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§ 1. In working out a diffusion~problem connected with the adsorption~ 
phenomenon of the molecules of very rare gases on a glass~wall we 
found a simple relation between the area of the cross section of an infinite 
long cylindrical tube, the circumference of this section and the mean 
distance traversed by a molecule between two collisions with the wall 
of the tube. It was assumed that the molecules did not collide with each 
other and that they left the wall according to the "cosine~law". This 
law corresponds to a random distribution of moving points in space and 
implies that the number of molecules which passes in unit time through an 
element of surface in a certain direction, is proportional to cos {J. if {J 

is the angle between the perpendicular to the element and the said 
direction. 

On closer inspection of the derivation of this relation it turned out 
to be a particular case of a much more general theorem, which can be 
stated in the following way. 

The mean chord of a "body" with "volume" V m and "area" Sm in 
a m~dimensional space is given by 

(1) 

with 

1 1 . 3 . 5 . ... .... (m - 1) 
Am = () .:Tl 2.4 ........ m-2 

for even m. and 

Àm = 2 . 4.6 ........ (m-I) .2 
1 . 3 . 5 ........ (m - 2) 

for odd mI). 
The formula (I) also holds for the mean length of the arcs which are 

1) We find e.g. for a m-dimensiona1 sphere 

lim (!m= O. 
m= 00 
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cut off from the great circles of a rn~dimensional spherical space by a 
body in this space I). 

A praof of the theorem for rn = 3 and non~curved spaces does not 

offer difficulties. The defininiton of e is 
J Je cos {} d Q d S 

S Q 
2 

e J~rcos{}dQdS 
s !} 

2 

(2) 

where {} is the angle between the chord e and the normal to the 
element of surface d S; d Q is an element of the complete solid angle Q. 
Considering that d Q = d {} sin {} d g; and that e cos {} d S represents an 
element of volume d V with base d S and length e. extending in the 
direction {}. we find 
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S.2:rt· 2 

4V 
S' (3) 

in agreement with (1). The factor 2 in, the numerator in front of V is 
inserted because in the integration over the total surface S each element 
d V is counted twice. A similar proof holds for more~dimensional spaces. 

§ 2. The second proof of (3). which emerged from our considerations 
about the said adsorption. is much simpier. 

For this purpose we write €i = 4 VIS in the form 

1 e 
S. 4" nu. u= V n . (4) 

I) We find for the area of a segment from a m-dimensional sphere. interpreted 
as a (m-l)-dimensional volume. generally 

lirn em-I =0. 
m=oo 

but 

l?m-I =:rtR. 
for each value of m > J. if the segment coincides with half a sphere. R is the radius of 
the sphere. 
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n is the number of molecules in unit volume and u their velocity. We 
assume namely that all molecules move equally fast and do not interact 
with each other. In the dynamical theory of gases it is shown th at 
y=(nu) /4 molecules strike the unit of surface in unit time. independent 
of the distribution of the velocities of the molecules and therefore also if 
all the molecules have the same velocity. Thus S . (nu) /4 is the number 
of molecules which leaves the surface in unit time. Considering that e/u 
represents the mean time between two collisions of a molecule with the 
surface. it is easily seen that both members of the equation (4) give the 
number of molecules present in the volume. Simplification of the identical 
relation (4) gives the theorem (3). 

For more-dimensional spaces the proof remains unchanged. Only the 
formula y = nu/4 must be replaced by y = nufJ .. m. which can be easily 
demonstrated. 

These considerations are not only much simpier than those of 
the preceding paragraph but mayalso be generalised in an easy way. 
It is namely evident that nothing essential in this proof changes if we 
consider a number of molecules moving in a spherical surface only. V 
becomes the area inside a certain closed curve on the sphere. S the total 
length of this curve and the factor 4 is to be replaced by n. in agreement 
with formula (1) for a 2-dimensional (be it curved) space. 

In this case however the formula is limited in the way that no great 
circles of the sphere (the orbits of the molecules) may be situated inside 
the curve in question. This is a consequence of equation (4). which 
expresses that the molecules present inside V must come from the wall 
S. Moving about inside V must be impossible. 

§ 3. Finally we point out that our theorem still holds in all linear 
and spherical spaces if we suppose the sets of straight lines and great 
circles (the tracks of the molecules) replaced by sets of curves of a 
different shape. of course with the limitation mentioned at the end 
of § 2. 

Hence. with the aid of (1) . we find for the mean length of a helix 
inside a sp here 

In calculating th is mean value wê must in the first place consider that 
an equal number of helices goes out in every direction (in a little 
elementary solid angle). but in the second place that the planes of 
osculation of these helices are distributed in a regular way about th is 
direction. If the curve is not movable in itself as the helix we must 
divide the curve in elements of equal leng th and take the mean value 
of e for all the possible positions of the curve. Proceeding in this way 
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we apply the only method which agrees with a really random distribu~ 

tion of curved lines in a space. 
We were not yet able to give an analogical proof as in § 1 of the 

th eo rem in its full generality, without the time as a parameter, as in § 2. 
In the accessible literature 1) we have only found some very special 

cases of the general theorem. 
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