Mathematics. - Linear Adjustment of a Set of Pairs of Numbers $\left(x_{k}, y_{k}\right)$. By Prof. M. J. van Uven. (Communicated by Prof. A. A. Nijland).

(Communicated at the meeting of November 26, 1927).
If, by some theoretical consideration, we assume a linear relation $\alpha x+\beta y+\gamma=0$ between two variables x and y, the experiment however furnishing a set of n pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$ not agreeing completely with the same linear relation, the values $x_{k}, y_{k}(k=1, \ldots n)$ obtained by experiment, and therefore subject to errors of observation, must be adjusted.

We have in general no right to consider one of the variables as free from error. So both values x_{k} and y_{k} must be "corrected".

Speaking geometrically we have the problem: To fit a straight line L as closely as possible through n points S_{k} having coordinates $x_{k}, y_{k}(k=1, \ldots n)$ given by experiment.

As a rule no straight line exists, which passes exactly through all the given points S_{k}. Calling T_{k} for convenience sake the true position of S_{k}, the displacement $\delta_{k}=\overrightarrow{S_{k} T_{k}}$ is the correction of S_{k}, and $\overrightarrow{T_{k} S_{k}}=-\delta_{k}$ is the "error" of S_{k}. Generally both x_{k} and y_{k} must be corrected; that is to say: the displacements δ_{k} will not in general coincide with the direction of any coordinate.

We must also take into account the possibility that the x-coordinate has an uncertainty (mean error, weight) different from that of the y coordinate. Nor is a certain dependence between the error $\triangle x$ of x and the error Δy of y to be excluded; this dependence is revealed by the fact that the mean value of $\triangle x_{k} \cdot \triangle y_{k}$ differs from zero.

We may consider the $x y$-plane as subject to elastic tensions, which perform a certain (negative) work by the displacement of a point, whence a certain potential energy is produced.

The plane not being isotropic, the elastic tension has its maximum and its minimum in two directions, perpendicular to each other, which need not coincide with the directions of the coordinate-axes.

We shall treat the given problem on the most general supposition: viz. that the plane is not isotropic, and that the main directions of elasticity form an angle (ω) with the coordinate-axes.

Each point S_{k} being shifted by a displacement δ_{k} to a point T_{k}, situated on a certain straight line L, there will be produced a certain total amount V of potential energy.

As the line L, best fitted through the points S_{k}, we shall consider
that line L_{0} for which the total potential energy V takes its minimum value.

The angle between the axes of elasticity and the coordinate-axes being ω, the coordinates x^{\prime}, y^{\prime} of a point with respect to a system of coordinates having the same origin as the system x, y, and parallel to the axes of elasticity, are connected with x and y by

$$
\begin{aligned}
& x^{\prime}=x \cos \omega+y \sin \omega \\
& y^{\prime}=-x \sin \omega+y \cos \omega
\end{aligned}
$$

The modulus of elasticity (elastic force in displacing a point over the distance 1) in the main direction x^{\prime} being P, in the main direction $y^{\prime} Q$, a displacement in the direction which makes the angle ζ^{\prime} with the positive axis of x^{\prime}, generates an elastic force (F) the components of which are

$$
\begin{equation*}
E_{x^{\prime}}=-P \cos \zeta^{\prime} \quad, \quad E_{y^{\prime}}=-Q \sin \zeta^{\prime} \tag{1}
\end{equation*}
$$

Fig. 1.
This force is balanced by the force attracting the point perpendicularly to L. This latter force having the components $+P \cos \zeta^{\prime}$, $+Q \sin \zeta^{\prime}$, the direction θ^{\prime} of the normal of L is connected with the direction ζ^{\prime} by the relation

$$
\frac{E_{y^{\prime}}}{E_{x^{\prime}}}=\operatorname{tg} \theta^{\prime}=\frac{Q \sin \zeta^{\prime}}{P \cos \zeta^{\prime}},
$$

or

$$
\frac{\sin \zeta^{\prime}}{\cos \zeta^{\prime}}=\frac{P \sin \theta^{\prime}}{Q \cos } \theta^{\prime},
$$

thus
$\cos \zeta^{\prime}=\frac{Q \cos \theta^{\prime}}{\sqrt{\bar{P}^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}}}, \quad \sin \zeta^{\prime}=\frac{P \sin \theta^{\prime}}{\sqrt{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}}}$.
The angle $\zeta^{\prime}-\theta^{\prime}$ between the directions of displacement and force is determined by

$$
\begin{equation*}
\cos \left(\zeta^{\prime}-\theta^{\prime}\right)=\frac{Q \cos ^{2} \theta^{\prime}+P \sin ^{2} \theta^{\prime}}{\sqrt{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}}} \tag{3}
\end{equation*}
$$

So the component of the elastic force in displacing the point over the distance 1 in the direction ζ^{\prime} (i.e. in the direction from S_{k} to T_{k}) amounts to
$E_{\zeta^{\prime}}=E_{x^{\prime}} \cos \zeta^{\prime}+E_{y^{\prime}} \sin \zeta^{\prime}=-\left(P \cos ^{2} \zeta^{\prime}+Q \sin ^{2} \zeta^{\prime}\right)=-\frac{P Q^{2} \cos ^{2} \theta^{\prime}+Q P^{2} \sin ^{2} \theta^{\prime}}{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}}$. or

$$
\begin{equation*}
E_{\zeta^{\prime}}=-P Q \cdot \frac{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}}{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}} \tag{4}
\end{equation*}
$$

Hence the displacement δ_{k} (in the direction ζ^{\prime}) generates a force, the component of which in the direction ζ^{\prime} (i.e. in the direction from S_{k} to T_{k}) is

$$
E_{z^{\prime}} \cdot \delta_{k} .
$$

By displacing S_{k} gradually to T_{k} on L, this component performs the work:

$$
\begin{equation*}
\int_{0}^{\delta_{k}} E_{\xi^{\prime}} . \delta . d \delta=\frac{1}{2} E_{\xi^{\prime}}, \delta_{k}^{2} \tag{5}
\end{equation*}
$$

The perpendicular distance λ_{k} from S_{k} to L being

$$
\lambda_{k}=\delta_{k} \cos \left(\zeta^{\prime}-\theta^{\prime}\right)
$$

we have

$$
\begin{equation*}
\delta_{k}=\frac{\lambda_{k}}{\cos \left(\zeta^{\prime}-\theta^{\prime}\right)}=\lambda_{k} \cdot \frac{\sqrt{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}}}{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}} \tag{6}
\end{equation*}
$$

From (4) and (6) follows that the work performed (5) amounts to

$$
\begin{aligned}
\frac{1}{2} E_{\ell,}, \delta_{k}^{2} & =-\frac{P Q}{2} \cdot \frac{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}}{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}} \times \frac{P^{2} \sin ^{2} \theta^{\prime}+Q^{2} \cos ^{2} \theta^{\prime}}{\left(P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}\right)^{2}} \times \lambda_{k}^{2} \\
& =-\frac{P Q}{2} \cdot \frac{\lambda_{k}^{2}}{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}} .
\end{aligned}
$$

Denoting by [] the summation over k from 1 to n, we find for all the points S_{k} together:

$$
\begin{equation*}
\frac{1}{2} E_{z^{\prime}} \cdot\left[\delta_{k}^{2}\right]=-\frac{P Q}{2} \frac{\left[\lambda_{k}^{2}\right]}{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}} \tag{7}
\end{equation*}
$$

So the potential energy produced is

$$
\begin{equation*}
V=-\frac{1}{2} E_{z_{\prime}} \cdot\left[\delta_{k}^{2}\right]=+\frac{P Q}{2} \cdot \frac{\left[\lambda_{k}^{2}\right]}{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}}, . . \tag{8}
\end{equation*}
$$

or, denoting the mean value $\frac{\left[\lambda_{k}^{2}\right]}{n}$ of λ_{k}^{2} by $\overline{\lambda_{k}{ }^{2}}$,

$$
\begin{equation*}
V=\frac{n P Q}{2} \cdot \frac{\overline{\lambda_{k}{ }^{2}}}{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}} \tag{9}
\end{equation*}
$$

Introducing the perpendicular distance l from O to L, we find:

$$
\lambda_{k}=x^{\prime}{ }_{k} \cos \theta^{\prime}+y^{\prime}{ }_{k} \sin \theta^{\prime}-l
$$

therefore

$$
\begin{equation*}
V=\frac{n P Q}{2} \cdot \frac{\left(x_{k}^{\prime} \cos \theta^{\prime}+y^{\prime}{ }_{k} \sin \theta^{\prime}-l\right)^{2}}{P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}} \tag{10}
\end{equation*}
$$

Passing to the original system of coordinates x, y, we have

$$
\begin{gathered}
\theta^{\prime}=\theta-\omega \\
x_{k}^{\prime}{ }_{k} \cos \theta^{\prime}+y^{\prime}{ }_{k} \sin \theta^{\prime}=x_{k} \cos \theta+y_{k} \sin \theta \\
P_{\sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}}=P \sin ^{2}(\theta-\omega)+Q \cos ^{2}(\theta-\omega) \\
=\left(P \sin ^{2} \omega+Q \cos ^{2} \omega\right) \cos ^{2} \theta+ \\
+2(-P+Q) \sin \omega \cos \omega \cos \theta \sin \theta+ \\
+\left(P \cos ^{2} \omega+Q \sin ^{2} \omega\right) \sin ^{2} \theta
\end{gathered}
$$

Putting

$$
\left.\begin{array}{l}
a=P \sin ^{2} \omega+Q \cos ^{2} \omega \tag{11}\\
b=(-P+Q) \sin \omega \cos \omega \\
c=P \cos ^{2} \omega+Q \sin ^{2} \omega
\end{array}\right\}
$$

we find:

$$
\begin{equation*}
P \sin ^{2} \theta^{\prime}+Q \cos ^{2} \theta^{\prime}=a \cos ^{2} \theta+2 b \cos \theta \sin \theta+c \sin ^{2} \theta=f(\theta) \tag{12}
\end{equation*}
$$

Hence the potential energy V is

$$
\begin{equation*}
V=\frac{n P Q}{2} \times \frac{\overline{\lambda_{k}^{2}}}{f(\theta)}=\frac{n P Q}{2} \times \frac{\overline{\left(x_{k} \cos \theta+y_{k} \sin \theta-l\right)^{2}}}{a \cos ^{2} \theta+2 b \cos \theta \sin \theta+c \sin ^{2} \theta} \tag{13}
\end{equation*}
$$

The forces are in balance if V is a minimum, thus if
$\frac{2 V}{n P Q}=\varphi(\theta, l)=\frac{\overline{\lambda_{k}}}{f(\bar{\theta})}=\frac{\overline{\left(x_{k} \cos \theta+y_{k} \sin \theta-l\right)^{2}}}{a \cos ^{2} \theta+2 b \cos \theta \sin \theta+c \sin ^{2} \bar{\theta}}$ minimum. (14)
Putting

$$
\bar{x}=\frac{\left[x_{k}\right]}{n}, \bar{y}=\frac{\left[y_{k}\right]}{n},
$$

and

$$
x_{k}=\bar{x}+u_{k}, \quad y_{k}=\bar{y}+v_{k}
$$

whence

$$
\bar{u}=0, \bar{v}=0
$$

we find:

$$
\begin{aligned}
& \overline{\left(x_{k} \cos \theta+y_{k} \sin \theta-\bar{l}\right)^{2}}=\overline{\left\{(\bar{x} \cos \theta+\bar{y} \sin \theta-l)+\left(u_{k} \cos \theta+v_{k} \sin \theta\right)\right\}^{2}} \\
& \quad=(\bar{x} \cos \theta+\bar{y} \sin \theta-l)^{2}+2(\bar{x} \cos \theta+\bar{y} \sin \theta-l)(\bar{u} \cos \theta+\bar{v} \sin \theta)+ \\
& \left.\quad+\overline{(u u} \cos ^{2} \theta+2 \overline{u v} \cos \theta \sin \theta+\overline{v v} \sin ^{2} \theta\right) .
\end{aligned}
$$

Taking into account $\bar{u}=0, \bar{v}=0$, and putting:

$$
\begin{equation*}
\bar{u} u=A, \overline{u v}=B, \bar{v}=C, \tag{15}
\end{equation*}
$$

we arrive at

$$
\left.\begin{array}{rl}
\overline{\left(x_{k} \cos \theta+y_{k} \sin \theta-l\right)^{2}} & =\overline{(x} \cos \theta+\bar{y} \sin \theta-l)^{2}+ \tag{16}\\
& +\left(A \cos ^{2} \theta+2 B \cos \theta \sin \theta+C \sin ^{2} \theta\right) .
\end{array}\right\}
$$

So the condition (14) runs:
$\varphi(\theta, l)=\frac{\overline{(x} \cos \theta+\bar{y} \sin \theta-l)^{2}+\left(A \cos ^{2} \theta+2 B \cos \theta \sin \theta+C \sin ^{2} \theta\right)}{a \cos ^{2} \theta+2 b \cos \theta \sin \theta+c \sin ^{2} \theta}$ minimum (17)
The condition of minimum $\frac{\partial \varphi}{\partial l}=0$ furnishes

$$
\frac{\partial \varphi}{\partial l}=\frac{-2(x \cos \theta+\bar{y} \sin \theta-l)}{f(\theta)}=0
$$

or

$$
\begin{equation*}
x \cos \theta+y \sin \theta-l=0 \tag{18}
\end{equation*}
$$

that is to say: the line L required must pass through the "mean point" (\bar{x}, \bar{y}).
Th condition (17) asks now

$$
\begin{equation*}
\varphi(\theta)=\frac{A \cos ^{2} \theta+2 B \cos \theta \sin \theta+C \sin ^{2} \theta}{a \cos ^{2} \theta+2 b \cos \theta \sin \theta+c \sin ^{2} \theta} \text { minimum, . } \tag{19}
\end{equation*}
$$

or, putting

$$
\begin{gather*}
A \cos ^{2} \theta+2 B \cos \theta \sin \theta+C \sin ^{2} \theta=F(\theta) \tag{20}\\
\varphi(\theta)=\frac{F(\theta)}{f(\theta)} \text { minimum }
\end{gather*}
$$

From (19) (or (19')) we take the value of θ which minimizes $\varphi(\theta)$; denoting this solution by θ_{0}, and the value of l required, by l_{0}, we have, on account of (18),

$$
\begin{equation*}
l_{0}=\bar{x} \cos \theta_{0}+\bar{y} \sin \theta_{0} \tag{21}
\end{equation*}
$$

From

$$
A=\bar{u} \bar{u}=\frac{\left[u_{k}^{2}\right]}{n}, \quad B=\bar{u} \bar{v}=\frac{\left[u_{k} v_{k}\right]}{n}, \quad C=\bar{v} v=\frac{\left[v_{k}^{2}\right]}{n}
$$

follows

$$
A>0 \text { and } A C-B^{2}=\frac{\left[u_{k}^{2}\right]\left[v_{k}^{2}\right]-\left[u_{k} v_{k}\right]^{2}}{n^{2}}=\frac{\left[\left(u_{k} v_{l}-u_{l} v_{k}\right)^{2}\right]}{n^{2}}>0
$$

Likewise, from (11) ensues:

$$
a>0 \text { and } a c-b^{2}=P Q>0
$$

So both the forms $F(\theta)$ and $f(\theta)$ are positive definite.
Hence the present minimumproblem: $\frac{F(\theta)}{f(\theta)} \mathrm{min}$. is formally equivalent to determining the direction of minimum curvature at an elliptic point of a surface.

Putting:

$$
\left.\begin{array}{c}
\operatorname{tg} \theta=z \tag{22}\\
A+2 B z+C z^{2}=G(z) \\
a+2 b z+c z^{2}=g(z)
\end{array}\right\}
$$

we find

$$
\begin{equation*}
\varphi(\theta)=\psi(z)=\frac{A+2 B z+C z^{2}}{a+2 b z+c z^{2}}=\frac{G(z)}{g(z)} \tag{23}
\end{equation*}
$$

Now we have

$$
\begin{aligned}
\frac{d \psi}{d z} & =\frac{g \frac{d G}{d z}-G \frac{d g}{d z}}{g^{2}}=\frac{1}{g^{2}}\left|\begin{array}{c}
g \frac{d g}{d z} \\
G \frac{d G}{d z}
\end{array}\right|=\frac{2}{g^{2}} \begin{array}{c}
a+2 b z+c z^{2}, b+c z \\
A+2 B z+C z^{2}, B+C z
\end{array} \\
& =\frac{2}{g^{2}}\left|\begin{array}{c}
a+b z, b+c z \\
A+B z, B+C z
\end{array}\right|
\end{aligned}
$$

So the value z_{0} which minimizes $\psi(z)$, is one of the roots of the equation

$$
\left|\begin{array}{cc}
a+b z, & b+c z \tag{24}\\
A+B z, & B+C z
\end{array}\right|=0,
$$

or

$$
(a B-b A)-(c A-a C) z+(b C-c B) z^{2}=0
$$

for which we, putting

$$
\left.\begin{array}{l}
b C-c B=a \tag{25}\\
c A-a C=\beta \\
a B-b A=\gamma
\end{array}\right\}
$$

can write

$$
\alpha z^{2}-\beta z+\gamma=0
$$

The corresponding value of ψ is

$$
\psi\left(z_{0}\right)=\psi_{0}=\frac{G\left(z_{0}\right)}{g\left(z_{0}\right)}=\frac{G_{0}}{g_{0}}=\frac{\left(A+B z_{0}\right)+\left(B+C z_{0}\right) z_{0}}{\left(a+b z_{0}\right)+\left(b+c z_{0}\right) z_{0}},
$$

or, by (24),

$$
\begin{equation*}
\psi_{0}=\frac{A+B z_{0}}{a+b z_{0}}=\frac{B+C z_{0}}{b+c z_{0}} \tag{25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
z_{0}=-\frac{a \psi_{0}-A}{b \psi_{0}-B}=-\frac{b \psi_{0}-B}{c \psi_{0}-C} \tag{26}
\end{equation*}
$$

so that ψ_{0} is a root of the equation

$$
\left|\begin{array}{ll}
a \psi-A & \quad b \psi-B \tag{27}\\
b \psi-B & , \quad c \psi-C
\end{array}\right|=0 .
$$

or

$$
\left(a c-b^{2}\right) \psi^{2}-(a C-2 b B+c A) \psi+\left(A C-B^{2}\right)=0
$$

or, putting for abbreviation's sake

$$
\begin{align*}
a c-b^{2}=s \quad & A C-B^{2}=S \quad, \quad a C-2 b B+c A=\sigma \tag{a}\\
& s \cdot \psi^{2}-\sigma . \psi+S=0 .
\end{align*}
$$

From $s>0, S>0, a>0, A>0$ follows

$$
b<\sqrt{\mathrm{ac}}, \quad B<\sqrt{A C}, \text { thus } b B<\sqrt{\mathrm{ac} A C}
$$

therefore

$$
\sigma=a C-2 b B+c A=(\sqrt{a C}-\sqrt{c A})^{2}+2(\sqrt{a c A C}-b B)>0
$$

The solution of $\left(27^{\prime \prime}\right)$:

$$
\psi=\frac{\sigma \pm \sqrt{\sigma^{2}-4 s S}}{2 s}
$$

requires an investigation of the eliminant of $g(z)$ and $G(z)$:

$$
\begin{align*}
& \left.\begin{array}{rl}
R=\sigma^{2}-4 s S & =(a C-2 b B+c A)^{2}-4\left(a c-b^{2}\right)\left(A C-B^{2}\right) \\
& =(c A-a C)^{2}-4(b C-c B)(a B-b A)
\end{array}\right\} \\
& =(c A-a C)^{2}-4(b C-c B)(a B-b A) \tag{b}\\
& =\beta^{2}-4 \alpha \gamma \text {. } \\
& R=\sigma^{2}-4 s S=\left\{(V a C-V \bar{c} A)^{2}+2(V a c \overline{A C}-b B)\right\}^{2}-4\left(a c-b^{2}\right)\left(A C-B^{2}\right) \\
& =(\sqrt{\mathrm{aC}}-\sqrt{\mathrm{c} A})^{4}+4(\sqrt{\mathrm{a} C}-\sqrt{\mathrm{c} A})^{2}(\sqrt{\mathrm{a}} \overline{A C}-b B)+ \\
& +4\left(a c A C-2 b B V a c \overline{A C}+b^{2} B^{2}-a c A C+b^{2} A C+B^{2} a c-b^{2} B^{2}\right) \\
& =(\sqrt{a C}-\sqrt{c A})^{4}+4(\sqrt{a C}-\sqrt{c A})^{2}(\sqrt{a c A C}-b B)+ \\
& +4(b V \overline{A C}-B V \overline{a c})^{2}>0 .
\end{align*}
$$

Hence the roots of $\left(27^{\prime \prime}\right)$ are real.
Obviously the minimum value ψ_{0} of ψ is the inferior root of $\left(27^{\prime \prime}\right)$, thus :

$$
\begin{equation*}
\psi_{0}=\frac{\sigma-V \bar{R}}{2 s} \tag{29}
\end{equation*}
$$

The corresponding value z_{0} of z is that root of ($24^{\prime \prime}$) which answers to ψ_{0}; it follows also from (26):

$$
\begin{align*}
& z_{0}=\frac{-a c \psi_{0}+c A}{c b \psi_{0}-c B}=\frac{-b^{2} \psi_{0}+b B}{b c \psi_{0}-b C}=\frac{-\left(a c-b^{2}\right) \psi_{0}+(c A-b B)}{b C-c B} \\
& =\frac{-2 s \psi_{0}+2(c A-b B)}{2 a}=\frac{-\sigma+V \bar{R}+2(c A-b B)}{2 a}= \\
& \text { or } \quad=\frac{-c A+2 b B-a C+2 c A-2 b B+V R}{2 a}, \\
& \qquad z_{0}=\frac{\beta+V \bar{R}}{2 \alpha} \tag{30}
\end{align*}
$$

Hence the value of z required is, with the definitions for α, β and γ given in (25), the root of $\left(24^{\prime \prime}\right)$ having the positive root of R.

The angle θ_{0} required is therefore determined by
$\operatorname{tg} \theta_{0}=\frac{\beta+V \bar{R}}{2 \alpha}=\frac{(c A-a C)+V \overline{(c A-a C)^{2}-4(b C-c B)(a B-b A)}}{2(b C-c B)}$.
So the angle θ_{0} is known, all but 180°; we must choose that value of θ_{0}, which, being substituted in (21), makes l_{0} positive.

In the formula (30^{\prime}) for θ_{0} the coefficients a, b, c, being functions of P, Q and ω, are given a priori, thus independent of the result of the experiment, which furnishes the pairs of numbers $\left(x_{k}, y_{k}\right)(k=1, \ldots n)$. On the contrary the magnitudes A, B, C are really dependent of this result; so are the magnitudes x, y appearing in the formula (21) for l_{0}. Repeating the proof, we can expect other values of $A, B, C, \bar{x}, \bar{y}$.

The values of θ and l obtained in $\left(30^{\prime}\right)$ and (21) by taking the average, furnish L_{0} as the ,,apparent line" (apparently true line), on which the points S_{k} ought to lie. According to usage, we shall call the deviations of the points S_{k} from this line: the apparent errors (residuals) of the position of $S_{k} . T_{k}$ being the point on L_{0} corresponding to S_{k}, $T_{k} S_{k}=-\delta_{k}$ is the apparent error of S_{k}, as to amount and as to direction.

Denoting the coordinates of T_{k} by X_{k}, Y_{k}, we have

$$
X_{k} \cos \theta_{0}+Y_{k} \sin \theta_{0}-l_{0}=0
$$

The residuals of the coordinates of S_{k} being

$$
\begin{equation*}
x_{k}-X_{k}=\xi_{k}, y_{k}-Y_{k}=\eta_{k} \tag{31}
\end{equation*}
$$

and the coordinates of S_{k} satisfying

$$
x_{k} \cos \theta_{0}+y_{k} \sin \theta_{0}-l_{0}=\lambda_{k}
$$

we find:

$$
\begin{equation*}
\xi_{k} \cos \theta_{0}+\eta_{k} \sin \theta_{0}=\lambda_{k} . \tag{32}
\end{equation*}
$$

Passing to the system of coordinates of the main directions of elas-
ticity $\left(x^{\prime}, y^{\prime}\right)$, the residuals $\xi^{\prime}, \eta^{\prime}$ of the coordinates of this system are connected to ξ, η by

$$
\left.\begin{array}{l}
\xi=\xi^{\prime} \cos \omega-\eta^{\prime} \sin \omega . \tag{33}\\
\eta=\xi^{\prime} \sin \omega+\eta^{\prime} \cos \omega .
\end{array}\right\} .
$$

As the moduli of elasticity P and Q (cf. (8)) play the part of "weights", P and Q are inversely proportional to the squares of the mean errors of x^{\prime} and y^{\prime}, hence to the mean squares $\overline{\xi^{\prime 2}}$ and $\overline{\eta^{\prime 2}}$ of ξ^{\prime} and η^{\prime} resp.; moreover $\overline{\xi^{\prime}} \eta^{\prime}=0, \xi^{\prime}$ and η^{\prime} being measured along the main directions of elasticity.

So we have

$$
\begin{equation*}
P \cdot \overline{\xi^{\prime 2}}=Q \cdot \overline{\eta^{\prime 2}}, \quad \overline{\xi^{\prime} \eta^{\prime}}=0 \tag{34}
\end{equation*}
$$

whence

$$
\overline{\xi^{\prime 2}}=\varrho Q, \quad \overline{\eta^{\prime 2}}=\varrho P, \quad \overline{\xi^{\prime} \eta^{\prime}}=0 ;
$$

where ϱ is a factor of proportionality to be determined afterwards.
From (33) follows
$\overline{\xi^{2}}=\overline{\xi^{\prime 2}} \cos ^{2} \omega-2 \overline{\xi^{\prime} \eta^{\prime}} \sin \omega \cos \omega+\overline{\eta^{\prime 2}} \sin ^{2} \omega=\varrho\left(Q \cos ^{2} \omega+P \sin ^{2} \omega\right)$,
$\overline{\xi \eta}=\overline{\xi^{\prime 2}} \sin \omega \cos \omega+\overline{\xi^{\prime} \eta^{\prime}}\left(\cos ^{2} \omega-\sin ^{2} \omega\right)-\overline{\eta^{\prime 2}} \sin \omega \cos \omega=\varrho(Q-P) \sin \omega \cos \omega$, $\overline{\eta^{2}}=\overline{\xi^{\prime 2}} \sin ^{2} \omega+2 \overline{\xi^{\prime} \eta^{\prime}} \sin \omega \cos \omega+\overline{\eta^{\prime 2}} \cos ^{2} \omega=\varrho\left(Q \sin ^{2} \omega+P \cos ^{2} \omega\right)$, hence, on account of (11):

$$
\begin{equation*}
\overline{\xi^{2}}=\varrho a, \bar{\xi}=\varrho b, \overline{\eta^{2}}=\varrho c . \tag{35}
\end{equation*}
$$

By taking the mean squares of both sides of (32) we find

$$
\overline{\xi^{2}} \cos ^{2} \theta_{0}+2 \overline{\xi \eta} \cos \theta_{0} \sin \theta_{0}+\overline{\eta^{2}} \sin ^{2} \theta_{0}=\overline{\lambda^{2}}
$$

thus, by (35).

$$
\varrho\left(a \cos ^{2} \theta_{0}+2 b \cos \theta_{0} \sin \theta_{0}+c \sin ^{2} \theta_{0}\right)=\overline{\lambda^{2}}
$$

whence, on account of (12) and of (14),

$$
\varrho f\left(\theta_{0}\right)=\left(\overline{\lambda^{2}}\right)_{0}=\varphi_{0} \cdot f\left(\theta_{0}\right) ;
$$

therefore

$$
\begin{equation*}
\varrho=\varphi_{0}=\varphi\left(\theta_{0}\right)=\psi_{0}=\psi\left(z_{0}\right) . \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\xi^{2}}=\varphi_{0} a, \quad \overline{\xi \eta}=\varphi_{0} b, \quad \overline{\eta^{2}}=\varphi_{0} c, \tag{37}
\end{equation*}
$$

$\varphi_{0}=\psi_{0}$ being determined by (29).
In this way the mean squares and the mean product of the residuals are found.

Denoting the true errors of $x_{k}, y_{k}, u_{k}, v_{k}, \bar{x}, \bar{y}$, etc. by $\triangle x_{k}, \Delta y_{k}$, etc. the formula
$u_{k}=x_{k}-\bar{x}=x_{k}-\frac{x_{1}+x_{2}+\ldots+x_{k}+\ldots+x_{n}}{n}=\frac{-x_{1}-x_{2}-\ldots+(n-1) x_{k}-\ldots-x_{n}}{n}$ gives

$$
\begin{equation*}
\Delta u_{k}=\frac{-\Delta x_{1}-\Delta x_{2}-. .+(n-1) \Delta x_{k}-. .-\Delta x_{n}}{n} . \tag{a}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\Delta v_{k}=\frac{-\Delta y_{1}-\Delta y_{2}-. .+(n-1) \Delta y_{k}-. .-\Delta y_{n}}{n} \tag{b}
\end{equation*}
$$

The errors of $A=\frac{[u u]}{n}, B=\frac{[u v]}{n}, C=\frac{[v v]}{n}$ are:

$$
\triangle A=\frac{2}{n}[u \triangle u], \triangle B=\frac{1}{n}\{[v \triangle u]+[u \triangle v]\}, \Delta C=\frac{2}{n}[v \triangle v] .
$$

In determining the mean error of a function of A, B and C, we have to do with the mean values of $\triangle A^{2}, \triangle A \triangle B, \triangle A \triangle C, \triangle B^{2}, \triangle B \triangle C$, $\triangle C^{2}$, thus with the mean values of the squares and products built up out of $[u \triangle u],[v \triangle u],[u \triangle v],[v \triangle v]$.

In computing the mean value of $[u \triangle u]^{2}$ for instance, we meet with two sums, viz.: [$\left.u_{k} u_{k} . \triangle u_{k} \triangle u_{k}\right]$ and [$\left[u_{k} u_{l} . \triangle u_{k} \triangle u_{l}\right]$], where [[]] designates a summation of the $n(n-1)$-terms wherein $l \neq k$.

The errors $\triangle u_{k}, \Delta v_{k}$ being supposed independent of the very u_{k}, v_{k}, the mean value of $\left[u_{k} u_{k} . \Delta u_{k} \Delta u_{k}\right]$, represented by M ($\left.\left[u_{k} u_{k} . \Delta u_{k} \triangle u_{k}\right]\right)$, may be written:

$$
M\left(\left[u_{k} u_{k} . \triangle u_{k} \triangle u_{k}\right]\right)=M\left(\left[u_{k} u_{k}\right]\right) \times M\left(\triangle u_{k} \triangle u_{k}\right) ;
$$

likewise

$$
M\left(\left[\left[u_{k} u_{l} \cdot \Delta u_{k} \triangle u_{l}\right]\right]\right)=M\left(\left[\left[u_{k} u_{l}\right]\right]\right) \times M\left(\triangle u_{k} \triangle u_{l}\right) .
$$

Now
$\left[\begin{array}{ll}u_{k} & u_{k}\end{array}\right]=n A,\left[u_{k}\right]^{2}=\left[\begin{array}{lll}u_{k} & u_{k}\end{array}\right]+\left[\left[u_{k} u_{l}\right]\right]=0$, thus $\left[\left[\begin{array}{lll}u_{k} & u_{l}\end{array}\right]\right]=-n A$. likewise
$\left[u_{k} v_{k}\right]=n B,\left[u_{k}\right]\left[v_{k}\right]=\left[u_{k} v_{k}\right]+\left[\left[u_{k} v_{l}\right]\right]=0$, thus $\left[\left[u_{k} v_{l}\right]\right]=-n B$, $\left[v_{k} \boldsymbol{v}_{k}\right]=n C,\left[v_{k}\right]^{2}=\left[v_{k} v_{k}\right]+\left[\left[v_{k} v_{l}\right]\right]=0$, thus $\left[\left[v_{k} v_{l}\right]\right]=-n C$.
Moreover:

$$
\left.\begin{array}{l}
\Delta u_{1}=\frac{(n-1) \Delta x_{1}-\Delta x_{2}-\Delta x_{3}-. .-\Delta x_{n}}{n} \tag{38c}\\
\Delta u_{2}=\frac{-\Delta x_{1}+(n-1) \Delta x_{2}-\Delta x_{3}-. .-\Delta x_{n}}{n}
\end{array}\right\}
$$

whence
$\Delta u_{1} \Delta u_{1}=\frac{1}{n^{2}}\left\{+(n-1)^{2} \Delta x_{1}^{2}+\Delta x_{2}^{2}+\Delta x_{3}{ }^{2}+. .+\Delta x_{n}{ }^{2}+\left[\left[p_{k l} \Delta x_{k} \Delta x_{l}\right]\right]\right\}$
$\Delta u_{1} \Delta u_{2}=\frac{1}{n^{2}}\left\{-(n-1) \Delta x_{1}{ }^{2}-(n-1) \triangle x_{2}{ }^{2}+\triangle x_{3}{ }^{2}+. .+\Delta x_{n}{ }^{2}+\left[\left[q_{k l} \triangle x_{k} \triangle x_{l}\right]\right]\right\}$.
Now we have
$M\left(\triangle x_{1}{ }^{2}\right)=M\left(\triangle x_{2}{ }^{2}\right)=.=M\left(\triangle x_{n}^{2}\right)=M\left(\triangle x^{2}\right), M\left(\triangle x_{k} \triangle x_{i}\right)=0($ for $l \neq k)$, therefore

$$
\begin{aligned}
& M\left(\triangle u_{1} \triangle u_{1}\right)=\frac{1}{n^{2}}\left\{(n-1)^{2} M\left(\triangle x_{1}^{2}\right)+(n-1) M\left(\triangle x^{2}\right)\right\}=\frac{n-1}{n} M\left(\triangle x^{2}\right) . \\
& \begin{aligned}
& M\left(\triangle u_{1} \triangle u_{2}\right)=\frac{1}{n^{2}}\left\{-(n-1) M\left(\triangle x_{1}^{2}\right)-(n-1) M\left(\triangle x_{2}^{2}\right)+(n-2) M\left(\triangle x^{2}\right)\right\}= \\
&=-\frac{1}{n} M\left(\triangle x^{2}\right) .
\end{aligned}
\end{aligned}
$$

Hence:

$$
M\left(\triangle u_{k} \triangle u_{k}\right)=\frac{n-1}{n} M\left(\triangle x^{2}\right), \quad M\left(\triangle u_{k} \Delta u_{l}\right)=-\frac{1}{n} M\left(\triangle x^{2}\right)
$$

Likewise:
$M\left(\Delta u_{k} \Delta v_{k}\right)=\frac{n-1}{n} M(\Delta x \Delta y) . M\left(\Delta u_{k} \Delta v_{l}\right)=-\frac{1}{n} M(\triangle x \Delta y)$,
$M\left(\triangle v_{k} \Delta v_{k}\right)=\frac{n-1}{n} M\left(\Delta y^{2}\right), M\left(\triangle v_{k} \triangle v_{l}\right)=-\frac{1}{n} M\left(\triangle y^{2}\right)$.
So we arrive at
$M\left([u \triangle u]^{2}\right)=M\left(\left[u_{k} u_{k} \cdot \Delta u_{k} \Delta u_{k}\right]+\left[\left[u_{k} u_{l} . \Delta u_{k} \Delta u_{l}\right]\right]\right)=$

$$
\begin{aligned}
& =M\left(\left[u_{k} u_{k}\right]\right) \cdot M\left(\triangle u_{k} \triangle u_{k}\right)+M\left(\left[\left[u_{k} u_{l}\right]\right]\right) \cdot M\left(\triangle u_{k} \Delta u_{l}\right) \\
& =n M(A) \cdot \frac{n-1}{n} M\left(\triangle x^{2}\right)-n M(A) \times-\frac{1}{n} M\left(\triangle x^{2}\right)= \\
& =n M(A) \cdot M\left(\triangle x^{2}\right) .
\end{aligned}
$$

Likewise:
$M([u \triangle u][u \triangle v])=n M(A) . M(\triangle x \triangle y)$,
$M\left([u \triangle v]^{2}\right) \quad=n M(A) . M\left(\triangle y^{2}\right)$,
$M([u \triangle u][v \triangle u])=n M(B) . M\left(\triangle x^{2}\right)$,
$M([u \triangle u][v \Delta v])=M([u \triangle v][v \triangle u])=n M(B) . M(\triangle x \Delta y)$,
$M([u \triangle v][v \triangle v])=n M(B) \cdot M\left(\triangle y^{2}\right)$,
$M\left([v \triangle u]^{2}\right)=n M(C) . M\left(\triangle x^{2}\right)$,
$M([v \triangle u][v \triangle v])=n M(C) . M(\triangle x \Delta y)$,
$M\left([v \triangle v]^{2}\right)=n M(C) . M\left(\triangle y^{2}\right)$.
By means of these formulae we find
$M\left(\triangle A^{2}\right)=\frac{4}{n^{2}} M\left([u \triangle u]^{2}\right)=\frac{4}{n} M(A) . M\left(\triangle x^{2}\right)$,
$M(\triangle A . \triangle B)=\frac{2}{n^{2}} M([u \triangle u]\{[v \triangle u]+[u \triangle v]\})=$ $=\frac{2}{n}\left\{M(B) \cdot M\left(\triangle x^{2}\right)+M(A) \cdot M(\triangle x \Delta y)\right\}$,
$M(\triangle A \triangle C)=\frac{4}{n^{2}} M([u \triangle u][v \triangle v])=\frac{4}{n} M(B) . M(\triangle x \triangle y)$.
$M\left(\triangle B^{2}\right)=\frac{1}{n^{2}} M\left(\{[v \triangle u]+[u \triangle v]\}^{2}\right)=$

$$
=\frac{1}{n}\left\{M(C) \cdot M\left(\triangle x^{2}\right)+2 M(B) \cdot M(\Delta x \Delta y)+M(A) \cdot M\left(\Delta y^{2}\right)\right\}
$$

$M(\triangle B \triangle C)=\frac{2}{n^{2}} M(\{[v \triangle u)+[u \triangle v]\}[v \triangle v])=$

$$
=\frac{2}{n}\left\{M(C) \cdot M(\triangle x \Delta y)+M(B) \cdot M \cdot\left(\triangle y^{2}\right)\right\}
$$

$M\left(\triangle C^{2}\right)=\frac{4}{n^{2}} M\left([v \triangle v]^{2}\right)=\frac{4}{n} M(C) . M\left(\triangle y^{2}\right)$.

As the present problem of adjustment deals with two unknowns (θ and l), so that there is only question of .adjustment if $n>2$, the formula for the square of the mean true error runs:

$$
\mathrm{E}^{2}(x)=M\left(\triangle x^{2}\right)=\frac{\left[\xi^{2}\right]}{n-2}=\frac{n \bar{\xi}^{2}}{n-2}=\frac{n}{n-2} \varphi_{0} a .
$$

Likewise:

$$
\begin{gather*}
M(\Delta x \Delta y)=\frac{[\xi \eta]}{n-2}=\frac{n \overline{\xi \eta}}{n-2}=\frac{n}{n-2} \varphi_{0} b, \tag{39}\\
\mathrm{E}^{2}(y)=M\left(\triangle y^{2}\right)=\frac{\left[\eta^{2}\right]}{n-2}=\frac{n \overline{\eta^{2}}}{n-2}=\frac{n}{n-2} \varphi_{0} c .
\end{gather*}
$$

Replacing moreover the values $M(A), M(B), M(C)$, essentially unknown, by the values A, B, C actually found, we obtain

$$
\left.\begin{array}{l}
M\left(\triangle A^{2}\right)=\frac{4 \varphi_{0}}{n-2} \cdot a A \\
M(\triangle A \triangle B)=\frac{2 \varphi_{0}}{n-2} \cdot(a B+b A) \\
M(\triangle A \triangle C)=\frac{4 \varphi_{0}}{n-2} \cdot b B \\
M\left(\triangle B^{2}\right)=\frac{\varphi_{0}}{n-2} \cdot(a C+2 b B+c A), \tag{40}\\
M(\triangle B \triangle C)=\frac{2 \varphi_{0}}{n-2} \cdot(b C+c B), \\
M\left(\triangle C^{2}\right)=\frac{4 \varphi_{0}}{n-2} \cdot c C
\end{array}\right\}
$$

As $\theta_{0}=\operatorname{arctg} z_{0}$, by $\left(24^{\prime \prime}\right)$, is a function of α, β and γ, the mean error of θ_{0} (and of z_{0}) will be built up out of the means

$$
M\left(\triangle a^{2}\right) \quad, \quad M(\triangle \alpha \Delta \beta), \ldots \text { etc. }
$$

We have

$$
\triangle \alpha=b \triangle C-c \triangle B, \quad \triangle \beta=c \triangle A-a \triangle C, \quad \triangle \gamma=a \triangle B-b \triangle A
$$

thus:

1) The formulae (40) differ from the formulae $M\left(\triangle A^{2}\right)=\frac{2 A^{2}}{n-1}, M(\triangle A \triangle B)=\frac{2 A B}{n-1}$. $M(\triangle A \triangle C)=\frac{2 B^{2}}{n-1}, M\left(\triangle B^{2}\right)=\frac{B^{2}+A C}{n-1}, M(\Delta B \triangle C)=\frac{2 B C}{n-1}, M\left(\triangle C^{2}\right)=\frac{2 C^{2}}{n-1}$, valid in the case of linear correlation between \dot{x} and y. In the case of correlation between x and y the deviations u_{k} and v_{k} of x_{k} and y_{k} from \bar{x} and \bar{y} are considered as accidental errors. In the present case however the coordinates x_{k} and y_{k} are yet considered as free from error, provided the point S_{k} be situated on L_{0}.

$$
\begin{aligned}
& M\left(\triangle a^{2}\right)=b^{2} M\left(\triangle C^{2}\right)-2 b c M(\triangle B \triangle C)+c^{2} M\left(\triangle B^{2}\right) \\
& =\frac{\varphi_{0}}{n-2}\left\{b^{2} .4 c C-2 b c .2(b C+c B)+c^{2}(a C+2 b B+c A)\right\}= \\
& =\frac{\varphi_{0}}{n-2} c^{2}(a C-2 b B+c A) \text {, } \\
& M(\triangle \alpha \triangle \beta)=b c M(\triangle A \triangle C)-c^{2} M(\triangle A \triangle B)-a b M\left(\triangle C^{2}\right)+a c M(\triangle B \triangle C) \\
& =\frac{\psi_{0}}{n-2}\left\{b c .4 b B-c^{2} .2(a B+b A)-a b .4 c C+a c .2(b C+c B)\right\}= \\
& =\frac{-2 \varphi_{0}}{n-2} b c(a C-2 b B+c A) \text {, } \\
& M(\triangle a \triangle y)=a b M(\triangle B \triangle C)-b^{2} M(\triangle A \triangle C)-a c M\left(\triangle B^{2}\right)+b c M(\triangle A \triangle B) \\
& =\frac{\varphi_{0}}{n-2}\left\{a b .2(b C+c B)-b^{2} .4 b B-a c(a C+2 b B+c A)+b c .2(a B+b A)\right\}= \\
& =\frac{\varphi_{0}}{n-2}\left(2 b^{2}-a c\right)(a C-2 b B+c A) . \\
& M\left(\triangle \beta^{2}\right)=c^{2} M\left(\triangle A^{2}\right)-2 a c M(\triangle A \triangle C)+a^{2} M\left(\triangle C^{2}\right) \\
& =\frac{\varphi_{0}}{n-2}\left\{c^{2} .4 a A-2 a c .4 b B+a^{2} .4 c C\right\}=\frac{4 \varphi_{0}}{n-2} a c(a C-2 b B+c A) \text {, } \\
& M(\triangle \beta \triangle \gamma)=\operatorname{ac} M(\triangle A \triangle B)-b c M\left(\triangle A^{2}\right)-a^{2} M(\triangle B \triangle C)+a b M(\triangle A \triangle C) \\
& =\frac{\varphi_{0}}{n-2}\left\{a c .2(a B+b A)-b c .4 a A-a^{2} .2(b C+c B)+a b .4 b B\right\}= \\
& =\frac{-2 \varphi_{0}}{n-2} a b(a C-2 b B+c A) \text {, } \\
& M\left(\triangle \gamma^{2}\right)=a^{2} M\left(\triangle B^{2}\right)-2 a b M(\triangle A \triangle B)+b^{2} M\left(\triangle A^{2}\right) \\
& =\frac{\varphi_{0}}{n-2}\left\{a^{2}(a C+2 b B+c A)-2 a b .2(a B+b A)+b^{2} .4 a A\right\}= \\
& =\frac{\varphi_{0}}{n-2} a^{2}(a C-2 b B+c A) \text {, }
\end{aligned}
$$

or, on account of $\left(28^{a}\right)$.

$$
\begin{gather*}
M\left(\triangle a^{2}\right)=\frac{\varphi_{0} \sigma}{n-2} \cdot c^{2}, \quad M(\triangle \alpha \triangle \beta)=\frac{-2 \varphi_{0} \sigma}{n-2} \cdot b c \\
M(\triangle \alpha \triangle \gamma)=\frac{\varphi_{0} \sigma}{n-2} \cdot\left(2 b^{2}-a c\right), \\
M\left(\triangle \beta^{2}\right)=\frac{4 \varphi_{0} \sigma}{n-2} \cdot a c, \quad M(\triangle \beta \triangle \gamma)=\frac{-2 \varphi_{0} \sigma}{n-2} \cdot a b \tag{41}\\
M\left(\triangle \gamma^{2}\right)=\frac{\varphi_{0} \sigma}{n-2} \cdot a^{2} .
\end{gather*}
$$

Taking z_{0} as central value, we derive from ($24^{\prime \prime}$):
or

$$
2 \alpha z_{0} \Delta z_{0}-\beta \Delta z_{0}+z_{0}^{2} \Delta \alpha-z_{0} \Delta \beta+\triangle \gamma=0
$$

$$
\begin{equation*}
-\left(2 \alpha z_{0}-\beta\right) \Delta z_{0}=z_{0}^{2} \Delta \alpha-z_{0} \Delta \beta+\Delta \gamma . . \quad . \tag{42}
\end{equation*}
$$

whence

$$
\begin{aligned}
& \left(2 \alpha z_{0}-\beta\right)^{2} M\left(\triangle z_{0}^{2}\right)=z_{0}^{4} M\left(\triangle \alpha^{2}\right)-2 z_{0}^{3} M(\triangle \alpha \triangle \beta)+ \\
& \quad+2 z_{0}^{2} M(\triangle \alpha \triangle \gamma)+z_{0}^{2} M\left(\triangle \beta^{2}\right)-2 z_{0} M(\triangle \beta \triangle \gamma)+M\left(\triangle \gamma^{2}\right)
\end{aligned}
$$

Now

$$
\left(2 \alpha z_{0}-\beta\right)^{2}=4 \alpha\left(\alpha z_{0}^{2}-\beta z_{0}+\gamma\right)+\left(\beta^{2}-4 \alpha \gamma\right)
$$

or, z_{0} being a root of $\left(24^{\prime \prime}\right)$, and by $\left(28^{b}\right)$,

$$
\left(2 \alpha z_{0}-\beta\right)^{2}=R
$$

Substituting for $M\left(\triangle \alpha^{2}\right)$ etc. the values found in (41), we obtain

$$
\begin{aligned}
& R . M\left(\triangle z_{0}{ }^{2}\right)=\frac{\varphi_{0} \sigma}{n-2}\left\{z_{0}{ }^{4} \cdot c^{2}-2 z_{0}{ }^{3} \cdot-2 b c+2 z_{0}{ }^{2} \cdot\left(2 b^{2}-a c\right)+\right. \\
& \left.+z_{0}{ }^{2} .4 a c-2 z_{0}-2 a b+a^{2}\right\} \\
& =\frac{\varphi_{0} \sigma}{n-2}\left(c z_{0}{ }^{2}+2 b z_{0}+a\right)^{2},
\end{aligned}
$$

or, by (22) and (23),

$$
M\left(\triangle z_{0}^{2}\right)=\frac{\varphi_{0} \sigma}{(n-2) R}\left\{g\left(z_{0}\right)\right\}^{2}=\frac{\sigma \varphi_{0} g_{0}^{2}}{(n-2) R}=\frac{\sigma g_{0} G_{0}}{(n-2) R}
$$

We have further for the true error of θ_{0} :

$$
\triangle \theta_{0}=\frac{\triangle z_{0}}{1+z_{0}^{2}}
$$

thus

$$
\begin{aligned}
M\left(\triangle \theta_{0}^{2}\right)= & \frac{M\left(\triangle z_{0}^{2}\right)}{\left(1+z_{0}^{2}\right)^{2}}=\frac{\sigma \varphi_{0}}{(n-2) R}\left(\frac{g_{0}}{1+z_{0}^{2}}\right)^{2}= \\
& =\frac{\sigma \varphi_{0}}{(n-2) R}\left(\frac{a+2 b \operatorname{tg} \theta_{0}+c \operatorname{tg}^{2} \theta_{0}}{\sec ^{2} \theta_{0}}\right)^{2}= \\
= & \frac{\sigma \varphi_{0}}{(n-2) R}\left(a \cos ^{2} \theta_{0}+2 b \cos \theta_{0} \sin \theta_{0}+c \sin ^{2} \theta_{0}\right)^{2}= \\
& =\frac{\sigma \varphi_{0}}{(n-2) R}\left\{f\left(\theta_{0}\right)\right\}^{2}=\frac{\sigma f_{0} F_{0}}{(n-2) R}
\end{aligned}
$$

So the square of the mean true error $E\left(\theta_{0}\right)$ of θ_{0} is

$$
\begin{equation*}
\mathrm{E}^{2}\left(\theta_{0}\right)=\frac{1}{n-2} \cdot \frac{\sigma}{R} \cdot f_{0} F_{0} \tag{43}
\end{equation*}
$$

The mean error of l_{0} is to be derived from

$$
\Delta l_{0}=\Delta \bar{x} \cdot \cos \theta_{0}+\triangle \bar{y} \cdot \sin \theta_{0}+\left(-\bar{x} \sin \theta_{0}+\bar{y} \cos \theta_{0}\right) \Delta \theta_{0}
$$

Here we have (see (42))

$$
\begin{aligned}
& \Delta \theta_{0}= \frac{\Delta z_{0}}{1+z_{0}^{2}}= \\
&-\frac{z_{0}^{2} \triangle a-z_{0} \triangle \beta+\Delta \gamma}{\left(1+z_{0}^{2}\right)\left(2 \alpha z_{0}-\beta\right)}= \\
&=-\frac{z_{0}^{2}(b \triangle C-c \triangle B)-z_{0}(c \triangle A-a \triangle C)+(a \triangle B-b \triangle A)}{\left(1+z_{0}^{2}\right)\left(2 \alpha z_{0}-\beta\right)} \\
&=\lambda \triangle A+\mu \triangle B+v \triangle C .
\end{aligned}
$$

So we obtain:

$$
\left.\begin{array}{l}
M\left(\triangle l_{0}^{2}\right)=\cos ^{2} \theta_{0} \cdot M\left(\triangle \bar{x}^{2}\right)+2 \cos \theta_{0} \sin \theta_{0} \cdot M(\triangle \bar{x} \triangle \bar{y})+ \\
\quad+\sin ^{2} \theta_{0} \cdot M\left(\triangle y^{2}\right)+2\left(-\bar{x} \sin \theta_{0}+\bar{y} \cos \theta_{0}\right)\left\{\cos \theta_{0} \cdot M\left(\triangle x \triangle \theta_{0}\right)+\right. \tag{44}\\
\left.\quad+\sin \theta_{0} \cdot \bar{M}\left(\triangle \bar{y} \triangle \theta_{0}\right)\right\}+\left(-\bar{x} \sin \theta_{0}+\bar{y} \cos \theta_{0}\right)^{2} M\left(\triangle \theta_{0}^{2}\right) .
\end{array}\right\}
$$

Now from

$$
\bar{x}=\frac{[x]}{n}, \quad \bar{y}=\frac{[y]}{n}
$$

ensues
$M\left(\triangle \bar{x}^{2}\right)=\frac{1}{n} M\left(\triangle x^{2}\right), M(\triangle \bar{x} \triangle \bar{y})=\frac{1}{n} M(\triangle x \triangle y), \quad M\left(\Delta \bar{y}^{2}\right)=\frac{1}{n} M\left(\triangle y^{2}\right)$. hence, by (39).

$$
\begin{equation*}
M\left(\triangle \bar{x}^{2}\right)=\frac{\varphi_{0} a}{n-2}, M(\triangle \bar{x} \triangle \bar{y})=\frac{\varphi_{0} b}{n-2}, M\left(\triangle \bar{y}^{2}\right)=\frac{\varphi_{0} c}{n-2} \tag{45}
\end{equation*}
$$

Moreover:

$$
M\left(\triangle \bar{x} \triangle \theta_{0}\right)=\lambda M(\triangle \bar{x} \triangle A)+\mu M(\triangle \bar{x} \triangle B)+\nu M(\triangle \bar{x} \triangle C) ;
$$

likewise:

$$
M\left(\triangle \bar{y} \triangle \theta_{0}\right)=\lambda M(\triangle \bar{y} \triangle A)+\mu M(\triangle \bar{y} \triangle B)+\nu M(\triangle \bar{y} \triangle C) .
$$

Now

$$
\begin{aligned}
M(\triangle \bar{x} \triangle A) & =\frac{2}{n^{2}} M([\triangle x][u \triangle u])=\frac{2}{n^{2}} M\left(\left[u_{k} \triangle u_{k} \triangle x_{k}\right]+\left[\left[u_{k} \triangle u_{k} \triangle x_{l}\right]\right]\right) \\
& =\frac{2}{n^{2}}\left\{M\left(\left[u_{k}\right]\right) M\left(\triangle u_{k} \triangle x_{k}\right)+M\left[\left[u_{k}\right]\right] M\left(\triangle u_{k} \triangle x_{l}\right)\right\}
\end{aligned}
$$

As however $\left[u_{k}\right]=0$, also $M\left(\left[u_{k}\right]\right)=0$; therefore:

$$
M(\triangle \bar{x} \cdot \triangle A)=0
$$

likewise
$M(\triangle \bar{x} \cdot \triangle B)=0, \quad M(\triangle \bar{x} \cdot \triangle C)=0, \quad M(\triangle \bar{y} \cdot \triangle A)=0$,

$$
M(\overline{\Delta y} \cdot \Delta B)=0, M(\Delta \bar{y} \cdot \Delta C)=0,
$$

whence

$$
\begin{equation*}
M\left(\triangle \bar{x} \cdot \triangle \theta_{0}\right)=0, \quad M\left(\triangle \bar{y} \cdot \Delta \theta_{0}\right)=0 \tag{46}
\end{equation*}
$$

In virtue of (44), (45), (46) and (43), we find at last for $M\left(\triangle l_{0}{ }^{2}\right)=\mathrm{E}^{2}\left(l_{0}\right)$:

$$
\begin{aligned}
\mathrm{E}^{2}\left(l_{0}\right)= & \frac{\varphi_{0}}{n-2}\left\{a \cos ^{2} \theta_{0}+2 b \cos \theta_{0} \sin \theta_{0}+c \sin ^{2} \theta\right\}+ \\
& \quad+\left(-\bar{x} \sin \theta_{0}+\bar{y} \cos \theta_{0}\right)^{2} \cdot \frac{1}{n-2} \cdot \frac{\sigma}{R} f_{0} F_{0} \\
= & \left.\frac{\varphi_{0} t_{0}}{n-2}+\overline{(x}^{2}+\bar{y}^{2}-l_{0}^{2}\right) \cdot \frac{1}{n-2} \cdot \frac{\sigma}{R}, f_{0} F_{0}
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{E}^{2}\left(l_{0}\right)=\frac{F_{0}}{n-2}\left\{1+\left(\bar{x}^{2}+\bar{y}^{2}-l_{0}^{2}\right) \cdot \frac{\sigma}{R} f_{0}\right\} . . . \tag{47}
\end{equation*}
$$

Here $\bar{x}^{2}+\bar{y}^{2}-l_{0}{ }^{2}$ represents the square of the projection p of the radius vector of the "mean point" (\bar{x}, \bar{y}) on the line L_{0}.

Fig. 2.
Hence

$$
\mathrm{E}^{2}\left(l_{0}\right)=\frac{F_{0}}{n-2}\left\{1+p^{2} \frac{\sigma}{R} f_{0}\right\}
$$

Moreover we have, in virtue of (46),

$$
\left.\begin{array}{c}
M\left(\triangle t_{0} \Delta \theta_{0}\right)=\left(-\bar{x} \sin \theta_{0}+\bar{y} \cos \theta_{0}\right) M\left(\triangle \theta_{0}^{2}\right)= \tag{48}\\
=\frac{1}{n-2} \cdot \frac{\sigma}{R} \cdot t_{0} F_{0} \cdot\left(-\bar{x}_{0} \sin \theta_{0}+\bar{y} \cos \theta_{0}\right)
\end{array}\right\}
$$

If there is occasion to consider the different "observed points" $S_{k}\left(x_{k}, y_{k}\right)$ unequally certain, we can assign to each point S_{k} a weight g_{k}. Then we operate with $u^{\prime}{ }_{k}=u_{k} \sqrt{g_{k}}, v^{\prime}{ }_{k}=v_{k} \sqrt{g_{k}}$ and with $A^{\prime}=\frac{\left[g_{k} u_{k} u_{k}\right]}{n}=\overline{g u u}, B^{\prime}=\frac{\left[g_{k} u_{k} v_{k}\right]}{n}=\overline{g u v}, C^{\prime}=\frac{\left[g_{k} v_{k} v_{k}\right]}{n}=\overline{g v v}$ in the same manner as we have operated above with u_{k}, v_{k}, A, B and C.

Summarising the results obtained above, we can say that the most probable line L_{0}

$$
x \cos \theta_{0}+y \sin \theta_{0}-l_{0}=0
$$

is determined by $\left(30^{\prime}\right)$ and (21), thus by

$$
\operatorname{tg} \theta_{0}=\frac{\beta+V \bar{R}}{2 \alpha}, \quad l_{0}=\bar{x} \cos \theta_{0}+\bar{y} \sin \theta_{0}>0
$$

the mean errors of θ_{0} and l_{0} being determined by (43) and (47'), thus by

$$
\mathrm{E}^{2}\left(\theta_{0}\right)=\frac{1}{n-2} \cdot \frac{\sigma}{R} \cdot f_{0} F_{0} \quad, \quad \mathrm{E}^{2}\left(l_{0}\right)=\frac{F_{0}}{n-2}\left\{1+p^{2} \cdot \frac{\sigma}{R} \cdot f_{0}\right\}
$$

where
$\alpha=b C-c B ; \beta=c A-a C, \gamma=a B-b A, \sigma=a C-2 b B+c A$,
$R=\beta^{2}-4 a \gamma=(a C-2 b B+c A)^{2}-4\left(a c-b^{2}\right)\left(A C-B^{2}\right)$.
$f_{0}=a \cos ^{2} \theta_{0}+2 b \cos \theta_{0} \sin \theta_{0}+c \sin ^{2} \theta_{0}, F_{0}=A \cos ^{2} \theta_{0}+$

$$
p^{2}=\bar{x}^{2}+\bar{y}^{2}-l_{0}^{2}
$$

$$
+2 B \cos \theta_{0} \sin \theta_{0}+C \sin ^{2} \theta_{0}
$$

Particular cases.
I. The axes of coordinates coincide with the main axes of elasticity. Here we have $\omega=0$, thus $a=Q, b=0, c=P$, whence
$a=-P B \quad, \quad \beta=P A-Q C \quad, \quad \gamma=Q B \quad, \quad \sigma=P A+Q C$,
$R=(P A-Q C)^{2}+4 P Q B^{2}=(P A+Q C)^{2}-4 P Q\left(A C-B^{2}\right)$,
$f_{0}=Q \cos ^{2} \theta_{0}+P \sin ^{2} \theta_{0}$.
$M(\Delta x \Delta y)=0$, so the errors of x and y are independent of each other.
II. The plane is isotropic, or, what comes to the same thing: x and y are equally uncertain.

Then we have $P=Q=1$, so that $a=c=1, b=0$, whence

$$
\begin{aligned}
& a=-B \quad, \quad \beta=A-C \quad, \quad \gamma=B \quad . \quad \sigma=A+C \\
& R=(A-C)^{2}+4 B^{2}=(A+C)^{2}-4\left(A C-B^{2}\right) \\
& f_{0}=1 .
\end{aligned}
$$

Therefore

$$
\operatorname{tg} \theta_{0}=\frac{A-C+\sqrt{(A-C)^{2}+4} \overline{B^{2}}}{-2 B}=\frac{C-A-V \overline{(C-A)^{2}+4 B^{2}}}{2 B} ;
$$

$$
\operatorname{tg} 2 \theta_{0}=\frac{2 B}{A-C}, \cos 2 \theta_{0}=\frac{C-A}{\sqrt{\bar{R}}}, \sin 2 \theta_{0}=\frac{-2 B}{\sqrt{\bar{R}}}
$$

$$
\mathrm{E}^{2}\left(\theta_{0}\right)=\frac{1}{n-2} \cdot \frac{(A+C) F_{0}}{(A+C)^{2}-4\left(A C-B^{2}\right)}
$$

$$
\begin{gathered}
\mathrm{E}^{2}\left(l_{0}\right)=\frac{F_{0}}{n-2}\left\{1+p^{2} \cdot \frac{A+C}{\sqrt{(A+C)^{2}-4\left(A C-B^{2}\right)}}\right\} \\
F_{0}=\frac{A+C}{2}+\frac{A-C}{2} \cos 2 \theta_{0}+B \sin 2 \theta_{0}=\frac{A+C-V(A+C)^{2}-4\left(A C-B^{2}\right)}{2}
\end{gathered}
$$

[^0] between the variables x_{k}, y_{k}. The expression for the mean error of g_{0} however is different (see the footnote on page 1032).
III. x is perfectly certain : $\frac{P}{Q}=\infty$, or $P=1, Q=0$.

So we have $a=b=0, c=1$, whence

$$
\alpha=-B, \beta=A, \gamma=0, \sigma=A, R=A^{2} ; f_{0}=\sin ^{2} \theta_{0}
$$

$\operatorname{tg} \theta_{0}=\frac{2 A}{-2 B}=-\frac{A}{B}$, or, what comes to the same thing: the direction tangent of the line L_{0} is $\frac{B}{A}=\frac{\overline{u v}}{\bar{u} u}$.
$f_{0}=\frac{1}{1+\frac{B^{2}}{A^{2}}}=\frac{A^{2}}{A^{2}+B^{2}}, \quad F_{0}=\frac{A+2 B \operatorname{tg} \theta_{0}+C \operatorname{tg}^{2} \theta_{0}}{1+\operatorname{tg}^{2} \theta_{0}}=\frac{A-2 A+\frac{A^{2} C}{B^{2}}}{1+\frac{A^{2}}{B^{2}}}=$

$=\frac{A\left(A C-B^{2}\right) .}{A^{2}+B^{2}}$.
$\mathrm{E}^{2}\left(\theta_{0}\right)=\frac{1}{n-2} \cdot \frac{1}{A} \frac{A^{3}\left(A C-B^{2}\right)}{\left(A^{2}+B^{2}\right)^{2}}=\frac{A^{2}\left(A C-B^{2}\right)}{(n-2)\left(A^{2}+B^{2}\right)^{2}}$, or

$$
\mathrm{E}\left(\theta_{0}\right)=\frac{1}{\sqrt{n-2}} \cdot \frac{A \sqrt{A C-B^{2}}}{A^{2}+B^{2}} ;
$$

$\left.\mathrm{E}^{2}\left(l_{0}\right)=\frac{A\left(A C-B^{2}\right)}{(n-2)\left(A^{2}+B^{2}\right)}\left\{1+p^{2} \cdot \frac{A}{A^{2}+B^{2}}\right\}^{1}\right)$
${ }^{1}$) Here we have the same case as that of n observational equations $m x_{k}+h=y_{k}$, where m and h are the unknowns, x_{k} the known (and perfectly exact) coefficients, y_{k} the observations. The solution of the normal equations $[x x] m+[x, 1] h=[x y],[x, 1] m+$ $+[1 \times 1] h=[1 . y] \quad([1 \times 1]=n)$ furnishes, after introducing $u_{k}=x_{k}-\bar{x}, v_{k}=y_{k}-\bar{y}$, the same expression for m, viz. $\frac{\overline{u v}}{u \bar{u}}$. We also find for $\theta=\operatorname{arctg} m \pm \frac{\pi}{2}$ and $l=h \sin \theta=$ $=\frac{+h}{\sqrt{1+m^{2}}}$ the same mean errors as above.

[^0]: 1) The formula for $\operatorname{tg} \theta_{0}$ (and $\operatorname{tg} 2 \theta_{0}$) is the same as in the case of linear correlation
