Mathematics. — Linear Adjustment of a Set of Pairs of Numbers
(%% yx). By Prof. M. J. vaAN UVEN. (Communicated by Prof. A.
A. NIJLAND).

(Communicated at the meeting of November 26, 1927).

If, by some theoretical consideration, we assume a linear relation
ax- fy+y=0 between two variables x and y, the experiment however
furnishing a set of n pairs (xy,y), (x5 y2), ... (% ys) not agreeing
completely with the same linear relation, the values x, yx (k=1,...n)
obtained by experiment, and therefore subject to errors of observation,
must be adjusted.

We have in general no right to consider one of the variables as free
from error. So both values xi and y; must be “corrected’.

Speaking geometrically we have the problem: To fit a straight line
L as closely as possible through n points Si having coordinates
Xw Yy (k=1,...n) given by experiment.

As a rule no straight line exists, which passes exactly through all the

given points Si. Calling T for convenience sake the true position of
—_— —
Sk, the displacement 8 —S; T} is the correction of Sk, and T Sy —=— s

is the “error”” of Si. Generally both x; and yx must be corrected; that
is to say: the displacements J; will not in general coincide with the
direction of any coordinate.

We must also take into account the possibility that the x-coordinate
has an uncertainty (mean error, weight) different from that of the y-
coordinate. Nor is a certain dependence between the error Ax of x
and the error Ay of y to be excluded; this dependence is revealed by
the fact that the mean value of Axi . /Ay, differs from zero.

We may consider the xy-plane as subject to elastic tensions, which
perform a certain (negative) work by the displacement of a point, whence
a certain potential energy is produced.

The plane not being isotropic, the elastic tension has its maximum
and its minimum in two directions, perpendicular to each other, which
need not coincide with the directions of the coordinate-axes.

We shall treat the given problem on the most general supposition:
viz. that the plane is not isotropic, and that the main directions of
elasticity form an angle (w) with the coordinate-axes.

Each point S; being shifted by a displacement 6; to a point T%,
situated on a certain straight line L, there will be produced a certain
total amount V of potential energy.

As the line L, best fitted through the points S, we shall consider
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that line L, for which the total potential energy V takes its minimum
value.

The angle between the axes of elasticity and the coordinate-axes
being w, the coordinates x’,y’ of a point with respect to a system of
coordinates having the same origin as the system x, y, and parallel to
the axes of elasticity, are connected with x and y by

x' =x cos w + y sin o,

y' = — xsin w + y cos w.

The modulus of elasticity (elastic force in displacing a point over the
distance 1) in the main direction x’ being P, in the main direction
y’ Q. a displacement in the direction which makes the angle {’ with
the positive axis of x’, generates an elastic force € the components of
which are

E.=—Pcosl , E,=—Qsinl" . . . . (1)

I |e

Fig. 1.

This force is balanced by the force attracting the point perpendi-
cularly to L. This latter force having the components -+ P cos (',
+ QsinZ’, the direction 6’ of the normal of L is connected with the
direction ¢’ by the relation
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or
ind’ _ Psin®/
cosl’ Qecost’’
thus
/ . /7
cos ¢ — Qcos b gin ¢ — Dsin 4 @)

V' DP?2sin?2 6" 4+ Q?cos? 6 V' P?sin2 @ + Q%cos?
The angle {’— @’ between the directions of displacement and force
is determined by
2 g 2 g
cos{l — By — Qcos?§’' 4 Psin? 4 B
V' D?sin2 6’ + Q? cos? 8’

So the component of the elastic force in displacing the point over
the distance 1 in the direction ¢’ (i.e. in the direction from Si to T%)
amounts to

PQ3cos?6’+QP?sin?6’
"~ P%sin? 6’ + Q¥cos? 6°

Ey=E.cos{'+E,sin{’'=—(Pcos¥'+Qsin? )=
or

DPsin?2 8’ + Q cos? &’ 4)
"DP?sin?2 @+ Q%cos?26’ T T T

By = — PQ

Hence the displacement 4, (in the direction (') generates a force, the
component of which in the direction {’ (i.e. in the direction from
Sk to Tk) is

E: . 6.
By displacing Sk gradually to T% on L, this component performs the

work :
5

_k
jE;,.a.da:%E;/.akz R )
(0

The perpendicular distance 1, from S; to L being

e =8y cos (&' — 6),
we have

O = ———lk :/ik.

F T cos (T — &)

V' PZsin? 8’ + Q% cos? &’ ... (6
Psin? 6" + Q cos? 6’

From (4) and (6) follows that the work performed (5) amounts to

PQ Psin? 6’ + Qcos?d’ _, P?sin? 6’ + Q?cos? b’
LB §2— L 2
tBe b 2 " P%sin?6’ 4+ Q%*cos?6’ X (Psin?6’ + Qcos?d’)? X &

pPQ M2

2 "Psin?# + Qcos? A"

66
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Denoting by [ ] the summation over k from 1 to n, we find for all
the points Sk together:
PQ [42]
xr 2 —
§ Bx.[07] 2 Psin?6 +Qcos? &

7

So the potential energy produced is

. ' PQ [42]
V=—4Ey.[0]=+ 2 'Psin? 8 +Qcos?6” " @)

2 J—
or, denoting the mean value [ZT"] of 42 by 44,
nPQ 32

LS 2 'Psin?6 4+ Qcos? b’

Introducing the perpendicular distance [ from O to L, we find:

A =x'x cos @ + y'x sin 8 — 1,
therefore

nPQ (x'x cos 8’ + y’x sin §'— I)?

2 ' Psin?28 + Qcos? 8’

Passing to the original system of coordinates x, y, we have

0=6—o,
x'x cos @' + y'k sin ' — x; cos 8 + yi sin 6,
Psin? 8’ 4+ Qcos?6’ = P sin? (0—w) + Q cos? (6—w)
= (Psin? w + Q cos? w) cos? 6 +

+ 2 (—P + Q) sin w cos w cos 8 sin 8 +
+ (P cos? w + Q sin? w) sin® 6.

V=

Putting
a—=Psin?w + Q cos? w
b=(—P+Qsinwcosw, ; . . . . . . (11
c=Pcos?w + Qsin?w S

we find:

Psin? ¢’ + Qcos? @ —acos? @ + 2 b cos 8 sin 8 + csin? 8 = f(6). (12)
Hence the potential energy V is

V— nPQ < 42 __nPQ (>« cos 8 + yi sin 8—I)?
2 ) 2 acos’ @ + 2b cos @ sin 8 + csin? 6

The forces are in balance if V is a minimum, thus if

2V (6, )= (% cos 8+ yi sin 6—I)?
nPQ f( ) " acos?6 + 2 b cos O sin 8 + csin?

Putting

(13)

minimum. (14)

) 5]

X =
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and
Xx—=x+uw, ye—y+ v,
whence - B
u=0,v=0
we find:

(2 cos 8 —+ yi sin @ — )2 = {(x cos 8 + y sin 8—I) + (ux cos 6 - vy sin G)}?
— (x cos 8+ ysin —1I)? 4 2 (x cos 8 + y sin 8—I) (u cos B-+vsinH) -+
- (uu cos?8+2 uv cos Osin 8 + v sin? ).

Taking into account 1 =0, v =0, and putting:

uwr=A, w=B, vw=C, . . . . . . (15

we arrive at

(xx cos @ + yx sin 6—I)2 = (x cos 8 + y sin H—I)? + (16)

—+ (A cos? 8 + 2 B cos 8 sin 8 4 C sin? 6).

So the condition (14) runs:

:@956—1—5 sin6—1)*+(A cos’6+2B cos fsinf+Csin*6)

P(0.]) acos?6 + 2 bcos b sinl + csin? 6 mintmmm (17)
The condition of minimum aa-qlu:() furnishes
a_tp_—Z(}cosH—l—_y sin¢9—l)_0
o~ F6) =0
or
xcos@ +ysind—1=0; . . . . . . (18

that is to say: the line L required must pass through the “mean point” (x, y).
Th condition (17) asks now

A cos?8 + 2 Bcos B sinf+ Csin? b

?(6)= acos?d +2bcosBsinf -+ csin? 4 mEAiEnm, » {19)

or, putting
Acos’8 +2BcosBsinf -+ Csin2d=F(), . . . (20
tp(ﬁ):?(g) minimum . . . . . . . (19)

From (19) (or (19’)) we take the value of # which minimizes ¢ (6);
denoting this solution by &, and the value of [ required, by [, we
have, on account of (18),

lo = x cos 6, -+ y sin 6, R A )|
From
— _ [ud?] — _ [mw] —__ [v’]

A=wu—"+= , B=uv—= , C=w=
n n n

66*
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follows

[4?] [04%] — [ux oa)? __ [(wx o0 — wi vi)’]

A>0 and AC—B?— == >0.
n? n?

Likewise, from (11) ensues:
a>0 and ac— b>*=PQ > 0.

So both the forms F(¢) and f(f) are positive definite.
F (6)

Hence the present minimumproblem : 76 min. is formally equivalent

to determining the direction of minimum curvature at an elliptic point
of a surface.

Putting:
tg ¥ =z, (
A+2Bz+ Cz2=G(2), (22)
a+2bz+c2=gl2), 5
we find
. _A+2Bz+C22 _Gl(2)
Now we have
dG_ - dg dy
dj_gdl G@___rl_ 95_3 a+2bz+cz% b+ cz |
¢ ¢ |,dG| ¢ |A+2B:+C2 B+Cz,
dz

«l" a+ bz, b+ cz
g’ |A+ Bz, B+ C:

|

So the value z, which minimizes w(z), is one of the roots of the
equation

a+bz, b-+cz
|A+ Bz, B+Cz%_0, e e e s (29
or
(@B—bA)— (cA—aC)z+ (bC—cB)z2=0, . . . (24)
for which we, putting
bC —cB=a /
cA —aC=g B 5]
aB—bA=y S
can write
a2 —Bz+y=0. . . . . . . . (24

The corresponding value of vy is

Glzo) __Go_ (A + Bzo) + (B + Cz) 2
+

V== ) g0 (@t bzo) T Bz 2 |
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or, by (24),
_A + BZo_B + CZO
Y=aF bzy  b+czy 23)
Hence
__a'l’o‘A___bll’o_B
= byy— B cy, —C 26}
so that v, is a root of the equation
sp=dl. » p=81 | ap
by —B , cw—C |
or
(ac— bY) w?— (aC—2bB+cA)y +(AC—B)=0,. . (27)

or, putting for abbreviation's sake

ac—b*=s , AC—B*’=S , aC—2bB+cA=o0,. (289

s.pl—o.p+8S=0. . . . . . . (27"
From s >0, S>0, a >0, A >0 follows
b<Va , B<KVAC , thus bB< V'acAC,
therefore
6=aC—2bB+cA=(VaC—V'cA)?+2(Vac AC — bB) > 0.
The solution of (27"):

o+ Ve?—4sS
o 2s

requires an investigation of the eliminant of g (z) and G (2):

R—0>—4sS—(aC —2bB+ cA)?—4(ac — b} (AC—BZ)Z
—=(cA —aC)? — 4 (bC — cB) (aB — bA) (28%)
=f*—4ay.

R=02—4sS={(V'aC—V cA)+ 2(V acAC—bB)}? —4(ac—b?) (AC—B?
= (VaC—V cA)t + 4 (V'aC—V cA)? (V acAC — bB) +
+ 4(ac AC — 2bB VacAC + b?°B? —ac AC + b* AC + B*ac—b*B?)
= (VaC—V'cA)+4(V aC—V cA)?(V acAC — bB) +
+4(bVAC—BV'ac)?>0.
Hence the roots of (27"’) are real.
Obviously the minimum value v, of v is the inferior root of (27”'),
thus:

V'R
woza 25—8. B I .
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The corresponding value z, of z is that root of (24’') which answers
to vy, it follows also from (26):

—acy,+cA  —b y,+bB — (ac— by, + (cA — bB)

T by, —cB  bcy,—bC bC — cB
_ —2swy+2(cA—bB) —o+VR+2(cA—bB)
- 2a T 2a o
_—cA+2bB—aC+2cA—2bB+I/R’
or _ 2a
Vo
zo:%——R,..,..,,,(_’iO)

Hence the value of z required is, with the definitions for a, 8 and y
given in (25), the root of (24’’) having the positive root of R.
The angle 6, required is therefore determined by

. — BFHVR_(cA—aC)+V/(cA—aC)—4(bC—cB)(aB—bA)
9% = "24 — 2(6C —cB)

. (30')

So the angle 6, is known, all but 180°; we must choose that value
of 6, which, being substituted in (21), makes [, positive.

In the formula (30") for &, the coefficients a, b, ¢, being functions of
P, Q and w, are given a priori, thus independent of the result of the
experiment, which furnishes the pairs of numbers (xi, yi) (k=1,...n).
On the contrary the magnitudes A, B, C are really dependent of this
result; so are the magnitudes x, y appearing in the formula (21) for I,.
Repeating the proof, we can expect other values of A, B, C, x, y.

The values of & and I obtained in (30’) and (21) by taking the average,
furnish L, as the ,apparent line” (apparently true line), on which the
points Si ought to lie. According to usage, we shall call the deviations
of the points Si from this line: the apparent errors (residuals) of
the position of Si. T being the point on L; corresponding to Sk,

T Sk =— 6« is the apparent error of Sk, as to amount and as to
direction.
Denoting the coordinates of T by Xk, Yi, we have

X cos 8y + Yisin 8, — 1, =0.
The residuals of the coordinates of Sk being '
xi—Xe=&.ps— Y= . . . . . . (31
and the coordinates of Sj satisfying

Xk cos By + gk sin 8y — Iy == A,
we find:
Ercos G+ mesinbo—=4 . . . . . . . (32

Passing to the system of coordinates of the main directions of elas-
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ticity (x, y’), the residuals &', 4" of the coordinates of this system are
connected to &, % by ) )
E=¢&cosw—n smw,e' 39
n ==& sin w + 7’ cos .

As the moduli of elasticity P and Q (cf. (8)) play the part of “weights”,
P and Q are inversely proportional to the squares of the mean errors
of x' and y’, hence to the mean squares &2 and 7’2 of & and 7’ resp.;
moreover &7’ =0, & and 7’ being measured along the main directions
of elasticity.

So we have

P.2=Q.y? &/=0, . . . . . . (34

whence
5—’5:@@, 17_’2:QP, 5777’:0; N 24

where ¢ is a factor of proportionality to be determined afterwards.
From (33) follows

Il

2—=F2cos?w— 2 &7y sin w cos w + 2 sin? w =p (Q cos? w + P sin? w),

7=&"? sin ® cos w-+£'y’ (cos? w—sin? w)—7’?sin w cos w=p(Q—P)sinwcosw,

e

2 =E7sin? 0 + 2y’ sin w cos w + 72 cos? v = g (Q sin? ® + P cos? w),
hence, on account of (11):
E=ga, En=¢b pP’=gc.. . . . . . (35
By taking the mean squares of both sides of (32) we find
&2 cos? By + 2 &n cos By sin O, + 12 sin? B, = 42,
thus, by (35).
0 (acos? By + 2 b cos B, sin 8, + csin? Bp) =12,

whence, on account of (12) and of (14),

@ [(6o) = (1) = @o - £(60) ;
therefore
=@=@ ) =wo=wlz) . . . . . . (36)
and
E=ppa, n=gyb, N*=¢@ec. . . . . . (37)
®o — y, being determined by (29).
In this way the mean squares and the mean product of the residuals
are found.
Denoting the true errors of Xk, yi e vk X, y, etc. by Axi, Ayi, etc.,
the formula

— x1+x+. . X+ %0 _ % —icz—...—{—(n——l)xk—...— 2

Ur—Xr— X—Xr—
n n

gives
_Axl —sz-—..—}—(n——l) Ax;g —..—-Ax,,

n

Aup = (389



1030

Likewise

Mop e =D =By =t =) Ay — = Dy 50

n

The errors of A:Elﬂ B:[Bv—] C= [wd are:
n n n

AA=2[ulul AB="{[vlu] + [ulolf, & C:%[UAU].

1
=

In determining the mean error of a function of A, B and C, we have
to do with the mean values of NA?2, ANAAB, NANAC, AB? ABAC,
AC?, thus with the mean values of the squares and products built up
out of [uAu], [vAu], [ul\v], [vAv].

In computing the mean value of [u/Au]? for instance, we meet with
two sums, viz.: [ ux . ANur Aug ] and [[ue v - Aue Ay 1], where [[ 1]
designates a summation of the n (n—1)-terms wherein [ £ k.

The errors /Auy, /\vi being supposed independent of the very ux, vk,
the mean value of [ux ur . Aur Auy |, represented by M ([ux uk . Nuk Aui ]),
may be written:

M ([ux ur . Nue Aur ) = M ([ur ur 1) X M (Aur Au);
likewise
M ([[uk u . Allk Alll ]]) = M([[uk up ]]) X M(Allk AHI )
Now
[ue ux ]|=nA, [ P=[w e ]+ [[ wew; ]] =0, thus [[ ux u; ]] = — nA.
likewise
luwvi ]| =nB, [ ][ ve ] =[ ur v ]H[[ ur v: ]] =0, thus [[ux v; ]]=— nB,
[vkve ]=nC, [vi ?=[wvkvi ]+ [[vx v ]] =0, thus [[ vk v ]] = — nC.

Moreover:

Auy =

(n—1) Axy — Axy — Nxs; — .. — Ax,
- )
— g + —1) Nty — Bty — o — A |

n

(38¢)
Nu, =

whence

NAu; Auy= ;112§ +(n—12 Ax 2+ Ax? + Axs? .o+ Ax2 4 [ pa A Axi]] }

Auy Nuy= 52 I—(n—1)Ax2—(n—1D) A x>+ A x>+ Ax? + [[ge Axe N xi]]3.
Now we have
M (Ax,) =M(Ax?) =.=M(Ax.2) =M(Ax?, M (Axi Axi) =0 (for [ F k),

therefore

M (A Aw) = L n— 12 M (A ) + (n—1) M (A ) :"—:—IM(A ),
M (Au,Auy) = r% { — (n—1) M (Ax,?) — (n—1) M(Ax2)+ (n—2) M(Ax?)} =

= — ’17 M (Ax?).
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Hence:
M( Ay Ay ) = E}‘ M(AxY, M(Aw D) = — rl—lM (A 2.
Likewise :

M(Aui Aoy )= ’f- M (AxAy), M (AukAvl):—;llM(AxAy),

M (Do Do) =""2 M(Ag), M (Do, Av)=— - M (Ag?)

So we arrive at

M ([uAu]) = M ([ ur we . Duge Aue ] 4 [[ue w1 A A ]]) =
=M ([ur e ]) - M (A Aui )+ M ([[we w]]) - M ( Auie Auy)
—=nM (A). M (Ax?).

Likewise:
M ([uAu] [uAv]) =nM (A). M (AxAy),
[uAv]?) =nM (A). M (Ay?),
[u Au][v Au])=nM(B). M (A x?),

[u A v] [vAv])=n M (B) . M (/\ y?,

[v Au)=nM(C). M(A x?),

M(vAullvAv])=nM(C). M (Ax Ay).
M([v Av])=nM(C). M(A ).

By means of these formulae we find

M (A AZ):%M([H Au)) = :— M(A). M (A x%),

M (
M (
M(ulAuallv Av))=M([uAv][vAu)=nM(B). M(A xAvy)
M (
M (

M(AA.AB=2M(uAulilo A+ [u A oll) =
:%gM(B). (A %)+ M (A). M(Ax Ay,
M(AADC= " M(u Al [oAv) =+ M(B). M(Ax Ay)
M(ABZ)ng(z[vAu]+[uAv1=2>:
:‘;sz M(A %)+ 2 M(B) . M (Ax Ag)+ M(A). M Ay},

M(ABAC) = —M GlvAw)+[ulv]}vAv))=
{M(C). M (Ax Ay)+ M(B). M(Ay),

S 3N

M(A Cz):%M([vA =2 m). Mmr .
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As the present problem of adjustment deals with two unknowns
(¢ and I), so that there is only question of,adjustment if n > 2, the
formula for the square of the mean true error runs:

€] _ n& _ n
E () M(A ) _2_“n_2’—n_2¢0a‘

Likewise :

[En] néy  n

P T AL

M(Ax A yg) = (39)

EG=MAy= =" = " e

Replacing moreover the values M(A), M (B), M (C), essentially un-
known, by the values A, B, C actually found, we obtain

M(AAY)Y = 4(;002 aA,

M(AAAB)—= 2 2% (aB+ bA).

M(AAAC)= ‘*""’2 BB,

(40) 1)
M(AB) = " .(aC+2bB+cA).
M(ABAC)= 270 (b,C+ cB)

M(ACY) =2 oC.

As 6, =arctg z;,, by (24”’), is a function of @, § and y, the mean error
of 6, (and of z,) will be built up out of the means

M(Aa®) , M(AaAPp),... etc
We have
Aa=bAC —cAB, Nf=cNA —a/AC, Ay=a/lAB—bAA,

thus:

2
) The formulae (40) differ from the formulae M (2 A?) :%, M((AAAB)= 2nAB

1
2
M(AAAC)—i M(BY) = B:“fc M((ABLC) = Z-B—C M@CY)= % valid in the

case of linear correlation between x and y. In the case of correlation between x and y
the deviations u, and v, of x, and y, from x and y are considered as accidental errors.
In the present case however the coordinates x, and gy, are yet considered as free from

error, provided the point S, be situated on Lj.
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M (Aa?) = b2 M (AC? — 2bc M (AB AC) + ¢ M (ABY)

:-n—‘fj—z {b2.4cC — 2bc.2(bC + cB) + ¢ (aC + 2 bB + cA)} =
—n"_"_’z 2 (aC — 2bB + cA),
M(Aa AB)=becM (AANC)— M (AAAB) — abM (AC?) + acM(ABAC)

()/0

== {bc 4bB—c?.2(aB-+bA)—ab.4cC-+tac.2(bC+cB)}=

= ;i—"lz" bc (aC — 2 bB -+ cA),
M (Aa Ay)=abM(/\B AC)—b2M(AA AC)—acM(AB?)+ beM(AA AB)
= n—‘ﬁ—z {ab.2(bC+cB)—b2.4bB—ac(aC—+2bB-+cA)+bc.2(aB+bA)}=

:n—%(zw—ac)(aC—ZbB—l— cA),
M (A\BY) = M (AA?) — 2 acM (AA AC) + a?M (ACY)
70 {c.4aA—2ac. 4b B+ &% 4cC) = "’0 , ac (aC —2bB+cA),
M (/\B Ay)= acM (AA AB)—bcM(/\AY)— a? (AB AC) +abM(AA AC)
= -0 {ac.2(aB+bA)—be.4aA — a2 2(6C -+ cB) +ab 4bB} =

_ n‘i"’z" ab fali— 2 5B +cA),

M (A\y?) =a® M (ABY) — 2 ab M (AA AB) + b M (\A?

= 70 1a(aC + 2B + cA) — 2ab.2(aB + bA) + b". 4aA} =
—n%_z 2(aC — 2 bB + cA),

or, on account of (282),

M(da)= "% & M(Aalp)= 2"’02" be,
M (Da Dry) = 0 {2 8P —ad)
(41)
4 2
M (L) :;%0—02 .ac, M (ABNy)= _,1__2070 . ab,
Po0
() =-B% . 22



1034

Taking z, as central value, we derive from (24"):

2azy Nzg— BAzy + 202Na — zo/Af + Ny =0
or
—(2azo— ) Nzg=z2Na — 2z, A+ Ly . . . . (42)

whence

(2 azo — B M (Aze®) = 2o* M (Aa®) — 2 29> M (Lo AB) +
+ 22" M (Do Ly) + 20" MA(AP) — 2 20 M (L8 Ly) + M (Ly)

Now
(2azo — ff =4 a(azg® — fzo + ) + (F*— 4 ay).

or, z, being a root of (24”’), and by (28%),
(2azo— B =R.
Substituting for M (/\a?) etc. the values found in (41), we obtain
R.IW(Azoz):;i’v:‘)_lz{zo".c2 22z, —2bc+22,2.(2b*—ac) +
+2z%.4ac—2zy.— 2 ab+ a¥
o
= niif (c 292 4+ 2 bzy + a)%
or, by (22) and (23),

We have further for the true error of 4,:

_ Az
A Gy= ﬁ_*z?»
thus
M(Az?) _  op go
2 o) __ o g0\ __
MIAE) =127 = (a—2) R(1+z02) =
__ opy (a+2btgby+ctg®bo\?__
" (n—2)R sec? 6, o
= (;%Q)T? (a cos® @y + 2 b cos G, sin 8, + c sin? §y)2 =
9P _ 2 9fF,
So the square of the mean true error E (6,) of 8, is
E2@)=—— 2 fF. . . . ... #)
o= "5 Rl

The mean error of [; is to be derived from

Aly=/\x.cos G, + Ay . sin 8, + (— x sin 8, + y cos B) A 6. .
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Here we have (see (42))

) _"&Azg___zozA“—ZoAﬁ‘FAV _

T (1+2%2aze—8)
__ 2* (BAC —cAB)—zy(cAA—aAC)HaAB—bAA)
o (1+42?) (2azp—p)

—IAA+u/AB+rAC
So we obtain:
M (Al)= cos?§y . M (/\ x°)+2 cos By sin 8, . M (Ax/\y) +
+sin28, . M(A\y®) + 2 (—x sinby+ycosby) fcosty . M(Ax\Go)+-
+sinby . M (Ay A By)} + (— xsin Gy + y cos 6)* M (/\6y?). S

Now from

(44)

ensues

M (0=~ M(A), M(Axbg) = M(AxDg) MEG)=~ M (Agd,

hence, by (39).

- o, 22 b -
M (M) ="F5, M(Axig)=25, M (Ag)="%  (45)

Moreover:
M (Ax\6o) = iM (AxAA)+uM (AxAB) + vM (AxAC);
likewise :
M (Ay/\Bo) = AM (AyAA) + uM (Ay/AB) +vM (Ay/AC).
Now
M (AxDA) :n% M ([Ax] [uha]) = 2 M (DA + [[oDuAx])

= ,%2 { M ([ud) M (AwDx) + M [[ui]] M (Auelsx) .

As however [ux] =0, also M ([ux]) =0; therefore:
M (Ax. NA)=0;

likewise
M (Ax./AB)=0, M (Ax./AC)=0, M (Ay.A\A)=0,
M (Ay.AB)=0, M(Ay.AC)=0,

whence

M (Ax.A8)=0, M(Ay. 8)=0. . . . . (46)
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In virtue of (44), (45), (46) and (43), we find at last for M (Al) =E2(ly):
E2(l) = ;% {acos? @, + 2 bcos B, sin 8, + csin? 8 | +
_ == 1 o
+ (— xsin By + y cos H,)? .n—-_—2.§f0 F,

=2l @iy L A

or

E=(10>:€°—{1+(}2+?—102>.§fos N

Here x*+ y°— I represents the square of the projection p of the
radius vector of the “mean point” (x,y) on the line L.

U

Fig. 2.

Hence

B )= 511+ P bl - - . . 47

Moreover we have, in virtue of (46),
M(Aly A\ 8p) = (— x sin 8, + y cos 8p) M (A 6,2 =

1

—n———Z’%'fOFO.(_;OSin 6, + y cos By)

2 . (48)
S

If there is occasion to consider the different “observed points”
Sk (xx, yx) unequally certain, we can assign to each point Si a
weight gi. Then we operate with u’y — uy Vgi, vie=uvi 1/5, and with
a—lgmwl o lgund_ ) [

n n n
same manner as we have operated above with uy, vx, A, B and C.

—~ K —gov in the

Summarising the results obtained above, we can say that the most

probable line L,
X COs 60+ysin00_lo:0

is determined by (30’) and (21), thus by

I, = x cos By + y sin 6, > 0,
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the mean errors of 6, and I, being determined by (43) and (47’), thus by
1 o F

E )= 5 p-hF . El)=_ ") 1+F 5. b

where
a=bC—cB;, f=cA—aC , y—=aB—bA , c=aC—2bB+ cA,
R=p—4ay=(@C —2bB+cA}—4(ac— b)(AC— B?),
fo=acos*8,+ 2bcos §ysin 8, + csin®’ 8, , F;—= A cos’ 8, +
L + 2 B cos 6, sin 8, + Csin® §
P=x g — I
Particular cases.
I. The axes of coordinates coincide with the main axes of elasticity.

Here we have w =0, thus a=Q, b=0, c= P, whence
a=—PB , =PA—QC , y=QB , c—=PA+QC,
—=(PA — QCy+ 4 PQB*=(PA + QCy—4 PQ (AC — B?,
foZQC05200+pSin200.

M (Ax/A\y) =0, so the errors of x and y are independent of each other.

II. The plane is isotropic, or, what comes to the same thing: xand y
are equally uncertain.
Then we have P—=Q =1, so that a—c—=1, b=0, whence
a=—B , p=A—-C , y=B . ¢6=A+C(,
R=A—-C?+4B*=(A+CP—4(AC— B,

f=1.
Therefore
_A—C+VA—CP+4B _C—-A—V(C_AP+4B

9 6= —2B 2B
' 2B C—A _ —2B
tgzaOZZ—:E..COSZHOIT/-T_?—,SanGO—_‘ﬁ;

2(g) — ) (A+C)F,
Ez(eo)—n—z(A+C)2—4(AC—B2)'

EXlj=—2. 1] 2 .
F,— A+C+ Ccos 2!9O+Bsin2(90:A+C~—I/(A+2C)2—4(AC—B2) .1)

') The formula for tg §y (and tg 26p) is the same as in the case of linear correlation
between the variables x;, y,. The expression for the mean error of 6, however is different
(see the footnote on page 1032).
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[II. x is perfectly certain: B: o, or P=1, Q=0.

Q

So we have a—=b=0, c=1, whence
a=—B, p=A, y=0, o=A, R= A?; f,=sin?6,.
2A A

tg Gp = —5B~ B °" what comes to the same thing: the direction
tangent of the line L, is %:2‘:’
uu
AC
f— 1 A P _A—f—ZBtg6’0+Ctg"t90_A_2A+ B
T B AR T I+g’6, A
A? B?
_ AAC—B)
- A4+ B
EX(6y) = 1 1AAC-—B)__ A¥AC—B)
VT2 AT(ATBY T (n—2) (A B
1 AVAC—PB
E(f)= —. :
= aE
__R? 1
E2 () = AAC—BY S A )

n—2 ATy | TP A

') Here we have the same case as that of n observational equations mx;, + h=y,, where
m and h are the unknowns, x, the known (and perfectly exact) coefficients, y, the
observations. The solution of the normal equations [xx]m < [x.1]h=[xy], [x.1]m+

+[1X1h=[1.y] (1 X1]=n) furnishes, after introducing u, =x;, —x, v, =y, — ¥,

T
the same expression for m, viz. "2. We also find for § =arc tgm + 5 and I=hsin §=
uu

——— the same mean errors as above.

“Vitm





