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J. Introduction. In the existing theories of the irrational number 
as those of CANTOR, DEDEKIND, BAUDET and WEIERSTRASS (cf. my 
book: "Het Getalbegrip, in het bijzonder het Onmeetbare getal. met 
toepassingen op de Algebra, de Differentiaal~ en de Integraalrekening") 
definitions are given of irrational numbers, of the operations addition 
and multiplication of real (rational or irrational) numbers and of the 
relation greater. It follows from these definitions that for the real 
numbers the same calculation~rules (and the same proporties connected 
with the relation greater) are valid as for the rational numbers and 
that for the system of the real numbers the following theorem of the 
upper boundary holds good: 

If S is a non~empty set of real numbers all of which are less than 
or equal to the same real number (bounded on the right), there exists a 
real number U (upper boundary of S), with the following two properties : 

1. No number of S is > U; 
2. If U' is a real number < U, S contains at least one number which 

is > U'. 
It is at once c1ear that there can only be one number which corre~ 

sponds to the de{inition of upper boundary. 
As I have explained in my "Getalbegrip", for the application of the 

irrational numbers we have only to do with these results and not 
with the meaning of addition, etc. For this reason the theorem of the 
upper boundary is the keystone of each of the above mentioned theories 
of the irrational number and plays a fundamental part in the Algebra, 
the Differential and the Integral calculus. Instead of it we might also 
take a th eo rem that is equivalent to the theorem of the upper boundary, 
as the th eo rem of BOLZANO or the general principle of convergence of 
CAUCHY. However, the theorem of the upper boundary (or that of the 
lower boundary, which comes about to the same) seems to me to be 
the most suitable. 

It would be very unpractic1e to introduce the irrational number 
into Algebra and Analysis in another way than via the theorem of the 
upper boundary (or an equivalent theorem), e. g. by defining aX for an 
irrational value of x as a convergent sequence of CANTOR or a section 
of DEDEKIND, or by proving the theorem ab out the zero~point of a 
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continuous function which can assume positive and negative values. 
by producing that zero-point of the function as a convergent sequence 
of CANTOR or a section of DEDEKIND. This would give the wrong 
impression that there exists an Algebra according to CANTOR and one 
according to DEDEKIND. As all the theories of the irrational number 
come together in the theorem of the upper boundary. in Algebra 
we have nothing to do with the chosen theory. 

The purpose of this paper is to show that we can make the different 
thearies of the irratianal number cancur still mare. so that the part 
played by the theorem of the upper boundary becomes still greater. By 
so doing the th eo ri es of the irrational number approach each other more 
because the definitians af additian and multiplicatian became the same. 
The difference between the various theories of the irrational number 
only remains in the definition of this numbers. in the definition of 
"greater" and in a few proofs. In this way the theory of the irrational 
number (if we stop where it coincides with other theories) becomes 
considerably shorter and simpIer. because addition and multiplication 
no long er belong to it but must be reckaned among the applications 1). 

2. Contents of a theory of the irrational number. We assume 
that the ratianal numbers have been introduced and that far them 
the well known fundamental properties (cf. my "Getalbegrip" . § 18) have 
been proved. 

A theory of the irrational number means (according to the ideas 
deve10ped in this paper) an extension of the system of the rational 
numbers to th at of the real numbers and such a definition of "greater" 
in the new system that the following properties are valid: 

a. Par any twa real numbers a and (J ane and anly ane af the fallawing 
three relatians ha/ds gaad: 

a = (J (bath numbers are the same, alsa written as (J = a), 
a > (J (alsa written as (J < a), 
(J > a (alsa written as a < (J). 

b. If a> (J and (J> y. we have a> y (transitive property) . 
c. If a is a real number there always exists a ratianal number > a. 
d. If a is a real number. ther~ always exists a ratianal number < a. 
e. If a and (J are real numbers and if a < (J . there always exists a 

ratianal number c. sa that a < c < (J. 
f . Par the system af the real numbers the thearem af the upper 

baundary halds gaad. 
The property a . inc1udes that the definitian af "greater" given far the 

real numbers, if applied ta twa ratianal numbers. leads ta the same 
result as the definitian af "greater" far ratianal numbers. 

1) A more elaborate treatment and a discussion of the connection with the existing 
theories can be found in the periodical "Christiaan Huygens". 

25 
Proceedings Royal Acad. Amsterdam. Vol. XXX. 
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If in a definite theory (e.g. that of CANTOR) the five above mentioned 
properties have been proved 1), this theory may be considered as finished 
because its continuation is the same as for another theory. 

3. Enclosure of a real number between two rational Dumbers. 
Relating to this we shall prove the following property (always starting 
from the properties of N°. 2) : 

If a is a given rea! number and v a given positive rationa! number, 
we ean . a!ways determine a rational number a so that a < a < a + v. 

As the validity of this property is at once apparent if a is rational. 
we shall suppose a to be irrational. According to the properties e. 
and d. of N°. 2 there are rational numbers band e so that b< a< e. 
The numbers b + nv, in which we can choose for n any postive integer 
or 0, contain only a finite number < e, hence also a finite number < a 

(according to the property b. of N°. 2). Hence among the numbers b + nv 
that are < a there is one greatest. If this is a we have a < a < a + v, as 
a = a + v is impossible, a being irrational. 

4. If a is a given positive rea! number and v is a given rationa! 
number > 1. we ean a!ways determine a positive rationa! number a so 
that a < a < av. 

According to the property e. of N°. 2 there exists a rational number 
b. so that 0 < b < a . According to N°. 3 there exists a rational number 
a. so that a < a < a+b(v-l). Hence b < a < bv. if a < b. and 
a < a < av. if b -=: a. 

5. Definition of the addition of real numbers. Let a and (3 be two 
(equal or unequal) real numbers; let A be the set of the rational numbers 
a < a and B the set of the rational numbers b < (3. According to the 
property d . of N°. 2 neither A nor B is empty so that the set A + B 
of the numbers a + b is not empty either. Let a' be a rational number 
> a and b' a rational number > (3. From a < a and a < a' it follows 
in connection with the transitive property b. of N°. 2. that a < a'. In 
the same way b < b', hence a + b < a' + b'. so that the set A + B is 
bounded on the right and therefore has an upper boundary. This upper 
boundary. whieh we shall eaU a + (3. defines the su m of the two rea! 
numbers a and (3. 

6. IE a + b is a number of the set A + B of N°. 5 and al is a rational 
number so that a < al < a. also al + b is a number of A + B. We 
have. therefore. al + b -=: a + (3 (as a + (3 is the upper boundary of A + B). 
hence a + b < a + (3 (according to a + b < al + band the transitivity). 

Let inversely e be a rational number < a + (3. If d is a rational 

1) The proofs of these properties are not given in this paper as they are also given 
in existing theories. They may bI' found in a paper destined for "Christiaan Huygens". 
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humber so that c < d < a + (J. according to the property of N°. 3 we 
can define the rational numbers a and b such that 

a < a < a + t (d - e). b < (J < b + t (d - e). 
If we represent the third members of these inequalities resp. by a' and b', 
we have a' + b'= a + b + d - e. Prom a' > a. b' > (J it follows that a' 
is greater than any number of A and b' greater than any number of B. 
hence a' + b' greater than any number of A + B. Consequently a' + b' 
=: a + (J (according to the definition of the up per boundary). As d < a + (J. 
we have. therefore. a' + b' > d. hence a + b > e. Consequently r ~ a < b. 
hence e - a < (J (as b < (J). so that e -a is a number of B. As e=a + (e- a). 
e is a number of A + B. We find accordingly: 

The set A + B of N°. 5 (formed by the numbers a + b. where a is 
an arbitrary rational number < a and b an arbitrary rational number 
< (J) is the same as that of the rational numbers < a + (J. 

As an immediate consequence a' + b' =: a + (J if a' is a rational 
number =: a and b' a rational number :=:::: (J. Por a' + b' is greater than 
any number of A + B; hence it is not a number of A + Band does not 
satisfy the relation a' + b' < a + (J. 

7. Fundamental properties of addition. These are: 
I. Fram any two real numbers a and (J we ean derive one and only 

one real number a + (J by addition. 
11. a + (J = (J + a (eommutativity of addition). 
111. (a + (J) + y = a + ((-I + y) (assoeiativity of addition). 
IV. a + 0 = a (modulus-property of addition'. 
V. If a < (J . than a + y < (J + y. 
The validity of I appears from the fact that the de{inition of addition 

of real numbers given in N°. 5. applied to two rational numbers. leads 
to the same result as the earlier addition of rational numbers. 

The validity of 11 is at once evident from the corresponding property 
of the rational numbers. 

The same holds good for 111. Por if we represent a rational number 
< a. < (J or < y resp. by a. b. e. according to the property of N°. 6 a 
rational number < a + (J is the same as a number of the form a + b. 
Consequently (a + (J) + y is the upper boundary of the set of the numbers 
(a + b) + e. In the same way a + ((J + y) is the upper boundary of the 
set of the numbers a + (b + e). Both sets are the same and have. 
therefore. the same upper boundary. 

If a is a real number and if a and bare rational numbers so that 
a < a. b < o. we have a + b < a. hence a + b < a. If. inversely. e is a 
rational number < a and a a rational nu mb er so that e < a < a. 
we have e = a + (e - a) wh ere a < a and e - a < O. The set of the 
numbers a + b (a rational and < a. b rational and < 0). that has a + 0 
as upper boundary. is. therefore. the same as the set of the rational 
numbers < a. Hence a + 0 = a. In this way IV is proved. 

25* 
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If a < fJ, we ean determine the rational numbers pand q so that 
a < p < q < fJ. If 'Y is a given real number, aeeording to the property 
of N°. 3 we ean determine the rational number c so that c < 'Y < c + 
+ q- p. Aeeording to the property of N°. 6 fJ + 'Y > q + c, and from the 
rem ark at the end of N°.6 it follows that a + 'Y -=:::: P +(c+ q-p)= q+c, 
whenee a + 'Y < fJ + 'Y . In this way V is proved. 

8. Subtraction of real numbers. The passibility and unambiguity 
of subtractian rests on the fundamental properties I-IV of N°. 7 and 

VI. If a is a given real number, there exists at least ane real number 
; which satisfies a + ; = 0 (passibility of subtraction from 0). 

If we represent a rational number > a by a', the set S of the numbers 
- a' is bounded on the right (as all these numbers are < - a, if a is a 
rational number < a). Henee the set has an upper boundary. We shall eall 
this ;. If a' and pare rational numbers so that a' > p > a, we have - p -=:::: ; 

(as -p is a number of S); as -a' < -p we may write -a' < Ç. If 
inverse1y b is a rational number < ;, there exists sueh a rational number 
a' that a' > a and - a' > b (according to the definition of upper boundary); 
eonsequently -b > a' , henee -b > a, so that b is the opposite of a 
rational number > a. The set of the rational numbers < ; is, therefare. 
the same as that of the numbers of the farm - a' whpre a' is ratianal 
and > a. Prom this follows that a + ; is the upper boundary of the set 
of the numbers a + (- a') = - (a' -a) (a rational and < a, a' rational 
and > a). As a' -a is positive and ean assume any positive value (according 
to the property of N°. 3), a +; is the upper boundary of the set of all 
negative rational numbers, whenee a + ; = 0. In this way VI is proved. 

Prom VI we ean further deduee that fJ -a= fJ +(- a) where-a 
(the opposite of a) is an abbreviation for ° - a. 

9. Prom a+;=O and a> O follows O=a + ; > O+;= ; , henee 0> ;, 
sa that the appasite of a pasitive real number is negative. In the same 
way it appears that the appasite of a negative real number is pasitive. 

Prom 

1- a + (- fJ)! + (a + fJ ) = (- a + a) + (- fJ + fJ ) = ° + ° = ° 
th ere follows: 

- (a + fJ) = - a + (- fJ ), 

sa that the oppasite of the sum of twa real numbers is the sum of the 
appasites of these numbers. 

10. Definition of the multiplication of real numbers. Let a and fJ 
be two positive real numbers, A the set of the positive rational numbers 
a < a and B the set of the positive rational numbers b < fJ. Aeeording 
to the property e. of N°. 2 neither A nor B is empty so th at the set 
AB of the numbers ab is not empty either. If a' and b' are rational 
numbers that are > a resp. > fJ, we have a < a' and b < b', henee 
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ab < a'b'. Accordingly the set AB is bounded on the right and henee 
has an upper boundary. We shall eaU this afJ and de[ine in this way 
the pro d u et of two positive real numbers. 

Supplementary de[initions . If a is positive and fJ negative (hence - fJ 
positive). we define afJ as - I a (- fJ ) l. Likewise we define afJ = 
= - I (- a) fJ I. as a negative and fJ positive. If a and fJ are both negative 
we define afJ = (- a) (- fJ). 

If a = 0 or ti = O. afJ is defined as O. 

11. In a similar way as in N°. 6 it appears that a number ab of 
the set AB of N°. 10 is less than afJ (where a and fJ are positive 
rea 1 numbers) . Let e be a positive rational number < afJ. lf d is a 
rational number so that e < d < afJ and e is a rational number so that 

d d 
1 < e <~. we have ~ = ef where f is a rational number > 1. According 

e e 
to the property of N°. 4 we can determine the positive rational numbers 
a and b such that 

b < fJ < bf 

Consequently ae is greater than any number of A and bf greater than 
any number of B. hence abef is greater than any number of AB so that 
abef=- a {J. As d < a fJ we have abef > d . hence ab > e. Accordingly 
e e e e 
~< b. henee ~ < fJ . so that ~ is a number of B . Owing to e = a. ~. e is 
a a a a 
a number of AB. 

Accordingly : 

If a and {J are positive real numbers. the set AB of the numbers ab 
(where a and bare arbitrary positive rational numbers resp. < a and 
< fJ) is the same as that of the positive rational numbers < afJ. 

12. Fundamental properties of multiplication. These are: 
VII. Fram any two real numbers a and fJ one and only one real 

number afJ may be derived thraugh multiplieation. 
VIII. a fJ = fJ a (eommutativity of multiplieation). 
IX. (a fJ) l' = a. (fJ y) (associativity of multiplieation). 
X. a (fJ + y) = a fJ + a y (distributive property). 
XI. a . 1 = a (modulus~praperty of multiplieation). 
XII. If a > 0 and fJ > O. than a fJ > O. 
Proof of VII. The de[inition of multiplieation of positive real numbers 

given in N°. JO, if applied to two positive rational numbers. leads to 
the same result as the earlier multiplication of positive rational numbers. 
As also the supplementary definitions of N°. 10 are in accordance with 
the properties of the rational numbers, multiplication is an unambiguous 
operation. 
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Praof of VIII. This rests on the corresponding property of rational 
numbers. 

Praof of IX. If a, fJ, y are all positive. the proof is quite analogous 
to that of the fundamental property III (cf. N°. 7). If one (or more) of 
the numbers a, fJ, y is zero, (afJ) y as weIl as a (fJy) is zero. If a, fJ, y are 
all "* 0 but not all positive, the validity of (afJ) y = a (fJy) follows from 
the validity for positive real numbers and the supplementary definitions 
of N°. 10. 

Proot {lf X. We shall first suppose that a, fJ and y are all three 
positive. lt appears from N°. 6 that a (fJ + y) is the upper boundary of the 
set S of the numbers a (b + e) where a, band e are arbitrary positive 
rational numbers resp. < a, < fJ and < y. Prom the property of N°. 11 it 
is further evident that afJ + ay is the upper boundary of the set Tof the 
numbers al b + a2 e where al and a2 are rational numbers between 
o and a. As a (b + e) = ab + ae, any number of S is also a number of T. 
If al ::=== a2 we have al b + a2e -= a2 (b + e), so that to any number t of 
T there corresponds a number of S that is 2:: t. Hence S and T have 
the same upper boundary so that a (fJ + y) = afJ + ay. 

If a = 0, fJ = 0 or y = 0, both a (fJ + y) and afJ + ar are resp. 0, 
ay or afJ, so that in this case X holds good. We may therefore suppose 
a, fJ and y all three "* O. 

If a and fJ are positive, y negative and fJ + )' =- 0, than - y is positive 
(cf. N°. 9). As X holds good for a > 0, fJ =- 0, y > 0, we have: 

a (fJ + y) = 1 a (fJ + y) - ay I + ay = 1 a (fJ + y) + a (- y) I + ay = 
= a 1 (fJ + y) + (- y) I + ay = afJ + ay. 

In connection with II (cf. N°. 7) this implies the validity of X in any 
case where a > 0 and fJ + y ::=:=: 0. 

Taking N°. 9 into account, we derive from this the validity of X in 
the case that a > 0 and fJ + y < O. Por in this case - (fJ + y) > 0, hence: 

a (fJ + y) = - a 1- (fJ + y) 1=- a 1- fJ + (- y) I = 
= - ! a (- fJ) + a (- y) I = - ! - afJ + (- ay) I = afJ + ay. 

Consequently X always holds good for a > O. Prom this the validity 
for a < 0 ensues th us : 

a (fJ + y) = - (- a) (fJ + y) = - ! (- a) fJ + (- a) y I = 
= - 1- afJ + (- ay) I = afJ + ay. 

Praof of XI. If a is a positive real number and if a and bare 
rational numbers satisfying 0 < a < a, 0 < b < I, we have ab < a, 
hence ab < a. If, inversely, e is a positive rational number < a and a 

a rational number so that e < a < a, we have c= a. ~ where 0 < a < a 
a 

c 
and 0 < - < I. The set of the numbers ab (a and b rational. 0 < a < a, 

a 
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0 < b < 1), that has a. 1 as upper boundary, is, therefore, identical with 
the set of the positive rational numbers < a, so that a. 1 = a. 

a . 1 = a also holds good for a = 0 as in this case both members are 0 
and the validity for a < 0 follows from a. 1 = - !( - a) . 11 = - (- a) = a. 

Proof of XII. If a > 0 and p> 0 and if a and bare positive rational 
numbers resp. < a and < p, we have ab -= ap (according to the definition 
of upper boundary). Consequently from ab > 0 follows a p > O. 

13. Di vision of real numbers. The possibility and unambiguity of 
division except by 0, rests on the fundamental properties VII, VIII, 
IX and XI of N°. 12 and 

XIII. If a is a given real number different from zero, there is at least 
one real number f so that af = 1 (possibility of division in 1 ex cept by 0). 

We shall first suppose a > O. We represent a rational number > a 

by a'. The set of the numbers 1, has an upper boundary (as all 
a 

1 
these numbers are < - where a is a positive rational number < a) ; 

a 
let this upper boundary be f. If a' and pare rational numbers 

so that a' > p > a, we have l - f , hence 1, < f. If, inverse!y, b is a 
p a 

positive rational number < f, there exists a rational number a' 

so that a' > (l and ~, > b; consequently ~ > a', and therefore ~ > a. 

The set of the positive rational numbers < fis, accordingly, identical 

with the set of the numbers of the form 1, where a' is rational and 
a 

> a. Consequently a f is the upper boundary of the set of the numbers 
1 a 

a . I = I (a positive rational and < a, a' rational and > a). As 
a a 

; can assume any positive value < 1 (according to the property of 
a 

1 
N°. 4), this upper boundary is 1 so that (X f = 1, hence f = - . 

a 

If a < 0 we have a. (- Ia) = (-a). 1 a = 1, so that XIII is also 

proved for negative values of a . 

Prom XIII we find in the known way that ~ =p .l (a =f 0). 
a a 




