
Abstract

Mathematics. - Representation of a Bilinear Congruence of Conics. By Prof. Jan de Vries.

(Communicated at the meeting of October 29, 1927).

1. A congruence $\left[k^{2}\right]$ of conics is called bilinear, if an arbitrary point of space defines one conic k^{2} and an arbitrary straight line is a chord of one k^{2}. Evidently the planes of the conics pass through one fixed point O and form, therefore, a sheaf. Accordingly a line s through O is a chord of ∞^{1} conics (singular line); these form a cubic surface Σ^{3}. This contains 5 pairs of lines that belong to [k^{2}].

The surfaces Σ_{1}^{3} and Σ_{2}^{3} corresponding to the lines s_{1} and s_{2}, have the k^{2} in the plane $s_{1} s_{2}$ in common. Any point S of the curve σ^{7} which they have besides in common, carries a k^{2} that cuts s_{1} twice and a k^{2} that cuts s_{2} twice; accordingly through S (singular point) there pass ∞^{1} conics.
The surface Σ^{3} defined by the line $O S$, has a double point in S. This holds especially for the surface Ω^{3} through the conics containing O.

The plane of any k^{2} passes through O and cuts σ^{7} in six more points; these lie on k^{2}.
2. In order to arrive at a representation of the congruence we shall consider two lines a_{1} and a_{2} chosen at random as directrices of a congruence of rays; this contains one chord b of a k^{2}; the transit B of b through a fixed plane β is considered as image of the k^{2}.

A point B of β usually carries one transversal b of a_{1} and a_{2} and is, therefore, the image of the k^{2} lying in the plane $O b$.

The conic k_{0}^{2} that has the transversal b_{0} in β as chord, is represented in the point range $\left(B_{0}\right)$ of b_{0}.

The transit A_{1} of a_{1} is singular for the representation; the lines that join A_{1} to the points of a_{2}, are chords of the conics that cut $O A_{1}$ twice and, consequently, form a surface Σ^{3}. Analogously A_{2} (transit of a_{2}) is singular.

The transversal a of a_{1} and a_{2} through O is a chord of $\infty^{1} k^{2}$; this is represented in the transit A of a; accordingly also A is singular.
3. The conics that have a straight line s as chord, are represented by the rays of the scroll with directrices s, a_{1} and a_{2}. Their images form, therefore, a conic β^{2} through A_{1}, A_{2} and A (one of these k^{2} passes through O).

Any β^{2} through A_{1}, A_{2} and A is the image of a system of conics that have a line s as chord. For if we choose two points B_{1} and B_{2} on β and if through these points we draw the transversals b_{1} and b_{2}, the line of intersection s of the planes $O b_{1}$ and $O b_{2}$ defines the system of the k^{2}.

Two curves β^{2} have one point B in common besides the singular points; it is the image of the k^{2} lying in the plane $s_{1} s_{2}$.
4. The point range (B) on a line c of β is the image of a system Γ of conics each of which has a transversal of c, a_{1} and a_{2} as chord. As these chords form a scroll, their planes touch a quadratic cone with vertex O.

Hence through a point S there pass two k^{2} of Γ; on the surface of the conics of this system σ^{7} is a nodal curve. The intersection of this surface with a surface Σ^{3} consists, therefore, of the curve σ^{7}, to be counted twice, and of the two k^{2} that are represented in the points of intersection of c and the β^{2} defined by Σ^{3}. Consequently c is the image of a surface Γ^{6}.
5. Let Λ be the surface formed by the k^{2} that cut a given line l; as double curve it has the k^{2} that cuts l twice.

The surface Σ^{3} corresponding to a point S contains three k^{2} resting on l; hence σ^{7} is a triple curve on Λ.

The image curve λ of the system has a triple point in A. Also A_{1} and A_{2} are triple points, for $A O_{1}$ and $A O_{2}$ are chords of three conics that rest on l. Besides the points A, A_{1} and A_{2}, λ has three points B in common with a curve β^{2}, the images of the k^{2} of Λ that have the line s as chord. Accordingly Λ has an image curve λ^{6} with three triple points.

Two curves λ^{6} have nine points B in common; there are, therefore, $9 k^{2}$ that rest on two lines l, and the surface Λ has the degree 9 .
6. A plane φ is cut by $\left[k^{2}\right]$ in the pairs of an involution. The pairs on the rays of a plane pencil with vertex M lie on a curve μ^{3}. Four rays of this plane pencil are tangents of conics k^{2}; hence $O M$ is a chord of four k^{2} that touch the plane φ. The conic β^{2} corresponding to $O M$ contains, therefore, the image points B of four k^{2} touching φ.

The image curve of the system of the k^{2} that touch φ, has quadruple points in A_{1}, A_{2} and A; it is, therefore, a φ^{8}.

Two curves φ^{8} have 16 non singular points in common; there are, accordingly, $16 k^{2}$ that touch two given planes.

A φ^{8} has 12 points B in common with a λ^{6}; consequently the conics that touch φ, form a surface Φ^{12} with quadruple curve σ^{7}.
7. The paits of lines belonging to $\left[k^{2}\right]$ form a scroll \triangle. As any surface Σ contains five of these pairs, the image curve δ of \triangle has quintuple points in A_{1}, A_{2} and A and any β^{2} contains five more points B of δ. Accordingly the image curve is a δ^{10}. It has 15 non singular points in common with a λ^{6}; hence \triangle is a scroll of the degree fifteen. Indeed, a line s cuts five lines of Δ in O and ten lines outside O.

