Mathematics. — Representation of a Bilinear Congruence of Conics. By Prof. JAN DE VRIES.

(Communicated at the meeting of October 29, 1927).

1. A congruence $[k^2]$ of conics is called bilinear, if an arbitrary point of space defines one conic k^2 and an arbitrary straight line is a chord of one k^2 . Evidently the planes of the conics pass through one fixed point O and form, therefore, a sheaf. Accordingly a line s through O is a chord of ∞^1 conics (singular line); these form a cubic surface Σ^3 . This contains 5 pairs of lines that belong to $[k^2]$.

The surfaces Σ_1^3 and Σ_2^3 corresponding to the lines s_1 and s_2 , have the k^2 in the plane $s_1 s_2$ in common. Any point S of the curve σ^7 which they have besides in common, carries a k^2 that cuts s_1 twice and a k^2 that cuts s_2 twice; accordingly through S (singular point) there pass ∞^1 conics.

The surface Σ^3 defined by the line OS, has a *double point* in S. This holds especially for the surface Ω^3 through the conics containing O.

The plane of any k^2 passes through O and cuts σ^7 in six more points; these lie on k^2 .

2. In order to arrive at a representation of the congruence we shall consider two lines a_1 and a_2 chosen at random as directrices of a congruence of rays; this contains one chord b of a k^2 ; the transit B of b through a fixed plane β is considered as image of the k^2 .

A point B of β usually carries one transversal b of a_1 and a_2 and is, therefore, the image of the k^2 lying in the plane Ob.

The conic k_0^2 that has the transversal b_0 in β as chord, is represented in the point range (B_0) of b_0 .

The transit A_1 of a_1 is singular for the representation; the lines that join A_1 to the points of a_2 , are chords of the conics that cut OA_1 twice and, consequently, form a surface Σ^3 . Analogously A_2 (transit of a_2) is singular.

The transversal a of a_1 and a_2 through O is a chord of $\infty^1 k^2$; this is represented in the transit A of a; accordingly also A is singular.

3. The conics that have a straight line s as chord, are represented by the rays of the scroll with directrices s, a_1 and a_2 . Their images form, therefore, a conic β^2 through A_1 , A_2 and A (one of these k^2 passes through O). Any β^2 through A_1 , A_2 and A is the image of a system of conics that have a line s as chord. For if we choose two points B_1 and B_2 on β and if through these points we draw the transversals b_1 and b_2 , the line of intersection s of the planes Ob_1 and Ob_2 defines the system of the k^2 .

Two curves β^2 have one point B in common besides the singular points; it is the image of the k^2 lying in the plane $s_1 s_2$.

4. The point range (B) on a line c of β is the image of a system Γ of conics each of which has a transversal of c, a_1 and a_2 as chord. As these chords form a scroll, their planes touch a quadratic cone with vertex O.

Hence through a point S there pass two k^2 of Γ ; on the surface of the conics of this system σ^7 is a nodal curve. The intersection of this surface with a surface Σ^3 consists, therefore, of the curve σ^7 , to be counted twice, and of the two k^2 that are represented in the points of intersection of c and the β^2 defined by Σ^3 . Consequently c is the image of a surface Γ^6 .

5. Let Λ be the surface formed by the k^2 that cut a given line l; as double curve it has the k^2 that cuts l twice.

The surface Σ^3 corresponding to a point S contains three k^2 resting on *l*; hence σ^7 is a *triple curve* on Λ .

The image curve λ of the system has a triple point in A. Also A_1 and A_2 are triple points, for AO_1 and AO_2 are chords of three conics that rest on l. Besides the points A, A_1 and A_2 , λ has three points Bin common with a curve β^2 , the images of the k^2 of Λ that have the line s as chord. Accordingly Λ has an image curve λ^6 with three triple points.

Two curves λ^6 have nine points B in common; there are, therefore, 9 k^2 that rest on two lines l, and the surface Λ has the degree 9.

6. A plane φ is cut by $[k^2]$ in the pairs of an involution. The pairs on the rays of a plane pencil with vertex M lie on a curve μ^3 . Four rays of this plane pencil are tangents of conics k^2 ; hence OM is a chord of four k^2 that touch the plane φ . The conic β^2 corresponding to OM contains, therefore, the image points B of four k^2 touching φ .

The image curve of the system of the k^2 that touch φ , has quadruple points in A_1 , A_2 and A; it is, therefore, a φ^8 .

Two curves φ^8 have 16 non singular points in common; there are, accordingly, 16 k^2 that touch two given planes.

A φ^8 has 12 points B in common with a λ^6 ; consequently the conics that touch φ , form a surface Φ^{12} with quadruple curve σ^7 .

7. The pairs of lines belonging to $[k^2]$ form a scroll \triangle . As any surface Σ contains five of these pairs, the image curve δ of \triangle has quintuple points in A_1 , A_2 and A and any β^2 contains five more points B of δ . Accordingly the image curve is a δ^{10} . It has 15 non singular points in common with a λ^6 ; hence \triangle is a scroll of the degree fifteen. Indeed, a line s cuts five lines of \triangle in O and ten lines outside O.