value of Ek is 
equal to zero, due to the condition of neutrality ~ Ni Zi = O. For the 
mean value of y~ we find, using (12), 

wh ere YJ is an abbreviation. From (12) follows furthermore that the 
different y's are statistically independent. 

YmYm' = ~ Ymk Ym'k. E~ = YJ ~ Ymk Ym'k = 0 

The chance th at Ym lies between ym and Ym + dYm (m = 1. 2 .. . N) 
therefore equal to 

(13) 
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and the integrand in (7) can be calculated as follows: 

N -N -E'/kT-(l )-N/2J Jd d [1/ (1 + bm
) 2J-Ie - 71.17 ••• YI '" yN. exp - 2 I -;J kT Ym -

Here ~ denotes, just as in (10), the Nth degree polynomial the roots 
of which are the b's and we see that A is an abbreviation for 

agl2 agJ3. . . . aglN 

ag23 .. , . ag2N 
(15) 

where gk/. according to what has been said with reference to (6), is 
practically everywhere equal to I/ rk[" The quantity a stands as an 
abbreviation 

(16) 

The quantity a is independent of the concentration n and has the 
dimensions of a leng th I). It is related in the way stated with DEBIJE'S ,,2 
which is directly proportional to the concentration. 

Before we proceed, some remarks must be made as regards the approx­
imaÜon tacitly involved in the results (14) and (15). In the first place it 
will be seen that the integration over a y-coordinate ym is only permissible 
as long as 1 + bm/ kT is positive. Now bm will of ten be negative. so that 
for every configuration T may always be so small that the mentioned 
quantity becomes negative. In that case the integration over ym from 
- 00 to + 00 would lead to on infinitely large value. In order to meet 
this difficulty, we might extend the integration from - M to + M, these 
quantities being the extreme values which ym can assume, i.e. M = 
= Emax V N where ë max is the maximum ion ic charge present. We will 
however content ourselves here with stating that A _1 /, would, for a given 
configuration. exactly represent the mean value of e-E'/kT in our generalised 
ensemble if the possible values of Ek for an ion were not limited to the 
discrete values ZI E, • •• Zs t: but if Ek could assume all values from - 00 to 
+ 00, the chance for Ek to lie between Ek and Ek + dEk being proportional 
to exp [_E2k /2r, ] dEk. That this holds for a continuous range of values a, 
including a = O. for which A is positive. is easily verified, for instance 
by on one side developing A _1 /, in a series of powers of a. and by on 
the other side developing e-E'/kT in a series of negative powers of Tand 

I) At T = 3000 Kelvin, D = 80, and for a binary electrolyte with zl = z2 = I, we have 
J( = 6,9. 10-8 cm. 
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averaging over all possible ëk values. The two series will coincide exac1y 
provided the Ek are not distributed discrete1y but continuously in the way 
just mentioned. 

A c10ser investigation of the approximation involved in (14) would of 
course be very desirabIe ; in the final result this approximation involves 
the neglect of terms essentially depending on the ionic radii and in the 

quantities Ek3 • Ek
4

• etc. We will. therefore. not enter upon this question here. 
By means of the value of the integrand in (7). given by (14) and (15). 

we find for the decrease of the free energy due to the interionic forces: 

D C= - kT log A-
t

!, (17) 

where the bar denotes that the mean value has to be taken over all 
configurations of the ions in the volume under consideration. Now. if 
(17) is to have a thermodynamical meaning. the re1ative fluctuations of 
A must be exceedingly small on account of the large number of ions. 

We may therefore replace A_I!, by A_I!,. 

A general expression for A is derived in the following way. We denote 
the determinant (15) which refers to N ions in the volume V by A N • 

while a determinant which is constructed in an analogous way but which 
refers to only N-l ions in the same volume. will be called A N - I • We 
may write: 

1/ " g12 g\3 

A N=aN 
g21 1/" g23 (18) 

Differentiating with respect to rL and remembering that the mean 
values of the subdeterminants of the diagonal terms in (18) are all 
equal we find : 

(19) 

Considering A N as a function of the continuous variabIe N and 
writing as an approximation 

(19) will assume the form : 

-- -- oA 
AN-AN-I =àN 

oA_NoA 
a oa - oN 

(20) 

From this we conc1ude at on ce that A. for a given volume V . depends 
on N in the form of a function of aN: 

A=tp(aN.V) (21 ) 
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We compare this result with (8) the right hand term of which equals 

A _1/,. As T is inversely proportional to a. and n equal to Nlv. we find: 

- [ (a3 N)JN A=1p(aN.V)= w V (22) 

This functional relation is only satisfied by: 

A = exp [-2 K(aN)'/, v-tl,] = exp [- 2 Ka'l, nt/, N] (23) 

From the relation 

(24) 

it follows then that ~C has precisely the form which formula (1) of 
DEBYE and HUECKEL assumes for infinitely small radii. 

Before calculating the constant K in (23) we will first investigate what 
becomes of A if we do not introduce the approximation (20). In fact 
follows from (23) that for larger concentrations the ratio between 
AN and AN-I will deviate more and more from unity. so that (20) is 
no longer permissible. For the sake of simplicity we will in the following 
calculation assume V = 1. i.e. n = N. so that we may write: 

An = [w (a 3 n)]n 

For An - An-I we get then. using (25): 

(25) 

dw 
Here w' denotes the differential coefficient dx of w with respect to the 

argument 

x=a3 n . (26) 

The approximations which have been introduced are quite in conformity 
with the spirit of statistical . mechanics and are certainly legitimate if the 
number of ions is sufficiently large I). 

Equation (19) now assumes the form : 

aAn 2 I n ( , ""1 ) -~- = nwn- I • 3a nw = - wn- I w-e-<tn ., . 
ua a 

This leads to the following differential equation for (IJ: 

""1 3xw' =w-e- x ., (27) 

I) Mr. ORNSTEIN had informed me that. in his dissertation (Leyden, 1908) analogous 
transformations were successfully applied in the theory of the equation of state. 
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The exact solution of this equation can be represented by means of 
a parameter t: 

w = et (1 + 3 t)-l K2 x= t2 (1 + 3t)-3 (28) 

where K is a constant of integration. 
For small t values we find: 

W = Al/n = 1 - 2KV:X or Al/n = 1-2Ka"l'n'/'. (29) 

Thus K is the same constant as that entering in (23). 
For larger values of x, w changes in a peculiar way. The maximum 

value which x can take for real va lues of t (and only such values lead 
to real w) correspond with t = 2/3, and just for that x value (K 2x = "/2H) 
w takes its minimum value. For t larger both x and - w decrease. To 
such values, as weIl as to negative values for t, we shall attach no 
physical significance. The figures on this page give - IOlog w as a function 

O.OO~ o,Oa QOlb~ 

QIO 

0;'168 - ---- - - -- -- -- - -- - - - - - - - - - - -- - -- _ . -- - - . - -- -

of V:X and of x. In both figures also the function - 1Oiog w = 0,869 K V:X 
which would correspond to DEBIJE's and HUECKEL'S formula has been 
given. 

In order to find the value of the constant K we might simply assume 
the formula of DEBIJE and HUECKEL to hold for small concentrations. 
For the sake of uniformity, however, we will start directly from the 
expression (15) for A, and by means of it compute the function w in 
(25) for small concentrations. For simplicity we again put V= 1. N=n. 
Let, for a given configuration An-l represent a determinant analogous 
to (15), but in which the ion number 1 is disregarded. Then putting: 

(30) 
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the quantity ~I will be the solution · of the following set of linearequations 
with n unknown quantities ~I ' ~2 ' ••• ~n : 

where 

X ~k bkr = 0 (l = 2, 3 . . . n) 
k 

1 
bkl =- (l::j:. k) 

rkl 

(31) 

For a configuration where the particles are practically distributed at 
random, the significance of ~I can be simply ilIustrated in the case where 
a is small compared with the mean distance e between neighbouring 
ions. We imagine n metal spheres distributed at random in the volume 
V= 1. The spheres carry charges ~I' ~2" .~n . The equations (31) th en 
express that the potential at the surface of the first sphere equals 1/", 
whereas the potentials at the surface _ of the other spheres are equal to 
zero. This may be realized byearthing the spheres 2,3 . .. n . Then ~ I 

is the charge which the first sphere must carry in order to possess a 
potential 1/" or, in other words , ~Ia is the capacity of the system of 
conductors just described. The illustration holds only as long as the 
surface charge on each sphere is equally distributed, and in order that 
this be so the above mentioned condition a < < e is necessary. 

The equations (31) may be solved by an artifice quite analogous to 
that applied by DEBIJE and HUECKEL. Using the terminology of the 
electrostatic system just described we introduce the mean potential qy 
existing at a di stance r from the first sphere. Further we consider ~ kl 

as a function of the distance r of the kth to the first sphere. The mean 
space charge in unit volume is seen to be equal to ~ n, and POlSSON' s 
formula takes the form: 

(32) 

Now, according to (31b), the value of qy is so as just to be compens~ 
ated by the potential due to the charge ~k if from an arbitrary point in 
space we pass to a point lying on the surface of the kth sphere. We 
therefore write: 

'/ qy = -;" (33) 

Eliminating ~ from (32) and (33) we arrive at a differential equation 
for qy quite analogous to that obtained by DEBIJE and HUECKEL: 

6 qy -4.71qyan=O (34) 

Its solution is: 

(35) 
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We have chosen ~I as constant of integration. since for small rvalues. 
cp must behave as ~I/r. The charge ~I can now be calculated for instance 
by replacing in (31 a) the summation over the ions 2. 3 .... n by an 
integral over the total volume. By means of (33) and (35) we obtain in 
this way: 

~ ~ 

1/" = ~I/a+ 4n J~rn r2 dr= ~I/a- 4 n n ~rcpr dr = 

o 0 

=~I/a-4n~1 anJ;-<v~~ dr=~I/a- ~I V4nna 

o 

To the first approximation this gives: 

~I = 1 + V4na3 n (36) 

For 4nan sufficiently smalI. the value of the integral is mainly determ­
ined by a part of space which contains many spheres; this justifles our 
method of solving ~I' 

We have now calcutated the right hand side of (30) for a random 
distribution of ions and for small concentrations. Since under these con­
ditons the left hand side of (30) will be equal to An-I/An we find. using (25): 

An- I /An=[w(a3(n-I))]n-lj . 3 ',i/, . (37) 
[w (a3 n)] = 1/,. e- x 

n " 

Introducing again the abbreviation (26). we find from (30). (36) and (37) 
the following differential equation for w: 

(38) 

Substituing for w the solution (29) which holds for small x values. we 
obtain an equation which determines K: 

(39) 

Going back to the general case of N ions in a volume V we flnd 
from (17). (25). (26). (28) and (39): 

6, , = 1/2 N k T log nat w (x) 

(40) 

_ 3 _ (1'2 2)3 
X - a n - Dk Tn I niZi n 
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T 0 the flrst approximation the following formulae hold (x « 1) : 

(41) 

The last expression coincides exactly with DEBYE's and HUECKEL'S 
formula (1) in the limiting case of small ionic radie. 

lIl. Discussion o[ results. 

By means of (40) we will first calculate some important thermodyna~ 

mical quantities. 
For the logarithm of the coefficient of acti\;ity ([a)i of the ions of the 

kind i we find: 

log ([.)i= - --= - t l- zi --- 2 --log (1+3t) . 1 à,0,.C 3 ( 2 N ) 1 
kT àNi 2 I Ni Zj 2 

(42) 

If only two kinds of ions are present for which ZJ + Z2 = 0 (KCI. MgS04), 

the first term of the right hand member becomes equal to zero and we find: 

1 {. - - ---­
·-VT+3t 

(43) 

For the decrease 6 p and 6'11' in the values of the osmotic pressure p 
and the thermodynamical potential V' due to the interionic forces we find : 

àV 2 (IJ dx x 2V (44) 
6 p=- à,0,.t; = l N k T~ dw V =_ NkIt\' 

6 V' = 6 C + V 6 p = - ~ N k T log (1 + 3 t) 

From the first of these formulae we obtain a simple interpretation of 
the quantity t. Since the osmotic pressure of the ideal solution is equal to 
NkT 

V ' the coefflcient with whichthis expression must be multiplied in 

order to obtain the osmotic pressure corrected for interionic forces , Le. 
the osmotic coefflcient [0' is given by: 

-(45) 

The maximum concentration for which our formulae still have a meaning 
corresponds, according to what has been said on p. 9, to t = 2/3 and is 
thus given by: 
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INiz? 
For D = 80. T = 300. a becomes equal to 6.9.10-8 ~- and we 

find consequently that the number of gramions in a litre at that concen~ 
tration is equal to: 

1000 n ( N )3 
6.06.1023 = 0.059 I Ni z7 (46) 

For an electrolyte of the KCI type this corresponds to a concentration 
of 0.03 mol. KCI per litre. for an electrolyte of the MgSO i type 
with 0.0005 mol. MgS01 per litre. etc. For this maximum concentra~ 
tion the osmotic coefficient is always equal to 2/3 = 0.67 whereas 
the logarithm of the coefficient of activity has become équal t~ . 

2 INiZ~ 1 
1 - Zi ~ -2[og 3. For KCI and MgS01 the coefficient of activity 

1 
itself has thus become equal to 1/3 = 0,58. 

It is certainly striking that our formulae have a physical meaning only 
in a relatively small range of concentrations. We might naturally ascribe 
this to the circumstance that we have neglected the finite dimensions of 
the ions. although the integral (7) which was our starting point. diverges 
for infinitely small radii. The mathematical expression for the compromise 
which has been made is obviously involved in formulae (8) and (14). 
As mentioned in the text these approximations involve the neglect of 
terms depending essentiallyon the ionic radii. The meaning of the 
peculiar behaviour of the function w would then be as follows. Considering 
an isothermal compression of the system where we start from a very 
big volume V i. e. from very sm all concentrations. statistical distributions 
of the ions will. at the beginning of the process. be possible. which are 
continuously connected with the random distribution at very small con~ 
centrations. This might also be expressed by stating that. for sufficiently 
small concentrations. an "atmosphere of free ions" can exist. At larger 
concentrations. however. the tendency of ions with opposity charges to 
"associate" becomes so preponderant (large fluctuations of the quantity A 
in (15)). that at concentrations larger than our critical concentration. no 
distribution of ions can exist which is independent of the dimensions of 
the ions. Obviously this does not yet mean that these dimensions will 
not play a part even at smaller concentrations (partial "association" of 
the ions). 

It will therefore be clear that a comparison of the theory with the 
experiments is rather useless so long as the influence of the ionic radii 
has not been investigated more closely. We hope to return to this 
question on a later occasion. Meanwhile 1 think we may conclude al ready 
that it is illegitimate. from a theoretical point of view. to treat the state 
of a mixture of ions. at greater concentrations and without neglecting 
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the ionic radii, in the way proposed by DEBljE an HUECKEL. In fact it 
seems that the considerations of these authors are based too much on 
the picture of an atmosphere of free ions. The beautiful investigations 
of BjERRUM (loc. cito p. 2) point in the same direction. In this work the 
electrolyte is considered as a mixture of "free" and "associated" ions 
(not chemical association in the sense of the old theory, of course) and 
in many cases more plausible values for the ionic radii are found than 
in DEBljE'S and HUECKEL's theory. 




