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I. Introdudion. 

In the first of three papers 1) I drew up an equation of state for solid 
substances. which. as regards form. corresponds to that of VAN DER 
WAALS for liquids and gases. I showed that not only the values of the 
coefficients of expansion and compressibility. calculated from this equation 
of state. are in very good harmony with the va lues found experimentally. 
but also the coefficients of the pressure and the temperature of this latter 
coefficient. 

In the second paper I derived the relation which. according to a 
known thermodynamic formula. must exist at high and low temperatures 
between the second member of the equation of state (the temperature 
part) and the temperature part of the expression for the Energy. 

Finally in the third paper the expressions for Energy and Entropy 
were more closely considered. also at very low temperatures; and the 
known expression for the Entropy constant in the R T-region was derived 
from the value of the so-called elementary volume. in connection with 
the zero-point energy. 

As was already announced on p. 698 of the third paper. it remains 
reserved for this fourth (concluding) paper to draw up the different 
equations of the pressure in connection with the different heats of trans­
formation in case of coexistence of liquids resp. solid substances with 
their vapour. of liquids with solid substances. and of solid sub stances 
inter se. 

Let us first state that I think I have proved in the third of the papers 
cited. that the so-called "energy-degeneration" at very low temperatures. 
in consequence of which RT becomes A' T4, resp. ATi both in the 
equation of state and in the equation of energy. is found only with 
solid substances. in which the molecules (atoms) move round fixed 
positions of equilibrium; but that liquids and gases (unless at exceedingly 
high pressures) remain in the RT-region down to the lowest temperatures. 
i.e. do not degenerate. Por gases this is clear. because th ere at very low 

I) These Proc. 29. 95-112. 497-514 and 683-698 (1926). 



384 

temperatures the quantity (} (the so~called "characteristic" temperature of 
DEBYE) would approach 0 (cf. p. 684-685 loc. cit.) in consequence of 
the exceedingly great volume. that is if th ere could be question of 
degeneration in gases. And for liquids (with the exception of Helium). 
which can only exist at higher temperatures (above the melting point). 
th is is. af ter all. a matter of course. 

All the same - even at high temperatures - the assistance of 
the energy~degeneration has been very of ten called in (especially in 
Germany) to account for deviations in liquids. which could of course 
not be explained by the aid of the equation of state of V. D. WAALS 
with a and b constant. but which al ready found a ready explanation by 
the assumption of b=f(v). 

With regard to what has been adduced above. we may point out 
that PALACIOS MARTINEZ and K. ONNES (Comm. 164. 1923) have shown 
already before for gaseous H 2 and He. that even at 20.°5 abs. there is 
no question as yet of any quantum effect. Besides it was very recently 
proved by me in two papers 1). that also liquid Helium does not degenerate 
down to the very lowest temperatures. and that all the abnormal 
phenomena appearing there - e. g. maximum density at 2°,3 abs .• 
minimum density at 0°.5 abs .. maximum internal heat of evaporation at 
3°.4 abs.. minimum ibid. at 1°,5 abs.. etc. - can be explained in a 
natural way by the assumption that a and bare also functions of the 
temperature. This latter is. of course. likewise the case for other sub~ 
stances. but there the two decreases with T counteract each other in 
the equation of state. whereas in Helium b also decreases. but a 
increases with T. on account of the exceedingly low temperatures below 
the critica I temperature (5°.2 abs.). (c.f. p. 1305 loc. cit .. fig. 3). 

The formulae for a and b. viz. 

106 a = 39.515 + 11.178 T -1.1177 Tl (valid to slightlY past 

106 b = 1223.4 - 118.45 T + 10.356 Tl (valid to ± 2°.3 abs.) 

have been derived from known experimental data. whereas our considera~ 
tions concerning À and L are further based - besides on this material -
on the experimental vapour~pressure observations. which go as far down 
as 1°.3 abs. Hence the minimum of À at 1°.5 has been experimentally 
established. though the direct confirmation through more accurate 
measurements of the heat of evaporation L has at present not yet been 
extended so far (loc. cito p. 1333-1334). And as a minimum at 1 0,5 abs. 
is certain (± 16.5 gr. cal.. cf. p. 1331 loc. cit.). it is clear that À and L 
will approach at T= 0 to a slightly greater fini te limiting value (= 17,5 
gr. cal.). 

This is in contradiction with the opinion of some recent writers. 
who on the ground of an erroneous interpretation of the so~called 
NERNST~Theorem (which is only valid in the case of coexistence of two 

1) These Proc. 29. 1303-1316. 1317-1334 (1926). 
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solid phases. and even then only in the neighbourhood of T = O. see 
§ VI) have co me to the conclusion th at at T = 0 the quantities À and L 
would approach 0 even with the equilibria liquid~vapour (in He) and 
solid~vapour! I) 

11. Equations of stab~t and expressions for E and S. 

We will recapitulate here some formulae. of which repeatedly use 
will be made in the future. (see in particular the third of the papers 
cited of 1926. presented to the Academy). 

a. Liquids and gases for all temperatures (i f not at ex t rem el y 
h i 9 h pre s s ure s. se e § IV). 

+~_RT 
P v2 - v-b 

E = kT + (aoo - ~) 
Voo V 

S = k log T + R log (v-b)+ So 

For the sake of simplicity it has been assumed here. that a and bare 

no functions of T. _ for else a term with ~; would have to be added in 

da 
E. and a-T dt would have to be substituted for a. Besides b has been 

supposed to be no function of v either. for else a somewhat more 
complicated expression would have come in the place of log (v-b) in S. 
But for our purpose it is perfectly unnecessary to introduce these 
complications, as we wish to develop only general points of view. which 
are quite independent of the said complications. which would needlessly 
render the formulae unmanageable and difficult to survey - only for 
the sake of a quantitative accuracy unnecessary here. 

In the term aoolooo the limiting volume at T = O. p = 00 is represented 
by voo. As at high pressures the quantity a may possibly be dependent 
on v. and at all events dependent on T. we have written aoo at T = O. 
p = 00. and we shall write ao at T = O. p = O. to which the volume Vo 
corresponds. 

For the so~called Entropy constant So the following expression is found: 

So = - k log () - R log w + k. 

I) See among others an article by DE KOLOSSOWSKY of Leningrad in the J. de Ch. 
ph. of Gct. 25. 1926, (23, NO. 8), p. 728-732. The writer makes there, nota bene, use 

of a perfectly wrong formula for dL -!:..... Compare also my article to refute this in the 
dT T 

J. de Ch. ph. of Febr. 25,1927 (24, NO. 2). p. 115-119,andanarticlebyVERSCHAPPELT 
(Ibid. March 25, 1926 (23, NO. 3), p. 238-241) refuting an earlier paper of DE KOLOSSOWSKY 
(Ibid. 22, 77-79, 1925). To this we may add a still fooler article in the Zeitschr. f. 
Physik, 43, 509 (Heft 7). 

26 
Proceedings Royal Acad. Amsterdam. Vol. XXX. 
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through whieh the expression for S becomes homogeneous. viz. 

T v-b 
S = k log --0 + R log ----;;;- + k. 

In this 8 is the so~called .. characteristic" temperature in the solid 
state at v = Vo (p = 0). and w the so~called "elementary volume". i.e. the 
joint volume within the paths which the molecule centres describe round 
the positions of equilibrium at T = 0 and p = 0 in consequence of the 
still remaining "zero~point energy". This in consequence of the alternate 
action of the mutual attractions and repulsions of molecule nuclei and 
electrons. whieh still continues to exist also at T = 0 (zero~point paths). 
For mon~atomie substances (see my derivation in the third of the papers 
cited. p. 696) w is represented by (k' is R: N) : 

9 N h3 

W = 16 iTn (k' 8)'/. (2n m)'/.· 

The quantity k in the expressions for S and So is everywhere the 
specific heat at infinitely large constant volume. lts value for mon~atomie 
sub stances is = 3/2 R = 3 gr. cal. 

b. Solid substances at higher temperatures (i f not at ex t rem e I y 
high pressures). 

a RT p+--f3=-
v2 v-b 

E=kT+ (aoo_~) +p 
voo v 

S= k log T + R log (v-b) + So 

The same remark as above concerning the simplifications with respect 
to a and b. 

In the equation of state (see the first of the papers cited) a term - f3 
has now been introduced. whieh relates to the (statie) repulsive virial. 

11 
1 gave it the form f3 = ~b' but this special form is of no consequence 

v-
for what follows 1). The quantity P in the expression for E is eVidently 

The quantity So has the value indieated above; only the double 
value 3 R = 6 gr. cal. (for mon~atomie sub stances) must now be put for 
k. just as in kT and k log T in E and S. whereas w has the same 
value for all the states of aggregation. 

1) GRONEISEN and others assumed the form 11 (In' 
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c. Solid substances at very low temperatures. 

a A'Ti 
P +- -,8=--v2 v-b 

E=ATi + (aoo_~) + P + Eo 
Voo v 

S=!AP 
3 

The quantity Eo is the so~called "zero~point energy" (see above). 
Further A' in the equation of state is related to A in the equation of 
the Energy (compare for this the second of the papers cited). Both are 
functions of v. The variability of S with the volume. which at higher 
temperatures was chiefly embodied in the term R log (v-b). has now 
got into the coefficient A. 

111. Equilibrium liquid-vapour. 

(A bov e th e m e It i n g~p 0 int; 0 n 1 yin Hel i u m d 0 wnt 0 T = 0). 

If in what follows we always denote the solid state by the index 1. 
the liquid by 2. and the vapour by 3. the following equation follows 
immediately from the equalization of the thermodynamic potentials Z = 
= E + p V - T5 of Iiquid and vapour: 

(E3 - E2) + p (V3-V2) = T (53-52), i.e. L = T (53-52), 

wh en L = (E3-E2) + P(V3-V2) represents the total heat of evaporation. 
Hence we have according to a+ of § H. because the limiting values aoo/vOQ 
for the smallest volume voo possible are of course identical for Iiquid 
and vapour at T= O. p =00: 

L = (k3 - k2) T + (a2 - a3) + p (V3-V2)' 
V2 V3 

But also k2 = k3' because both refer to v = 00. Further at comparatively 
low temperatures (i.e. far enough from the critical temperature. e.g. below 
the boiling~point) the liquid volume V2 may be neglected by the side of 
the vapour volume V3 (and therefore 1/ V3 by the side of 1/ (2)' so that. 

as pV3=RT may then be put. finally simply 

(1) 

is found. In this a2/1J2 is the internal heat of evaporation and RT the 

external work. 
From L = T (52-51) follows: 

L =RT log v3-b3=RTlog P + a2
/
V22• 

02-b2 P + a3/ V32 
26* 
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as k2 is again = k3 in (k3 - k2) log T. and also (SO)2 will be = (Soh. 
the fraction af ter the log-sign having been transformed by means of the 
equation of state. At comparatively low temperatures (see above) pis. 
hciwever. neglected by the side of a2/V22. but for vapour exactly inversely 
a3/ V32 with respect to p (in consequence of the great value of V3)' so that 
we get: 

a2/ 2 
L=RTlog~. 

p 
(2) 

The equation (1) serves to determine L; equation (2) for the calcu­
lation of p. 

It follows immediately from (1). that at T = 0 [this is realizable in 
Helium; in all other substances only through extrapolation below the 
melting-point] L approaches the- finite value aa/va 1). in which ao and va 
refer to T = 0 and the corresponding vapour pressure p = O. 

From the equating of (1) and (2) follows af ter division by RT: 

(3) 

that is to say at "comparative1y" low temperatures. where the above 
mentioned simplifications are valid. We see th at the extrapolated vapour 
pressure exponentially approaches 0 at T= O. th is also being the case with 

dp/dt. The latter follows. indeed. also from dd
p = T( L ) TL. in which 
t V3-V2 V3 

V3 (exponentially) approaches more strongly to 00 than T to o. 
When (3) is written in the form 

by the expansion of a2/V2 and log a2/V22 into a series with respect to T2). 

La = aa/ va can be easily determined from vapour pressure observations. 

and therefore. if va is known at T = O. p = 0 by extrapolation. also 

1) We saw al ready in § I that DE KOLOSSOWSKY lately came to the amazing discovery, 
th at also at this equilibrium L would have to approach O! In the liquid also the constant 
of attraction a would then have to approach 0, which is of course, nonsense. We might 
communicate more discoveries of th is kind: some Italian authors have in view no less 
than the substitution of an entirely- "new" theory of Thermodynamics for the earlier 
"antiquated" one. Also these authors arrive at the most startling, and (it need hardly be 
said) the most absurd results! 

2) When a and bare assumed to he constant, one finds easily by the aid of the equation of 

state ~ = ao -RT - xo RT2 ... , in which DCa is the coefficient of expansion at T = 0, 
v ~ -

. 1 (dV) Rvo F h I a. h I ao 2 T I.e. - - = -. urt er og - IS t en = og - - 0:0 ••• 
va dt 0 a v2 v02 
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ao is known. i.e. the extrapolated limiting value of a2 at very low 
temperatures. In this way the quantity a has been calculated by me in 
many cases (also for melted metals and salts. where a varies very little 
with the temperature). 

If b = f(v) had been taken into consideration. a term with log T would 
have been added in the second member in (3). and also the vapour 
pressure constant log aa/ v02 would have become somewhat more complicated. 
especially when also a and bare considered as functions of T. But in 
any case these constants C at the equilibrium liquid-vapour have nothing 
whatever to do with the "chemicai" constants. introduced by NERNST. 
whieh are in relation with the constants of entropy 1). In the case b = f(v) 
the coefficient of log T will always be negative. and dep end in a simple way 
on the degree of variability of b with v. (Compare also my .. Zustandsgl. .. . 

p. 265-278). As ~; is = (cpb-(cpb 2
). i.e. L=Lo+ [(cpb-(cphlo T .. . . 

. dp _ L 1 dp _ L . _ La 
It follows from dt - TV3 or iJ dt - RTl' that log p will be - - RT + 
+ [(CP)3 R(cpb]o log T + etc. Now (wh en a and bare no functions of T) 

(C.b is always = (C.h; but wh en b = f(v) . (cpb in the vapour willalways 
be considerably smaller than (cph in the liquid. so that the coefficient 
of log T [(cpb - (cph at T=O (extrapolated) differs but little from this 
quantity at higher temperatures] is always negative. Hence never = + 1.75. 
as NERNST c.s. on the ground of a certain Theorem of Heat. whieh is 
absolutely misapplied here. would try to make us believe - even at 
4000 to 50000! 

IV. Equilibrium solid-vapour. 

a. At higher temperatures. 
As long as no degeneration of the energy is perceptible in the solid 

phase. and we are. therefore. still in the RT~region. th ere is no essential 
difference with the equilibrium liquid~vapour. The difh ren ce is only. that 
in the expression (1) for L (the total sublimation heat) a term - Plof 
the (statie) repulsive forces is added. according to b. of § II. and k3 
(vapour) = 3/ 2 R for mon~atomic gas es will now not be = kl (solid) = 3 R. 
We thus obtain: 

1) The vapour-pressure constants C = log 80/'0' at a and b constant are eVidently in 

relatIon to the logarithms of the critica I pressures (Pk = .!. À ~). 
27 b~ 

2) This formula, too, is only valid at "comparatively" low temperatures. Cf. Zustandsgl. 
p. 121-123, and the Article in the J. Chim. phys. against DE KOLOSSOWSKY citedin §I. 
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(2) becoming: 

L = T [ (k3 - kl) log T + R log al/vl2p {31 + (SO)3 - (SO)I]. 

which with (Soh - (SO)I = - (k3-kl) log 8 + (k3-kl) according to § 11 passes 
into 

[ ( T) all 2 - {3IJ 
L= T (k3-kl) 1 + loge +R log~- • 

in which al/vl2 - {31 will now approach 0 at T = 0 (p = 0). Por with 
l/ a l/v + RT 

{3 = v v b the equation of state. neglecting p. becomes v2 = v-b ; 

a )'/v 
so that (extrapolated) 2" becomes = - -b = {3 at T O. i.e. alv2 - {3 = O. 

v v-
And since )'/v remains finite at T = O. p = O. this must also necessarily 
be the case with v-b. (Not before p = 00 will v become = b). As the 
extrapolated value of al/ vl2 - {31 will approach 0 at T = O. p = O. this 
expression must be replaced by RT: (v-b) in (2a). in consequence of 
which we get: 

L k3 - kl ( T) T R () logp=-RT+~- 1 +log 8 +Iog +Iog~ • . 3" 

in which L is given by (I"). and k3-kl will be negative. Again both p 
and dpldt (extrapolated) will approach 0 at T = O. as Lo = aolvo - Po 
remains {inite. 

Let us write (3a) in the form 

I - al/vl-PI+k3-kl+RI T k3- kl+R+ 
ogp-- RT R og - R 

k3-k l ( 1 8) R +~- 1- og + log v_b' 

as (k3-kl) T + RT of L. divided by RT. yields the constant term 
- (k3-k l + R) : R. Hence we get: 

I __ al/vl-PI+k3-kl+RI T+[l ~_(1+k3-kll ~)J 
ogp- RT R og ogv_b R ogu • 

in which ai/VI-pl' expanded into a series with regard to T. will yield 
no term with T. so that - divided by RT - no further constant term 
is to be expected I). Accordingly again no "chemical" constants occurs in 

I) For from ~ = l/v + RT follows _ ~ ~ = _ 'Iv + RT ~ _ l/v' ~ +~, 
v2 v-b v3 dt (v-b)2 dt v-b dt v-b 

. dv [ 2a a 1 + )/v2J Ra. J: I.e. - - - + - - - = -, when - (v-b) IS put for Iv + RT. Hence 
dt v3 v2 v-b v-b v-b v2 

dv a [ 2 v-b + + J, J we get - -2 - - 1 - = R. Now according to the equation of statl' 
dt V V a 
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the vapour~pressure constant C. no more than in the case liquid~vapour. 
IE now al/vl-PI = (ao/vo-po) + aP (see Note l}is written. and further 

log Rb = log ~b + y T. in which according to the subjoined N ote vo-bo 
v- vo- 0 

is = Vo X ~. so th at log ~b becomes = log (R ~o). we get finally: 
ao vo- 0 Vo A 

I - aolvo-po +k3- kl+RI T+[l (Rao) ogp-- og og -- -
RT R Vo 1 

so that the extrapolated limiting value Lo = aolvo - Po can be calculated 
from vapour pressure observations. At present ao can only be determined. 
if Po should be known. 

The coefficient of log Tagrees with dL/dt=k3-kl + R according to 
(la): which also ensues from dL/dt=(cph-(cp)\=(k3+R)-kl• so that 

. . dlogp L k3-kl +R T 
also on mtegratIon of dl RT2 a term --R-- log duly occurs. 

IE b is still dependent on v (in solid substances in a much smaller 
degree than in liquids). some supplementary terms must be added. But 
in any case the coefficient of log T will be negative again (in monatomic 
substances = 5/2 R - 3 R = - 1/2 R. or greater negative. when b = f (v) 
is assumed); but never + 1.75. For it is entirely disregarded by NERNST 
and many others. that the expansions into series. holding at verg low 
temperatures in the T4~region. are not valid at higher temperatures in 
the RT~region. and vice versa. In the intermediate region. where neither 
of the expansions into series are valid. only the complete DEBYE~formula 
for E and Scan be used. The impermissible application of expansions 
into series. holding only at verg low temperatures. also at much higher 
temperatures: and besides the assumption of Energy~degradation also 
for liquids and gases. have been the two greatest errors of the adherents 
of the Theorem of Heat. 

Besides. it was a serious error of NERNST's to think that merelg by 

eVidently vo-bo is = !:.- at T = O. so that (~) = Rvo] __ 1_ = Rvo] ~. And as 
Vo a dt 0 a 1 _ 1/. a ba 

~ = !. _ ~ (dv) T . .. , ~ becomes =!!. _ ~ RT. Further P = Po + ( dP ~ ) T . ... 
V Vo v02 dt 0 v Vo bo dv dt 0 

which with P=rOO~dv,hence(dP)=_ 1/.0 =- a2, becomes P=Po-~RT. 
. v-b dv 0 vo-bo vo bo 
• 

For ~ - P we find. therefore, ~ - Po + terms with T2 etc., but not with T. 
v Vo 
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the application of his Theorem of Heat it would be possible to get to 
know something concerning the vapour pressure constants. i.e. of the 

. d log p _ L 
integration constant of the equatIon d t - RT2' He overlooked. that 

the direct calculation of log p from the equating of the thermodynamic 
potentials. which leads to (3) and (3a). immediately yields the vapour 
pressure constant; i.e. it yields the true value of this constant I). and not 
the wrong value in consequence of the application of a theorem. which 
is not valid at higher temperatures! 

b. At very low temperatures (does not occur in Helium). 
As soon as there is question of degeneration in the solid phase. the 

matter is entirely different. According to c. of § 11 the following equation 
will be found for L ~ that is to say when the Ti~region is entered: 

in which the first part refers to the vapour. Wh en AI Ti is neglected 
with respect to k3 T. a3/ V3 by the si de of al/ VI' VI by the side of V3. while 
PV3 = RT is put. we find: 

L=(:: -PI -Eo) + (k3 + R) T' 
The heat of sublimation continues. therefore. to be fini te unto T = O. 

as th en eVidently Lo = BO/VO - Po - Eo. 
From L = T (S3 - SI) follows: 

L= T [lk3 log T + R log (V3-b3) + (Soh 1- "/3 AlP]. 

i.e. wh en the term with T3 is neglected. and with V3 - b3 = V3 =RT: p : 

L = T [(k3 + R) log T - R log p + R log R + (Soh J. 
And from (1 b) and (2b) follows for p: 

I L k3 + R . T ( R (Soh) og p = - lft+ -R- log + log + R ' 

which. at T = O. again gives p = O. dp/dt = O. 
The form of the vapour pressure formula has remained the same. but 

not until now has the coefficient of log T become positive. viz. Cp: R 
in the vapour; i.e. 5/2 in monatomic vapours. 7/ 2 in diatomic vapours. 
etc. ~ but all the same never + 1.75. as NERNST c.s. always give. 

I) When in 1906 NERNST published his flrst communication in reference to this. I 
immediately brought forward my objections to his views. The paper had. already. been 
printed and corrected, when the Editor of the Z. Elektrochem., ABEGG. requested me 
kindly but urgently, to withdraw my paper, because NERNST had "energetically" protested 
against its insertion. The corrected Revision of the paper. written Nov. 10 (eingegangen 
Nov. 22) 1906, has lain in a drawer of my writing-desh for 20 years now. 
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If for L its value according to (1 b) is written. bearing in mind th at 
BI/VI - PI - Eo again does not yield a term with TI) . we get the following 
equation. taking into consideration that Sa = - k log 8 - R log W + k 
(cf. a. of § 11): 

I - Bolvo-Po-Eo+k3+RI T+[ k3+R+1 R ogp - - - og - -- og -- RT R R 

- ~ log 8 - log W + ~ ] + DT1 ... • 

i.e. 

Bolvo - Po-Eo k3 + R [R 
logp=- RT +-r logT+ loga;-

- ( 1 + ~ log 8 ) ] + DT1 + etc. 

(3b bis) 

sa that only now the vapour pressure constant C is ~n connection with 
the so~called "chemical'" constant through (Soh or :w . From vapour~ 
pressure observations (if possible. see below) (Soh might be determined. 

. 3 
As accordmg to § 2 log w = log Wo - "2 log 8 - 3/2 log m may 

be written for log w. in which. therefore. Wo has the same value 
for all substances. we may write for C in monatomic sub stances 

C = log ~ +~ log 8 + ~ log m - 1 - ~ log 8. i then being = 3/2' 

Accordingly we get in this case: 

( 
R ) 3 3 C = log Wo - 1 + 2" log m = Co + i log m. 

in which m is the atomie weight of the (monatomic) substance. (In 
multi~atomic substances likewise C' will be = C~ + 3/2 log m. but then 
C~ is not = Co in monatomic substances. and besides C~ will depend 
on 8. which quantity will be different in every substance). 2) 

If in solid sub stances at such low temperatures as those at which 
(3b bis) is valid. vapour~pressure observations are possible (the vapour 
pressures will mostly be sa low then. that they are inaccessible to 
direct measurement; at any rate sa far they have not yet been measured 

I) Even no terms with T2 and T3. because ~ is now of the order of T3. hence 1/._1/ •• 
dt 

and P-Po of the order of Ti. (See also the Note in a.). 
2) With regard to the homogenity of the different formulae it may be pointed out, th at e.g. 

in (3b bis) w is a volume, hence it has the dimensions RIJ: 7f". Log (R: w) is therefore of the 

d· . I [IJ h . [p a./ •• etc. +k3+R[ T 1 ImenSlons og 7f"- og , so t at we may wnte og - = - --- -- og -IJ - • 
7f" RT R 

whïch is perfectly homogeneous. 
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in any suhstance). the limiting value Lo = ao/ "Q - Po - Eo could he 
calculated. And since from vapour~pressure ohservations at higher 
temperatures (see under a.) the extrapolated value of ao/ "0 - Po can he 
determined. Eo could in this way he found experimentally. 

V. Equilibrium solid .. liquid. 

B. At higher temperatures. 
This occurs with all suhstances. from the triple point to not too high 

pressures; and also in Helium as continuation of the low~temperature curve. 
For the melting~heat Q = (E2 - EI) + P (V2 - VI) the following equation 

is found: 

0= (k2 - kl) T + (al - a2 - PI) + P (V2 - VI)' (ia) 
VI V2 

in which k2 - kl is negative. 0 = T (S2-St) gives further: 

But (Soh- (SO)I = (k2- kt) (1- log 8). hence we get: 

0= T [(k2- kt) ( 1 + log ~) + R log~: ::J (5a
) 

As in liquids V2 - b2 = RT: (p + a2/"22) is always greater than Vt-bt = 
= RT: (p + at/ "Il- (3) in the solid phase. hecause al is much greater 
than a2' VI and V2 differing only comparatively little. 50 that even al/ "12 - (3 
will he > a2/ "22 also if V2 should he < VI; and as T soon approaches 
to a limiting value ahove or helow the triple point (according as V2 is 
> vlor < VI)' the second term of (5a ) can he slightly greater than the 
first (negative). and 0 can he small positive. Experimentally comparatively 
small positive values are actually always found. much smaller than the 
much greater heats of evaporation and suhlimation. 

It also follows from (4a
) that. as also al/"I - PI will always he> a2/"2' 

o can become small positive. The negative term (k2-k l ) T has little 
influence on this. no more than p (V2-VI) for the case that V2 should he 
< VI. at least at not too high values of the pressure. 

But at very high pressures the matter is different. Tllen in consequence 
of the characteristic temperature 8 hecoming higher and higher (see the 
third of the paper cited. p. 683; the expression for 8 has. in the deno~ 
minator. the root from the coefficient of compressihility. which will 
approach 0). T/s hecomes smaller and smaller. and as the expansions into 
series for E and Sused. holding for comparatively great values of T: 8. 
are no longer valid. and we then enter the T4~region. other expressions 
will have to he suhstituted for (4a) and (5a). With very great values of 
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P it is then. ho wever. not immediately to be seen from the modified equation 
(4:"). whether Q can still remain positive with V2 < VI' But it appears with 
the greatest clearness from Q = T(S2-SI) = T(4/3A2 P_4/3 AI P) = 
= 4/3 (A 2-AI) Ti. in which A 2 and AI are both very small (these quan~ 
tities have Ol resp. 0 1

3 in the denominator). while A 2 in the liquid (where 
the high-pressure degradation is not so far advanced as in the solid 
phase) will always be > AI' that Q always remains small positive; and 
not before p = 00. when A 2 would become = AI. does it approach O. 

It follows then further from the relation of CLAPEYRON ddP = T( Q )' 
t V2-VI 

that with V2 > VI (the most frequently occurring case) ~~ will always be 

positive. and will approach to + 00 at P = 00. For Q then approaches 
T4 T4 

(a2-a l) 0 3' V2-VI approaching to (1'202-1'IOd 0 3' in which 02 and 0l 

represent the coefficients of compressibility. For 

(~;)p (:)'X-(~;l=1' ~33 0, 

because A I in the equation of state ( as regards (:)) has likewise {P 

Ti 
in the denominator. so that V = Vo + l' 03 0. Hence CLAPEYRON's equa~ 

tion becomes: 

dp_ a2- a l X~ 
dt 1'2°2 - 1'1 0l T' 

in which Tremains finite. 02 and 0l both verging on 0, so that dp/dt 

will approach 00. because a and l' are of the same order of magnitude 
according to (24:) of the second of the papers cited (p. 511). Q and 6v 
then approach both 0 at p = 00. but 6v (on account of 0) much more 
strongly than Q. In the case V2 > VI the melting~point line has, thereforè, 
a vertical asymptote at a finite value of T above the triple point. 

~ ~ ~ j(. ~ I 

~ ~ I 

T :r 
Fig. 1 (V2> VI) Fig. 2 (V2 < "I) 
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dp . 
If V2 > VI (retrogressive melting~point line). dt will approach - 00. and 

there will be a vertical asymptote at a temperature below A. 
The case might. however. also present itself. that in the latter case 

the melting~point line is so strongly retrogressive. or that the triple 
point is situated so low. that it enters the T'~region already at compa~ 
ratively low. i. e. not too high pressures. Hence not because in T: (} 
the quantity (} approaches 00 at very high pressures at a temperature 
that remains fini te. but because T itself will approach 0 with (} remaining 
fini te. But this case will presently be considered more c10sely under b. 

From (4a) follows for p (Q is given by (Sa)): 

Q - (al _ al _ PI) + (kl - k2) T 
VI V2 

p= • 
V2- V ) 

which will be of the form p = - c + yT (6a bis) with V2 > V). and of 

the form p = c - rT with V2 < V). i. e. at not too high pressures. 

b. At very low temperatures (occurs with V2> V) only for Helium). 
Though we have al ready devoted a special article to this case I). we 
will briefly return to this subject in connection with what we have said 
above. We now find for Q: 

i. e. with neglect of A) Ti with respect k2 T: 

Q = k2 T + (a) - a2 - PI - Eo) + p (V2 - v)) . (4b) 
V) V2 

It also follows from Q = T (S2 - SI)' that 

Q = T [(k2 Iog T + R log (V2 - b2) + (Soh) - ~ AI T3 J. 
or with V2 - b2 = RT: (p + a2/V22) = RT: a2/vi (because here the com~ 
paratively low values of p can be neglected with re gard to a2/ v22) and 
with omission of the term with Ti: 

Q + T [(k 2 + R) log T - R log a2/V22 + R log R + (Soh] 

From this follows that at T = 0 Q will approach to (k2 + R) T log T. 
i. e. to - O. At temperatures somewhat above 0° abs. the negative value 
of Q will ho wever (in consequence of log T) soon pass through zero. 
af ter which it will become and remain positive. 

Hence it follows from ddP = T (Q ) • that at T 0 ddP will approach 
t V2 - VI t 

I) These Proc. 30. 2H-248 (1927). 
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(k2 + R) log T . 
-=------"----, I. e. to - 00 at V2 > VI (Helium; see Fig. 3), and to + 00 

V2- V I --

at V2 < VI (retrogressive melting~point lines at low temperatures; see 
above the conclusion of a. and Fig. 4). The further course will now 
be at on ce evident from the two subjoined figures and from (5b). The 
position of the minimum, resp. maximum, at M will in both cases be 
given by Q = 0, i. e. (k2 + R) log Tm = R log aiV22 - R log R - (Soh. 

Fig . 3 (Helium) (V2 > VI) 

, , 
'1' 

From (4b) follows for p: 

p= Q -k,T- (~-~ -P, -Eo) _ Q_ k,T +:C. (6') 
V2 - VI V2- VI 

as al/VI - a2/V2 - PI - Eo will be negative owing to Eo. And as at 
very low temperatures Q - T [k2 + R) log T - C] according to (5 b

), 

p assumes (V2 > vd the form 
p = a T log T - f3T + r . (6& bis) 

The latest very interesting observations bij KEESOM I) extend only to 
1 °.2 abs., so that the minimum at about 1°,14 abs. and the subsequent 
increase of pressure at still lower temperatures (porti on Me in Fig. 3) 
have not yet been confirmed experimentally. But the observations, and 
the Fig. on p. 1142, lead us to expect a minimum somewhat be10w 1°,19 
with pretty great certainty. 

The following va lues namely have been found. 

T = 0 0.5 0.7 0.8 0.9 

palm. = _ 

(boiliag p.) (crlt.) 

1.19 1.42 1.60 1.83 2.04 2.40 2.72 3.12 3.61 4.21 5.19 

25.3 26.5 27.4 29.8 35.7 48.6 62.8 81.5 108.8 140.5 

p (caJc.) 54.1 31.0 27.8 26.7 25.7 25.5 25.3 26.1 27.4 29.8 11 35.7 49.6 63.1 81.5 106.5 140,5 205-
(mia.) 

I) These Proc. 29. 1136-1145 (1926). 
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For the higher .temperatures from 20 abs. the "calculated" values of 
p have been determined according to the formule p = - c + rT (see 
(6~ bis)) above at a.), to which still a term with T2 has been added. viz. 

palm. = - 16.1 + 11,51 T + 5.10 T2 (Helium. 20 abs. and higher, provided 

the pressures be not too high). 

This formula is in good agreement. but would give entirely wrong 
results below 20 abs. (gives much too low values for p then). because 
then we gradually get into the T4~region of the solid state. Then the 
formula p = a T log T - fJ T + r must be used. i.e. in our case: 

palm. = 58.1 T log lOT - 28.6 T + 54.1 (Helium. below 20 abs.). 

which formula would yield p=54.1 atm. at T=O (dp/dt=-oo) and 
presents a minimum at T= 10 .14. as follows from 

dp/dt = 58.1 (0.4313 + loglO T) - 28.6 = 58.1 loglO T -3.24. 

which is zero at log IOT=0.0551. T min.= 1.136. giving Pmin.=25.26 atm.= 
= 25.3 atm. --

Experiment will be able to establish an appreciable rise of the pressure 
not before about T = 00 ,8 abs.. which will probably increase to more 
than 50 atm. at TOl). 

Remark I. If - what we consider improbable on the ground of several 
facts (cf. Chapter I) - liquid Helium were degenerated between 10 ,19 
and 10 ,83, dpldt would have to decrease in direct ratio to T3 on decrease 
of temperature. Now the quantities dp/dt between 10 ,19 and 10 .12, 10 .12 

d l a 60 . 1 0.8 1.3 2,4. 32 72 105 an "etc. are proportlOna as 0,23: 0,18 : 0,23' I.e. as . : ,: . 

or as 1 : 2,25 : 3.3, whereas the third powers of the middle temperatures 
10 ,305,1 0 ,51. 10 ,715 are in the ratio of 2.22:3.44:5.04 or as 1: 1.55:2.3. 
Hence the decrease follows in reality another law. in casu the T log T~ 
law, which is valid wh en the liquid Helium does not degenerate. 

Remark Il. According to (Sb) at T=O also Q=O, and according to (6b) 
(al/V -B2/V2)-(PI+Eo} 

Po becomes = - I • N OW both in the case of V2> VI 
V2-V I 

I) Note added in the English text. In a recent Article (These Proc. 30 (1927)) KEESOM 

has doubt of the existence of a minimum in the neighbourhood of la abs. (or a little 
lower. for it is very good possible that at that temperature we are still not entire1y entered 

in the T4-region). and believes that ~~ will approach to 0' at T = O. But I think. one 

cannot conclude this with some certainty from his Figure on the page 1142 l.c. All things 
are still possible. and a decision will be reserved to further experiments. 

I still remark. that KEESOM has calculated the coeflicients of my formula (6b bis) from 
experimental data at 10 .2. 10 ,8 and 20 .4 abs. and has - of course - found no agreement 
(see the Fig. 2 in his recent Article). For this formula is only valid at verg [ow tempera­
tures: for Helium certainly not higher than 10 .8. so that his coefficients are entirely wrong 
and must be substituted by those. given above. 
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and of V2 < VI Po is positive. In the Brst case the numerator must be 
negative, in the second case, however, positive. This can only be 
accounted for, when we assume that - al being greater than a2 -- in 
the Brst case (Helium) 81/"I-a2/"2 yet remains smaller than PI + Eo; 
whereas in the second case PI + Eo < 81/"1-B2/"2' 

VI. Equilibrium between two solid phases. 

Here for the Brst time -- in consequence of the degeneration as regards 
the therm ic energy of both the phases at very low temperatures -­
we meet with something, that can be brought in connection with a 
"Theorem of Heat". But we prefer, also here, to speak of the T.f~law 
of DEBYE, according to which Q/ T becomes = 0 at T = 0, and accordingly 
the line of equilibrium will present a horizontal tangent at C. 

Fig. 5 

a. At higher temperatures (e.g. at D). 
Wethen find for Q at the transition 1 .... 2 : 

Q=(k2 - k l ) T+ [(:: - :~) - (PI -P2)J + P (V2 -VI)' • (7a
) 

and also 

Q = T [(k2 - k l ) log T + R log V2 - :2J + (Soh - (SO)I' . (8a
) 

VI- 1 

the course of p along the transformation line according to (7a ) being 
determined by 

Q - (k2 - k l ) T - [(81 /"1 _B2/d - (PI - P 2)] 
p= , . . (9a) 

V2- V I 

in which Q is given by (8a). From ddP = T( Q-) follows, that pis 
t V2-VI 

ascending or descending according as Q and 6v have equal or opposite 
signs. We shall, however, see presently that only the Brst case will occur. 
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b. At very low temperatures (e.g. in the neighbourhood of C). 
In this case we have: 

Q=(A2-AI)P+ [(:: - :~)-(PI-P2)-l(Eoh -(Eoh! ]+P(V2-VI). (7b
) 

and also 

so that now Q will approach 0 proportionally to Ti, hence Q/T," T3. 
in consequence of which in this special case (equilibrium between two 

solid phases) ~~ will approach O. since V2-VI remains finite to the end. 

There is. therefore. a horizontal tangent at C. 
We find for p: 

According to the formula of CLAPEYRON the pressure will again be 
ascending or descending. according as Q (i.e. A 2-A I ) and V2-VI have 
the same or opposite signs. Now A=3/5 R n 4 : (P. in which () (cf. equation 
(24) in the second of the papers cited) is proportional to v-'I,. In consequence 
of this A will be :. v'I,. and thus A 2-AI and V2-VI will always possess 
the same sign. so th at the line of transformation will always be an 
ascending one. (See Fig. 5). 

As at T = 0 in Fig. 5 we have assumed Po positive. necessarilyagain 
according to (9b) (al/VI - a2/V2) - (PI - P2) -((Eo)1 -(Eah) and V2 - VI 
will have to possess opposite signs. In Fig. 5 V2 (under lower pressure) 
is probably > VI. hence (al/VI - a2/V2) - etc. negative (see also the con~ 
clusion of § V under b.). 

And now all possible cases of lines of equilibrium between gaseous. 
liquid and solid phases have been treated. The NERNsT~theorem is 
nowhere to be found, except at the equilibrium between two solid phases. 
and then only at very low temperatures. The transference of the formulae 
holding at these temperatures to higher temperatures. as e.g. NERNST 
does in the case of the two sulphur modifications at ± 100° C. (273° abs.). 
is absolutely impermissible. for these formulae are no longer valid then. 
Nor is it permissible to write + 1.75 log T at higher temperatures in the 
vapour~pressure formulae. the coefficient for log T always being evidently 
negative th en ! (See § 111 and IV). Even at very low temperatures the 
coefficient mentioned is only positive at the equilibrium solid~vapour. 
and even then never + 1.75. but at least + 2.5 (in monatomic substances). 

Tavel sur Clarens (Suisse). Febr.~March 1927. 




