Physics. — On the Heats, resp. Pressures of Evaporation, Sublimation
and Melting, also in the Neighbourhood of the Absolute Zero;
in Connection with NERNST's So-Called Heat-Theorem. (On
the Equation of State of Solid Substances, 1V. (Conclusion)).
By Dr. J. J. vaN LAAR. (Communicated by Prof. H. A. LORENTZ).

(Communicated at the meeting of March 26, 1927).

I. Introduction.

In the first of three papers!) I drew up an equation of state for solid
substances, which, as regards form, corresponds to that of VAN DER
WaaLs for liquids and gases. I showed that not only the values of the
coefficients of expansion and compressibility, calculated from this equation
of state, are in very good harmony with the values found experimentally,
but also the coefficients of the pressure and the temperature of this latter
coeflicient.

In the second paper I derived the relation which, according to a
known thermodynamic formula, must exist at high and low temperatures
between the second member of the equation of state (the temperature
part) and the temperature part of the expression for the Energy.

Finally in the third paper the expressions for Energy and Entropy
were more closely considered, also at very low temperatures; and the
known expression for the Entropy constant in the RT-region was derived
from the value of the so-called elementary volume, in connection with
the zero-point energy.

As was already announced on p. 698 of the third paper, it remains
reserved for this fourth (concluding) paper to draw up the different
equations of the pressure in connection with the different heats of trans-
formation in case of coexistence of liquids resp. solid substances with
their vapour, of liquids with solid substances, and of solid substances
inter se.

Let us first state that I think I have proved in the third of the papers
cited, that the so-called “energy-degeneration’ at very low temperatures,
in consequence of which RT becomes A’T*, resp. AT* both in the
equation of state and in the equation of energy, is found only with
solid substances, in which the molecules (atoms) move round fixed
positions of equilibrium; but that liquids and gases (unless at exceedingly
high pressures) remain in the RT-region down to the lowest temperatures,
i.e. do not degenerate. For gases this is clear, because there at very low

1) These Proc. 29, 95—112, 497—514 and 683—698 (1926).



384

temperatures the quantity € (the so-called “characteristic”’ temperature of
DEBYE) would approach 0 (cf. p. 684—685 loc. cit.) in consequence of
the exceedingly great volume, that is if there could be question of
degeneration in gases. And for liquids (with the exception of Helium),
which can only exist at higher temperatures (above the melting point),
this is, after all, a matter of course.

All the same — even at high temperatures — the assistance of
the energy-degeneration has been very often called in (especially in
Germany) to account for deviations in liquids, which could of course
not be explained by the aid of the equation of state of v. D. WAALS
with a and b constant, but which already found a ready explanation by
the assumption of b=f(v).

With regard to what has been adduced above, we may point out
that PALACIOS MARTINEZ and K. ONNES (Comm. 164, 1923) have shown
already before for gaseous H, and He, that even at 20,°5 abs. there is
no question as yet of any quantum effect. Besides it was very recently
proved by me in two papers !), that also liquid Helium does not degenerate
down to the very lowest temperatures, and that all the abnormal
phenomena appearing there — e.g. maximum density at 2°3 abs.,
minimum density at 0°.5 abs., maximum internal heat of evaporation at
3°4 abs., minimum ibid. at 1°5 abs., etc. — can be explained in a
natural way by the assumption that a and b are also functions of the
temperature. This latter is, of course, likewise the case for other sub-
stances, but there the two decreases with T counteract each other in
the equation of state, whereas in Helium b also decreases, but a
increases with T, on account of the exceedingly low temperatures below
the critical temperature (5°,2 abs.). (c.f. p. 1305 loc. cit., fig. 3).

The formulae for a and b, viz.

1062 =39,515 + 11,178 T — 1,1177 T? (valid to slightly past T%)
108 b =1223,4 — 118,45 T + 10,356 T? (valid to + 2°,3 abs.)

have been derived from known experimental data, whereas our considera-
tions concerning 4 and L are further based — besides on this material —
on the experimental vapour-pressure observations, which go as far down
as 1°.3 abs. Hence the minimum of 1 at 1°5 has been experimentally
established, though the direct confirmation through more accurate
measurements of the heat of evaporation L has at present not yet been
extended so far (loc.cit. p. 1333—1334). And as a minimum at 1°,5 abs.
is certain (4= 16,5 gr. cal., cf. p. 1331 loc. cit.), it is clear that 4 and L
will approach at T—0 to a slightly greater finite limiting value (= 17,5
gr. cal).

This is in contradiction with the opinion of some recent writers,
who on the ground of an erroneous interpretation of the so-called
NERNST-Theorem (which is only valid in the case of coexistence of two

1) These Proc. 29. 1303—1316, 1317—1334 (1926).
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solid phases, and even then only in the neighbourhood of T =0, see
§ VI) have come to the conclusion that at T—0 the quantities Aand L
would approach 0 even with the equilibria liquid-vapour (in He) and
solid~vapour! ?)

II. Equations of state, and expressions for E and S.

We will recapitulate here some formulae, of which repeatedly use
will be made in the future. (see in particular the third of the papers
cited of 1926, presented to the Academy).

a. Liquids and gases for all temperatures (if not at extremely
high pressures, see § IV).

a__ RT

P+ 0%
— [ :
E__kT-l—(voo v) S
S=klog T+ Rlog (v—b)+ S,

For the sake of simplicity it has been assumed here, that a and b are

no functions of T, for else a term with cilz would have to be added in

dt

E, and a—T% would have to be substituted for a. Besides b has been
supposed to be no function of v either, for else a somewhat more
complicated expression would have come in the place of log(v—b) in S.
But for our purpose it is perfectly unnecessary to introduce these
complications, as we wish to develop only general points of view, which
are quite independent of the said complications, which would needlessly
render the formulae unmanageable and difficult to survey — only for
the sake of a quantitative accuracy unnecessary here.

In the term aw/, —the limiting volume at T=0, p = oo is represented
by vg. As at high pressures the quantity a may possibly be dependent
on v, and at all events dependent on T, we have written ag, at T =20,
p=o0, and we shall write a, at T—=0, p =0, to which the volume v,
corresponds.

For the so-called Entropy constant S, the following expression is found:

So=—klog 8 —Rlog w +k,

) See among others an article by DE KOLOSSOWSKY of Leningrad in the ]J. de Ch.
ph. of Oct. 25, 1926, (23, NO. 8), p. 728—732. The writer makes there, nota bene, use
of a perfectly wrong formula for %— % Compare also my article to refute this in the
J. de Ch. ph. of Febr. 25, 1927 (24, NO. 2), p. 115—119, and an article by VERSCHAFFELT
(Ibid. March 25, 1926 (23, NO. 3), p. 238—241) refuting an earlier paper of DE KOLOSSOWSKY
(Ibid. 22, 77—79, 1925). To this we may add a still fooler article in the Zeitschr. f.
Physik, 43, 509 (Heft 7).

26

Proceedings Royal Acad. Amsterdam. Vol. XXX,
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through which the expression for S becomes homogeneous, viz.

S=klog 7?j’—l—Rlog% + k.

In this # is the so-called ,characteristic’ temperature in the solid
state at v =uv, (p =0), and @ the so-called “elementary volume”, i.e. the
joint volume within the paths which the molecule centres describe round
the positions of equilibrium at T—0 and p =0 in consequence of the
still remaining *“zero-point energy”. This in consequence of the alternate
action of the mutual attractions and repulsions of molecule nuclei and
electrons, which still continues to exist also at T'—0 (zero-point paths).
For mon-atomic substances (see my derivation in the third of the papers
cited, p. 696) w is represented by (k' is R: N):

_IN K
16V n (K 6)'k (2am)'

w

The quantity k in the expressions for S and S, is everywhere the
specific heat at infinitely large constant volume. Its value for mon-atomic
substances is =3/, R—=3 gr. cal.

b. Solid substances at higher temperatures (if not at extremely
high pressures).

a __RT
P aTl=

E—_—kT+(§-—“—"vi)+p

00

S=klog T + R log (v—b) + S,

The same remark as above concerning the simplifications with respect
to a and b.
In the equation of state (see the first of the papers cited) a term —f

has now been introduced, which relates to the (static) repulsive virial.

A
v

m_— but this special form is of no consequence

I gave it the form ,3:0

for what follows!). The quantity P in the expression for E is evidently

:jﬂdv.

The quantity S, has the value indicated above; only the double
value 3 R=6gr. cal. (for mon-atomic substances) must now be put for
k, just as in kT and klogT in E and S, whereas w has the same
value for all the states of aggregation.

1) GRUNEISEN and others assumed the form )/,,n-
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c. Solid substances at very low temperatures.

AT
=

E:AW+(?—

00

§)+p+a
—i 3
S=3AT

The quantity E, is the so-called ,zero-point energy” (see above).
Further A’ in the equation of state is related to A in the equation of
the Energy (compare for this the second of the papers cited). Both are
functions of v. The wvariability of S with the volume, which at higher
temperatures was chiefly embodied in the term R log (v—b), has now
got into the coeflicient A.

III. Equilibrium liquid-vapour.
(Above the melting-point; only in Helium down to T=0).

If in what follows we always denote the solid state by the index 1,
the liquid by 2, and the vapour by 3, the following equation follows
immediately from the equalization of the thermodynamic potentials Z =
=E +pV — TS of liquid and vapour:

(Es — Ej) + p (v5—v,) = T(S5—S,), ie. L=T(S;—S)
when L= (E;—E,)+ p(vs;—v,) represents the total heat of evaporation.
Hence we have according to a. of § II, because the limiting values a00/vg

for the smallest volume uv,, possible are of course identical for liquid
and vapour at T=0, p=oe:

L= (—w»T+( )+pm—m

But also k,—ks;, because both refer to v —oo. Further at comparatively
low temperatures (i.e. far enough from the critical temperature, e.g. below
the boiling-point) the liquid volume v, may be neglected by the side of
the vapour volume v; (and therefore 1/,, by the side of 1/,), so that,

as pv;—=RT may then be put, finally simply
L=%24RT. . . . . . ...
Uy

is found. In this af, is the infernal heat of evaporation and RT the

v
external work.
From L=T (S,—S,;) follows:

_RTlog[—)%

26*
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as k; is again —k; in (ks —k;) log T, and also (Sy); will be = (S)s.
the fraction after the log-sign having been transformed by means of the
equation of state. At comparatively low temperatures (see above) p is,
however, neglected by the side of a2/,2, but for vapour exactly inversely
a3/, with respect to p (in consequence of the great value of vs), so that
we get:

L=RTlog zi;’zz. T 7.

The equation (1) serves to determine L; equation (2) for the calcu-
lation of p.

It follows immediately from (1), that at 7 —0 [this is realizable in
Helium; in all other substances only through extrapolation below the
melting-point] L approaches the finite value a0, '), in which a, and v,
refer to T=0 and the corresponding vapour pressure p = 0.

From the equating of (1) and (2) follows after division by RT:

af,, +RT L
log p —=— —2R——+l 2__ ﬁ‘+logl?_222' .. 3

that is to say at “comparatively’”’ low temperatures, where the above
mentioned simplifications are valid. We see that the extrapolated vapour

pressure exponentially approaches 0 at T—0, this also being the case with
L

dp L . ;
d| e e N
p/qe. The latter follows, indeed, also from dt = T(o,—v;) — Toy’ in which

v; (exponentially) approaches more strongly to o than T to O.
When (3) is written in the form

30/

RT—l—lg aT... (3bis)

Iogp:—%,—k(?—{—DT—f—...—

by the expansion of af
Lo = aO/

and therefore, if v, is known at T—=0, p=0 by extrapolation, also

s, and log a2/, into a series with respect to 1),

s, €an be easily determined from vapour pressure observations,

1) We saw already in § I that DE KOLOSSOWSKY lately came to the amazing discovery,
that also at this equilibrium L would have to approach 0! In the liquid also the constant
of attraction a would then have to approach 0, which is of course, nonsense. We might
communicate more discoveries of this kind; some Italian authors have in view no less
than the substitution of an entirely- “new” theory of Thermodynamics for the earlier
“antiquated”’ one. Also these authors arrive at the most startling, and (it need hardly be
said) the most absurd results!

2) When a and b are assumed to be constant, one finds easily by the aid of the equation of

state £ =20 __RT % RT2..., in which «j is the coefficient of expansion at T=0,
v vo

13 ( ) Rvo Further Iog_ is then = log 20 — 2, T...
dt vo?

a
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ap is known, i.e. the extrapolated limiting value of a, at very low
temperatures. In this way the quantity a has been calculated by me in
many cases (also for melted metals and salts, where a varies very little
with the temperature).

If b= f(v) had been taken into consideration, a term with log T would
have been added in the second member in (3), and also the vapour
pressure constant log 2o/, ; would have become somewhat more complicated,
especially when also a and b are considered as functions of 7. But in
any case these constants C at the equilibrium liquid-vapour have nothing
whatever to do with the “chemical” constants, introduced by NERNST,
which are in relation with the constants of entropy!). In the case b = f(v)
the coefficient of log T will always be negative, and depend in a simple way
on the degree of variability of b with v. (Compare also my “Zustandsgl.”,
p. 265—278). As 5% is = (c)s—(c,)2 ) ie. L=Lq+ [(c)s— (colalo T ..

dp L ldp L L,

it follows from dr —To; °F odt —RT? that log p will be = — ﬁ'_{—
[(cr)s—(cr)alo

+ — R log T + etc. Now (when a and b are no functions of T)

(co)3 is always = (c,);; but when b= f(v), (cp); in the vapour will always
be considerably smaller than (c;), in the liquid, so that the coefficient
of log T [(cp)s — (cp), at T—=0 (extrapolated) differs but little from this
quantity at higher temperatures] is always negative. Hence never—=+-1,75,
as NERNST c.s. on the ground of a certain Theorem of Heat, which is
absolutely misapplied here, would try to make us believe — even at
4000 to 5000°!

IV. Equilibrium solid-vapour.

a. At higher temperatures.

As long as no degeneration of the energy is perceptible in the solid
phase, and we are, therefore, still in the R7-region, there is no essential
difference with the equilibrium liquid-vapour. The diffcrence is only, that
in the expression (1) for L (the total sublimation heat) a term — P, of
the (static) repulsive forces is added, according to b. of § II, and k;
(vapour) =3/, R for mon-atomic gases will now not be =k, (solid)=3R.
We thus obtain:

L:(h—k,)T—l—(j—i—Pl)—}-RT, L)

1) The vapour-pressure constants C = log %[,: at a and b constant are evidently in
a
relation to the logarithms of the crifical pressures (pk = —21—7 A -—;)
bk
2) This formula, too, is only valid at “comparatively’” low temperatures. Cf. Zustandsgl.
p. 121—~123, and the Article in the ]. Chim. phys. against DE KOLOSSOWSKY cited in §I.
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(2) becoming:
aj — B
K= T[(kg— ki) log T+ R log ="+ (S9)s — <so)l].
which with (Sg); — (So); =— (ks—k,) log @ + (ks—k,) according to § II passes

into

) al/u 2— ﬂ
— T[(k_,,—kl) (1 + log g) + R log —-—1—;—1], .. (29
in which a/,2—p; will now approach 0 at T=0(p=0). For with
M ) ) a_ v+ RT,
,3:;:_77 the equation of state, neglecting p, becomes 7 =" 7=

so that (extrapolated) v% becomes :;j/_—vb: g at T=0,i.e. 22— f=0.
And since ‘/v remains finite at T=0, p =0, this must also necessarily
be the case with v—b. (Not before p—=o0 will v become —b). As the
extrapolated value of aifu2—pf; will approach 0 at T=0, p=0, this
expression must be replaced by RT:(v—b) in (2%), in consequence of
which we get:

logp—=— RT—|— Rkl (l—l—logg)—l—log T—f—log%, . (39

in which L is given by (1¢), and k;—k; will be negative. Again both p
and dp/dr (extrapolated) will approach 0 at T=0, as L, —ao/vs— B,
remains finite.

Let us write (3% in the form

a — D _ -
log p=— I/UJIQT Lyl 2+Rlog yB—hth ’E+R+

-} (1 —log 6) + log v_—}—?_b'

R

as (ks—k,) T+ RT of L, divided by RT, yields the constant term
— (k5—k; + R) : R. Hence we get:

a/, — P —
logp—=— 1/v}2T 1—I—k3 g—i_RlogT—I-[lo R (l—f— Rkl Iogb’)]

in which a1/,;—P,, expanded into a series with regard to T, will yield
no term with T, so that — divided by RT — no further constant term
is to be expected!). Accordingly again no “chemical’” constants occurs in

A 2 A
) For from 2 =M follows — 22 W o Jo aaliiCi [ dv+ N
v—b v3 dt (v—b)2 dt v—bdt ' v—b
2
[:— +2 - / 2= i when 2 (v—b) is put for )/ -+ RT. Hence
v v— v— v— v
2 b b b 2

we get .(.i_" a [—ZVL__I.) +14= ]:R. Now according to the equation of state
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the vapour-pressure constant C, no more than in the case liquid-vapour.
If now aifv; — P, = (ao/vy— P,) + aT? (see Note 1)is written, and further

log v% =log + T, in which according to the subjoined Note vy—b,

b vo'_bo

o e A _ R ap
is ._voXao, so that log o becomes = log (U_o T)' we get finally:

aof, — P, -
logp=— O/UI‘QT °+k3 2+R109T+|:109(§%Q)—

, (3 bis)
—(1 -+ h—gkl—log 6’)} + DT + etc.

so that the extrapolated limiting value L, = ao/vy— P, can be calculated
from vapour pressure observations. At present a, can only be determined,
if P, should be known.

The coefficient of log T agrees with dL/d¢—k;—k, + R according to
(12); which also ensues from 9L/dt —(cp);— (cp); = (k3 + R) —k,;, so that
d—l%%—e = RLTE a term —ka—_’;%—tl—? log T duly occurs.

If b is still dependent on v (in solid substances in a much smaller
degree than in liquids), some supplementary terms must be added. But
in any case the coefficient of log T will be negative again (in monatomic
substances =3/, R—3 R—=—"1/, R, or greater negative, when b= f(v)
is assumed); but never + 1,75. For it is entirely disregarded by NERNST
and many others, that the expansions into series, holding at very low
temperatures in the T*-region, are not valid at higher temperatures in
the RT-region, and vice versa. In the intermediate region, where neither
of the expansions into series are valid, only the complete DEBYE-formula
for E and S can be used. The impermissible application of expansions
into series, holding only at very low temperatures, also at much higher
temperatures; and besides the assumption of Energy-degradation also
for liquids and gases, have been the two greatest errors of the adherents
of the Theorem of Heat.

Besides, it was a serious error of NERNST's to think that merely by

also on integration of

2 2
evidently vo—bo is = & at T=0, so that (%’) = Rvo? 1)/ — Rvg? 29. And as
vo a 0 a 1 7%, a bo

1 1 1 (dv a a v dP dv
1ol _1(dNp 2 =2 _ " RT. Further P= P (__ T...
v vg vyl (dt )o v becomes v by R urther b+ dv dt )o

©o

2 2

which with P=[ /" dv, hence(g))=— __/i=-—- 2 . becomes P=P0—@RT.

Jv—b dv /, vg—byp vg? by

14

For & _ P we find, therefore, 20 — Py terms with T2 etc., but not with T.
v 1%1]
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the application of his Theorem of Heat it would be possible to get to
know something concerning the vapour pressure constants, i.e. of the

dlogp L

dt = RT*
the direct calculation of log p from the equating of the thermodynamic
potentials, which leads to (3) and (3¢), immediately yields the vapour
pressure constant; i.e. it yields the frue value of this constant!), and not
the wrong value in consequence of the application of a theorem, which
is not valid at higher temperatures!

b. At very low temperatures (does not occur in Helium).

As soon as there is question of degeneration in the solid phase, the
matter is entirely different. According to c. of §II the following equation
will be found for L — that is to say when the T*-region is entered:

L:l:k_; T—-{—(m—?):l—[Aqu +(?—%)+P1+Eo] +p(v3—v,),

Voo 3 00

integration constant of the equation He overlooked, that

in which the first part refers to the vapour. When A; T* is neglected
with respect to k;T, a3/, by the side of ail, , v; by the side of vs, while
pv3s=RT is put, we find:

L:(?—PI—E0)+(k3+R)T T

The heat of sublimation continues, therefore, to be finite unto T =0,
as then evidently L, — aof, — Py — E,.
From L=T(S; —S,) follows:

L=T [{k; log T+ Rlog (v;—b) + (So)s} — */ A, T* .

i.e. when the term with T2 is neglected, and with v3;— b;—=v;=RT:p:

L=T[(;+RlogT—Rlogp+Rlog R+ (So)s]. - . (2
And from (1%) and (2?) follows for p:
logp:—R%,+k3;Rlc;gT—}—(logR—l—(STg)a), .. (3

which, at T=0, again gives p =0, dp/dt=0.

The form of the vapour pressure formula has remained the same, but
not until now has the coefficient of log T become positive, viz. ¢,: R
in the vapour; i.e. 3/, in monatomic vapours, 7/, in diatomic vapours,
etc. — but all the same never + 1.75, as NERNST c.s. always give.

) When in 1906 NERNST published his first communication in reference to this, I
immediately brought forward my objections to his views. The paper had, already, been
printed and corrected, when the Editor of the Z. Elektrochem., ABEGG, requested me
kindly but urgently, to withdraw my paper, because NERNST had “energetically” protested
against its insertion. The corrected Revision of the paper, written Nov. 10 (eingegangen
Nov. 22) 1906, has lain in a drawer of my writing-desh for 20 years now.
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If for L its value according to (1?) is written, bearing in mind that
ai/,, — Py — E, again does not yield a term with T '), we get the following
equation, taking into consideration that So——klogé —Rlogw + k
(cf. a. of § II):

logp:_ao/,,o—P 0 ktR, gT+[ k3+R—}—logR—

RT R R
_"Azoga—zogw+’3]+DT*.--,
R R
ie.
ag/v — P,—E k
logp = ——2 RTO °+ 3~£RlogT+[log§)——

, (3 bis)
( —I—R log 0):' + DT* + etc.

so that only now the vapour pressure constant C is in connection with
the so-called *“chemical’ constant through (S;); or w. From vapour-
pressure observations (if possible, see below) (S;); might be determined.

3
As according to § 2 logw = log wy — 2 log & — 3|, logm may
be written for logw, in which, therefore, w, has the same value
for all substances, we may write for C in monafomic substances

C:Iogg—{—zlogﬁ—l— élogm— 1 ——élogﬂ, ks
Wy 2 2

: — 3
3 R then being =3/,.

Accordingly we get in this case:
(o R Nadp 3
C—(logaTo—l)—FEIogm— Co+ 3 log m,

in which m is the atomic weight of the (monatomic) substance. (In
multi-atomic substances likewise C’ will be = C;+ 3/, log m, but then
C, is not = C, in monatomic substances, and besides C; will depend
on &, which quantity will be different in every substance). %)

If in solid substances at such low temperatures as those at which
(32 bis) is valid, vapour-pressure observations are possible (the vapour
pressures will mostly be so low then, that they are inaccessible to
direct measurement; at any rate so far they have not yet been measured

1) Even no terms with T2 and T3, because %: is now of the order of T3, hence !/v—!/y,

and P—Py of the order of T4 (See also the Note in a.).

2) With regard to the homogenity of the different formulae it may be pointed out, that e.g.
in (3b bis) w is a volume, hence it has the dimensions R§: 7x. Log (R:w) is therefore of the
50/"0 eﬁ k3+R lo 1 —1

RT T R ¢ "

dimensions log 7—Ilog 6, so that we may write log-%: e

which is perfectly homogeneous.
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in any substance), the limiting value Lo=ao/,,— Py — E, could be
calculated. And since from vapour-pressure observations at higher
temperatures (see under a.) the extrapolated value of a/, — P, can be
determined, E; could in this way be found experimentally.

V. Equilibrium solid-liquid.

a. At higher temperatures.

This occurs with all substances, from the triple point to not too high
pressures; and also in Helium as continuation of the low-temperature curve.

For the melting-heat Q = (E, — E,) + p (v,— v;) the following equation
is found:

A=t —k) T+ (25— P ) tpla—v). . . ®)
1 V2

in which k, — k, is negative. Q = T(SZ—S;) gives further:

Q=T [(kz—k,) log T+ Riog 225?459, —~(S9: |
But (Sp);— (So)y = (k;—k;) (1— log 8), hence we get:
— T v,—b, r

As in liquids v, — b,=RT:(p + 52/v22) is always greater than v,—b, =
=RT:(p+af,a—p) in the solid phase, because a, is much greater
than a,, v, and v, differing only comparatively little, so that even a1/, —
will be >82/v22 also if v, should be <v,; and as T soon approaches
to a limiting value above or below the triple point (according as v, is
> v, or <v,), the second term of (5%) can be slightly greater than the
first (negative), and Q can be small positive. Experimentally comparatively
small positive values are actually always found, much smaller than the
much greater heats of evaporation and sublimation.

It also follows from (42) that, as also ax/vl — DP; will always be>az/v2,
Q can become small positive. The negative term (k,—k;) T has little
influence on this, no more than p (v,—v,) for the case that v, should be
< vy, at least at not too high values of the pressure.

But at very high pressures the matter is different. Then in consequence
of the characteristic temperature & becoming higher and higher (see the
third of the paper cited, p. 683; the expression for & has, in the deno-
minator, the root from the coefficient of compressibility, which will
approach 0), T/s becomes smaller and smaller, and as the expansions into
series for E and S used, holding for comparatively great valuesof T : 4,
are no longer valid, and we then enter the T *region, other expressions
will have to be substituted for (4%) and (5%). With very great values of
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p it is then, however, not immediately to be seen from the modified equation
(42), whether Q can still remain positive with v, < v;. But it appears with
the greatest clearness from Q= T(S,—S,) =T (A, T°—Y; A, T?) =
=43 (A,—A,) T% in which A, and A, are both very small (these quan-
tities have 6,3 resp. 6,3 in the denominator), while A, in the liquid (where
the high-pressure degradation is not so far advanced as in the solid
phase) will always be > A,, that Q always remains small positive; and
not before p = o, when A, would become — A,, does it approach O.

It follows then further from the relation of CLAPEYRONd—p:—.L.
dt  T(v,—v,)
dp

that with v, > v, (the most frequently occurring case) dr will always be

positive, and will approach to +o at p—oe. For Q then approaches
4 T‘i
(02-01)623' v,—v; approaching to (7202—7101)6—3' in which o, and g,

represent the coefficients of compressibility. For

dv\ _(dp _(dv\__ T3
() =) () =5~

because A’ in the equation of state ( as regards (%) ) has likewise 63

4
in the denominator, so that v —=vy+y & o Hence CLAPEYRON's equa-~

tion becomes:
d a,—a 1
_e: z 1 ><¥'
dt  y,0,—y0," T

in which T remains finite, 0, and o, both verging on O, so that dp/
will approach o, because a and y are of the same order of magnitude
according to (24) of the second of the papers cited (p. 511). Q and Av
then approach both 0 at p — o0, but Av (on account of ¢) much more
strongly than Q. In the case v, > v, the melting-point line has, therefore,
a vertical asymptote at a finite value of T above the triple point.

AL i \

JOZJJ

i

>

Fig. 1 (vz>vy) Fig. 2 (nu< vy)
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If v, >v, (retrogressive melting-point line), dp will approach — o0, and

dt

there will be a vertical asymptote at a temperature below A.

The case might, however, also present itself, that in the latter case
the melting-point line is so strongly retrogressive, or that the triple
point is situated so low, that it enters the T*-region already at compa-
ratively low, i.e. not too high pressures. Hence not because in T: 6
the quantity 6 approaches oo at very high pressures at a temperature
that remains finite, but because T itself will approach 0 with & remaining
finite. But this case will presently be considered more closely under b.

From (4°) follows for p (Q is given by (5%)):

_(&__a _
Q Q,w A)+m k)T
pP= v, — v, '

which will be of the form p—=—c+ yT (6% bis) with v, >v,, and of
the form p—=c—yT with v, <v,, i. e. at not too high pressures.

(6%

b. At very low temperatures (occurs with v, > v; only for Helium).
Though we have already devoted a special article to this case!), we

will briefly return to this subject in connection with what we have said
above. We now find for Q:

Q= [sz+ (@—@)]—[AIT'* + (@—i>+Pl +Eo] +plor—o),
Voo VU2 Voo U1

i.e. with neglect of A,T* with respect k,T:
Q=hT+(—p—P—E)tplb—v) - - . @)

vy U2

It also follows from Q= T (S, — S,). that
4
Q=T [(k2 log T+ R log (v — b)) + (So)2) — 5 A1T3],

or with v, — b, =RT: (p+ @/,2) =RT:=/,. (because here the com-
paratively low values of p can be neglected with regard to &2/,2)) and
with omission of the term with T*:

Q+T [(k2 + R)log T — Rlog 2f,2+ Rlog R + (so)z] .. (5%
From this follows that at T—0 Q will approach to (k;+ R)T logT,

i.e. to —0. At temperatures somewhat above 0° abs. the negative value
of Q will however (in consequence of log T) soon pass through zero,
after which it will become and remain positive.

. dp Q .~ dp .
Hence it follows from 3 = Tl —op’ that at 7—0 =7 will approach

1) These Proc. 30, 244—248 (1927).
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k log T
(#, i.e. to—oo at v, >v; (Helium; see Fig.3), and to | o
2V B
at v,<v; (retrogressive melting-point lines at low temperatures; see
above the conclusion of a. and Fig. 4). The further course will now
be at once evident from the two subjoined figures and from (5%). The
position of the minimum, resp. maximum, at M will in both cases be

given by Q=0, i.e. (k; + R) log T = R log ay/,,, — R log R — (Sy)2.

Fig. 3 (Helium) (v;> v;) Fig. 4 (v <v)

From (4%) follows for p:

O—pr—(2-8_p —E)
2 (Vl Uy 1 0 - Q_sz +:C (6b)

v, — 0 UV2— Vs

p:

as aif, —a&fy,— P, — E, will be negative owing to E,. And as at
very low temperatures Q = T [k, + R) logT — C’] according to (5Y),
p assumes (v, >v,) the form

p=aTlogT—pT+y. . . . . . (6° bis)

The latest very interesting observations bij KEESOM!) extend only to
1°.2 abs., so that the minimum at about 1°,14 abs. and the subsequent
increase of pressure at still lower temperatures (portion MC in Fig. 3)
have not yet been confirmed experimentally. But the observations, and
the Fig. on p. 1142, lead us to expect a minimum somewhat below 1°,19
with pretty great certainty.

The following values namely have been found.

(boiling p.) (crit.)

T =0 05 07 08 09 1 1,19 1.42 1.60 1.83 | 2.04 2.40 2.72 3.12 3.61 4.21 5.19 —
patm: = — — — — — — 253 26.,5 27.4 29.8 || 35.7 48.6 62.8 81.5 108.8 140.5 — —
p (calc.) 54.1 31.0 27.8 26.7 25.7 25.5 25.3 26.1 27.4 29.8 || 35.7 49.6 63.1 81.5 106.5 140,5 205 —

(min.)

1) These Proc. 29, 1136—1145 (1926).
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For the higher temperatures from 2° abs. the “calculated” values of
p have been determined according to the formule p—=—c+ yT (see
(62 bis)) above at a.), to which still a term with T2 has been added, viz.

p™ =—16,4+ 14,54 T + 5,40 T? (Helium, 2° abs. and higher, provided
the pressures be not too high).

This formula is in good agreement, but would give entirely wrong
results below 2° abs. (gives much too low values for p then), because
then we gradually get into the T *-region of the solid state. Then the
formula p—=aT log T— BT + y must be used, i.e. in our case:

p*™ —=58,4 T log °T — 28,6 T + 54,1 (Helium, below 2° abs.),

which formula would yield p =541 atm. at T—=0 (dp/dt —= — o) and
presents a minimum at T — 19,14, as follows from

dp/dt = 58,4 (0,4343 + log'® T) — 28,6 = 58,4 log'® T—3,24,

which is zero at log 1T —0,0554, T'in.— 1,136, giving pmin.=25,26 atm.—
=253 atm. T

Experiment will be able to establish an appreciable rise of the pressure
not before about T'—0°8 abs., which will probably increase to more
than 50 atm. at T—01).

Remark I. If — what we consider improbable on the ground of several
facts (cf. Chapter I) — liquid Helium were degenerated between 1°,19
and 1°,83, dp/dt would have to decrease in direct ratioto T3 on decrease
of temperature. Now the quantities dp/dr between 1°,19 and 1°,42, 1°,42
Og,,28_3 : 61,11:18 : %, ie. as3,2:7,2:105
or as 1:2,25: 3,3, whereas the third powers of the middle temperatures
19,305, 1°,51, 1°,715 are in the ratio of 2,22:3,44:5,04 or as 1:1,55:2,3.
Hence the decrease follows in reality another law, in casu the T logT-
law, which is valid when the liquid Helium does not degenerate.

Remark II. According to (5¢) at T=0 also Q =0, and according to (6*)
(1 /v;—a2/v)) —(P1+Eo)

U—0

and 1°,60, etc. are proportional as

po becomes — — . Now both in the case of v, >v;,

) Note added in the English text. In a recent Article (These Proc. 30 (1927)) KEESOM
has doubt of the existence of a minimum in the neighbourhood of 1° abs. (or a little
lower, for it is very good possible that at that temperature we are still not entirely entered
dp
dt
cannot conclude this with some certainty from his Figure on the page 1142 l.c. All things
are still possible, and a decision will be reserved to further experiments.

I still remark, that KEESOM has calculated the coefficients of my formula (6% bis) from
experimental data at 1°,2, 1°,8 and 2°4 abs. and has — of course — found no agreement
(see the Fig. 2 in his recent Article). For this formula is only valid at very low tempera-
tures; for Helium certainly not higher than 1°,8, so that his coefficients are entirely wrong
and must be substituted by those, given above.

in the Tregion), and believes that will approach to 0 at T=0. But I think, one
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and of v,<<v, p, is positive. In the first case the numerator must be
negative, in the second case, however, positive. This can only be
accounted for, when we assume that — a, being greater than a, — in
the first case (Helium) aifs;—azv, yet remains smaller than P, 4 Ej;
whereas in the second case P; + E, < aifv;—a2/v,.

V1. Equilibrium between two solid phases.

Here for the first time — in consequence of the degeneration as regards
the thermic energy of both the phases at very low temperatures —
we meet with something, that can be brought in connection with a
“Theorem of Heat”. But we prefer, also here, to speak of the T'*-law
of DEBYE, according to which Q/rbecomes =0 at 7= 0, and accordingly
the line of equilibrium will present a horizontal tangent at C.

y

Fig. 5

a. At higher temperatures (e.g. at D).
We then find for Q at the transition 1 —2:

Qz(kz—kl)T+[(ﬂ—ﬂ)—wl—Pz)}rp(vz—vo, . @)

vy 2
and also

Q=T tks—k)log T+ Rleg 24|+ (Sh— (S . (@

the course of p along the transformation line according to (7%) being
determined by

p= Q= k) T—[(n =) =P =PIl g,

UV, — 0y
in which Q is given by (8?). From @:—Q— follows, that p is
’ dt T(vz—‘—vl) ’

ascending or descending according as Q and /\v have equal or opposite
signs. We shall, however, see presently that only the first case will occur.
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b. At very low temperatures (e.g. in the neighbourhood of C).

In this case we have:
Q= (A= AT+ | (=32 ) = (Pr—Po — (B ~(Eaa} [ +oler—v. 7)

1 V2
and also
Q == 1/3 (Az _— Al) Tq. . o w w w W@ (8b)

so that now Q will approach 0 proportionally to T*, hence Q/r..T?,
in consequence of which in this special case (equilibrium between two

solid phases) :—df will approach 0, since v,—v, remains finite to the end.

There is, therefore, a horizontal tangent at C.
We find for p:

p s A —A)T' =[]

UV — Uy

(9°)

According to the formula of CLAPEYRON the pressure will again be
ascending or descending, according as Q (i.e. A,—A,;) and v,—v; have
the same or opposite signs. Now A—=3/5 R n*: 3 in which 8 (cf. equation
(24) in the second of the papers cited) is proportional to v—": In consequence
of this A will be .. v":, and thus A,—A, and v,—v, will always possess
the same sign, so that the line of transformation will always be an
ascending one. (See Fig. 5).

As at T=0 in Fig. 5 we have assumed p, positive, necessarily again
according to (%) (al/v, — az/vz) — (Py — Py) —((Eo)y —(Ep)2) and v, — v,
will have to possess opposite signs. In Fig.5 v, (under lower pressure)
is probably >wv,, hence (ai/, —a/,) — etc. negative (see also the con-
clusion of § V under b.).

And now all possible cases of lines of equilibrium between gaseous,
liquid and solid phases have been treated. The NERNST-theorem is
nowhere to be found, except at the equilibrium between two solid phases,
and then only at very low temperatures. The transference of the formulae
holding at these temperatures to higher temperatures, as e.g. NERNST
does in the case of the two sulphur modifications at + 100° C. (273° abs.),
is absolutely impermissible, for these formulae are no longer valid then.
Nor is it permissible to write + 1,75 log T at higher temperatures in the
vapour-pressure formulae, the coefficient for log T always being evidently
negative then! (See § III and IV). Even at very low temperatures the
coefficient mentioned is only positive at the equilibrium solid-vapour,
and even then never + 1,75, but at least 4 2,5 (in monatomic substances).

Tavel sur Clarens (Suisse), Febr.-March 1927.





