Mathematics. - A Representation of the Congruence of Reye. By Prof. Jan de Vries.
(Communicated at the meeting of September 24, 1927).

1. The congruence van Reye is formed by the twisted cubics k^{3} that pass through five fixed points B_{k}. Through a point M chosen at random there passes one bisecant b of a k^{3}; let the intersection P of b, with the fixed plane Φ be considered as the image of k^{3}. The curve k_{0}^{3} through M has as images any point of the conic c^{2} in which Φ is cut by the cone that projects k_{0}^{3} out of M. The intersection C_{k} of $M B_{k}$ is the image of each k^{3} that has $M B_{k}$ as bisecant.
2. The points P of a line l in Φ are the images of the curves k^{3} that have the rays of a plane pencil (b) as bisecants. These curves form a surface Λ of which we may find the degree by examining the intersection of Λ with the plane $\beta_{123} \equiv B_{1} B_{2} B_{3}$. If D_{45} is the intersection of of $B_{4} B_{5}$ with the plane λ of (b), B_{45} the intersection of $B_{4} B_{5}$ with β_{123}, E_{45} the intersection of β_{123} with $M D_{45}$, the conic $B_{1} B_{2} B_{3} B_{45} E_{45}$ together with the line $B_{4} B_{5}$ forms a k^{3}, of which the bisecant $D_{45} E_{45}$ belongs to the plane pencil (b). The intersection of Λ with β_{123} consists, accordingly, of this conic and the lines $B_{1} B_{2}, B_{2} B_{3}$ and $B_{3} B_{1}$; the surface Λ is of the fifth degree and has triple points in B_{k}. The image of Λ^{5} is the point range on l; as l contains two points of c^{2}, k_{0}^{3} is a nodal curve of Λ^{5}.

The locus of the pairs of points that the curves k^{3} of Λ have in common with the rays of (b), is a curve λ^{4} with node M; together with a straight line m it forms the intersection of Λ with the plane λ of (b); m joins the other points of intersection of k_{0}^{3} and the plane λ. Evidently Λ may also be considered as the locus of the curves k^{3}, that cut a bisecant m of k_{0}^{3}.
3. If l passes through the singular point C_{1}, Λ consists of the quadratic cone K_{1}^{2}, that has $M B_{1}$ and the four lines $B_{1} B_{k}$ as generatrices and a surface Λ_{1}^{3} with four conical points B_{k}.

The point range on $c_{12} \equiv C_{1} C_{2}$ is the image of the figure consisting of the cones K_{1}^{2}, K_{2}^{2} and the plane β_{345}. For any conic through B_{3}, B_{4}, B_{5} and the passage B_{12} of $B_{1} B_{2}$ forms a k^{3} with $B_{1} B_{2}$ of which a bisecant $D_{12} E_{12}$ passes through M and cuts Φ in a point of c_{12}.
4. The curves k^{3} that cut an arbitrary line g, form a surface Γ^{5} with
triple points $B_{k}(\S 2)$. This contains, therefore, two curves k^{3} that also cut $M B_{k}$ outside B_{k}, and that, accordingly, have their images in C_{k}. As g does not generally cut the curve k_{0}^{3} the image of Γ^{5} can only meet the conic c^{2} in the points C_{k}. Hence the image curve is a γ^{5} with double points C_{k}; it has a sixth double point owing to the k^{3} that cuts g twice.

Two image curves γ^{5} have five points in common outside C_{k}; these are the images of the five k^{3} that cut g and g^{\prime}. The corresponding surface Γ^{5} have the ten lines $B_{k} B_{l}$ in common besides these five k^{3}.

If g rests on k_{0}^{3}, γ^{5} consists of c^{2} and a rational γ^{3}. If g is a bisecant of k_{0}^{3}, γ^{5} is replaced by the c^{2} which must be counted twice, and a line l.

The surfaces Λ^{5} corresponding to two lines l and l^{\prime}, have a k^{3} in common besides the ten lines $B_{k} B_{l}$ and the double curve k_{0}^{3}; this k^{3} is represented in the point $l l^{\prime}$.
5. The k^{3} that cut a given conic s^{2}, form a surface Σ^{10}; for β_{123} contains two conics k^{2} through B_{1}, B_{2}, B_{3} and B_{45} that meet s^{2} so that $B_{4} B_{5}$ is a double line of Σ and the intersection of Σ with β_{123} consists of these two k^{2} and the double lines $B_{1} B_{2}, B_{2} B_{3}, B_{3} B_{1}$. As B_{k} is a sextuple point on Σ^{10}, there are four k^{3} of Σ that have the line $M B_{k}$ as bisecant. Hence the image curve σ of Σ has five quadruple points C_{k}; as it cannot cut c^{2} outside C_{k}, the image of Σ is a σ^{10}. As there exists a $(1,1)$ correspondence between the point ranges an c^{2} and σ^{10}. σ^{10} is rational and has, therefore, six more double points. Accordingly there are six curves k^{3} that cut s^{2} twice.

If s^{2} meets the curve k_{0}^{3}, σ^{10} is replaced by c^{2} and a σ^{8} with triple points C_{k}. If s^{2} rests on k_{0}^{3} in two points, the c^{2}, which must be counted double, is supplemented by a rational σ^{6} with double points in C_{k} and five double points outside c^{2} owing to the five k^{3} besides k_{0}^{3} that cut the conic s^{2} twice.

If s^{2} cuts the curve k_{0}^{3} three times, it replaces three of the six k^{3} that meet s^{2} twice; the remaining three are represented in the double points of the rational σ^{4}, that together with the c_{22}, which must be counted three times, forms the image of the system Σ.
6. The k^{3} that touch a given plane ψ, form a surface Ψ^{10}; its intersection with β_{123} consists of the two conics k^{2} that touch ψ and the three double lines $B_{1} B_{2}, B_{2} B_{3}, B_{3} B_{1}$. The base points B_{k} are again sextuple so that the image curve has quadruple points in C_{k} and is a ψ^{10}.

As β_{123} contains two points of contact of figures k^{3} that belong to Ψ, the locus of the points of contact of the k^{3} touching ψ is a conic ψ^{2}. The plane ψ has also a rational ψ^{6} in common with Ψ^{10}; this has ten double points in the intersections of the lines $B_{k} B_{l}$.

The image curve ψ^{10} is rational and has, therefore, six double points
outside c^{2}; these are the images of six k^{3} that osculate the plane ψ. The curves ψ^{2} and ψ^{6} touch each other in the six points where ψ is osculated by curves k^{3}.

The surface Ψ^{10} is formed by the curves k^{3} that rest on the conic ψ^{2}; hence it belongs to the surfaces Σ^{10} discussed in $\oint 5$. As any plane contains a rational ψ^{6} besides a conic ψ^{2}, Ψ^{10} may also be considered as the locus of the k^{3} resting on a ψ^{6}.
7. An arbitrary conic φ^{2} in the plane φ is the image of a system Φ of curves k^{3} that have the generatrices of a quadratic cone as bisecants. The image curve γ^{5} of the system of the k^{3} that cut a line $g(\S)$, has ten points in common with φ^{2}; accordingly the system Φ lies on a surface Φ^{10}.

The line $c_{k l}$ (§3) cuts φ^{2} in the images of two composite k^{3}. Consequently Φ^{10} has two conics and three double lines in common with β_{123}; this proves that the surface has sextuple points in the base points B_{k}. The four points of intersection of φ^{2} with c^{2} show that the curve k_{0}^{3} is quadruple on Φ^{10}.
8. Let Ω be the system of the k^{3} that have the generatrices of a quadratic cone ω^{2} with vertex O as bisecants; they form an Ω^{10} with sextuple points B_{k} and a quadruple curve (the k^{3} that passes through O). This surface has ten curves k^{3} in common with the surface Λ^{5} of the k^{3} that rest on a bisecant of $k_{0}^{3}(\S 2)$ and are represented by the points of a line l. This image curve of the system Ω is, therefore, a curve ω^{10}.

As ω^{2} contains two generatrices resting on $B_{1} B_{2}$, there lie two conics through $B_{3}, B_{4}, B_{5}, B_{12}$ on Ω^{10}; hence c_{12} has two points besides C_{1} and C_{2} in common with ω^{10} and B_{1} and B_{2} are quadruple points. Consequently the image curve $\gamma^{5}\left(C_{k}^{2}\right)$ has ten points besides C_{k} in common with ω^{10}; they are the images of the ten k^{3} that rest on the line $g(\S 4)$.

The curve ω^{10} has a sixth quadruple point; it is the image of the k^{3} that passes through O; the singular points of the ω^{10}, as naturally rational, are, therefore, represented by six quadruple points.

