
Matbematics. - On infinitesimal deformations of V m in V n• By J. A. 
SCHOUTEN. (Communicated by Prof. JAN DE VRIES). 

(Communicated at the meeting of November 26. 1927). 

Let the points XV of a geodesïc line in V n be subjected to a trans~ 

formation : 
(1) 

wh ere VV is a 6eld of contravariant vee tors de6ned along the line. and E 

a small constant. Higher powers of E may be neglected. Then we can 
deduce the conditions to whïch v~ must conform in order that the 
transformed line mayalso be geodesïc. A differential equation of the 
second order is found. whïch for V n = R3 is due to JACOBI. and in the 
general case to LEVI~CJVITA I). 

An analogous question arises for a minimal~ V m in a V n• This also 
leads to a differential equation of the second order. due for V n = R3' 
m = 2. to SCHWARZ. and for general V n 'and m = 2 to CARTAN 2). 

We may now seek in general to 6nd the equations expressing the 
change of the fundamental quantities of a V m in V n • when the points 
of th is V mare subjected to a displacement EV~. By fündamental quantities 
we understand the fundamental tensors and the different curvature 
quantities. Af ter this we can easily 6nd the differential equations for v~ for 
the case that the displacement tvV does not change certain given properties 
of the V m' It is only necessary to substitute the identities. characterizing 
this property. into the general equations. 

In this paper we 6rst deduce the conditions for a geodesie V mand 
for a minimal~ V m. they are immediate generalisations of results found 
by LEVI~CJVIT A and CART AN; af ter this we deduce the equations for the 
bending 3) of a V m in V n and 6nd some interesting conclusions for the 
special case V n = Rn. We conclude with the transformation of a V n- 1 

in V n that leaves the principal directions of the second fundamental 
tensor invariant and with the equivoluminar transformation of a V min V n • 

§ 1. The fundamental quantities of the V m' 

We use two coordinate systems: x~.l. fl. v = al' ...• an in V n and 
ye. a. b. c. d= 1. ...• m in Vm. According to a known property we can 
avoid the use of the coordinate system y. But it is useful for the present 
investigation. as we will accept that the deformation E v~ takes it along 

I) Sur l'écart géodésique. Math. Ann. 97 (26). 291-320. 
2) Sur l'écart géodésique et quelques notions connexes. Rend. Acc. L1ncei (6a) 5 (27) 

609-613. 
3) Under bending we understand a llexioD without tearing or stretching . 
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with it. Hence the quantities of the V n carry Greek. those of the V m 

Latin indices. Under transformations of the x the components of the 
quantities of the V m do not change. being fixed with respect to the y. 
The same holds for the components of the quantities of the V n under a 
transformation of the y. Furthermore we have quantities with both Greek 
and Latin indices. their components being changed as the components 
of a quantity of V m in as much as the Greek indices are concerned. 
and as those of a quantity of V n in as much as the Latin indices are 
concerned 1). 

The most important of these quantities is: 

B" = ox" (2) 
• ox-

It can be shown very easily indeed that the B: behave like the compo~ 
nents of a contravariant vector of the V n under transformations of the x; 

and like components of a covariant vector under transformations of the y. 
With the aid of B: we deduce from the fundamental tensor g~fL of the 
V n the fundamental tensor of the V m : 

g~b = B~t g~fL . • (B~t = B~ Bt) 

and with the aid of g:b we form the quantity: 

B~ = g'cb B; g~fL 

It follows from (2) and (4) that 

B~B:=B~ . 

(3 

(4) 

(5) 

here we denote with Es a set of m2 numbers with value when a = c. 
and 0 wh en a 1=- c. 

The quantities B: and B~ allow us to define a unique correspondence 
between the quantities of the V mand some of the quantites of the 
Vn and vice versa. We only need to show it for vectors. If 

~ = B~ Vb. 

corresponds to vC
• or. in covariant components: 

- B" 'bc Be 
v~ = g~" b g Vc = ~ Vc • 

we have. on account of (5): 

Hence it is equally possible to deduce v from v as v from v. We use this 
property to write v" and v~ in stead of ~ and ih.; we therefore consider 
them as another kind of components of the vector v. We have reached 

\) Such quantities are already Introduced, for the dlscussioD of Vm in Vno by E . BOMPIANI. 

Studl ' sugli spazi curvi. Atti Veneto 80 (20/21) 1113-IH5. and more systematlcally 
by B. L. VAN DER WAERDEN. Differentialkovarianten von Vm in Vno Abh. Math. Sem. 
Hamburg S (27) 153-160. 
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by proceeding in this way. that all vectors. and therefore all quantities. 
of the V m can be considered as quantities of the V n • On this property 
depends the mentioned possibility to discard the y totally. 

We say that a vector v'. defined with respect to the Vno lies in the 
Vmwhen v' = B~ v~ The geometrical meaning is clear: the direction of 
v' is tangent to V m • It is obvious that a vector. not lying within the 
V m. has no components with Latin indices. I t is of course possible to 
form H',. v/lo. but these are the components of the projection of von V m • 

not of v itself. In the same way we see that a quantity P)./IoV has 
only then components Pab,. if it "lies in the V m with the indices À and 

fl". that is to say. if l3";,.~ P"I'Y = P)./Io" 
A vectorfield v ). • defined in Vno has a covariant derivative 

(8) 

r:l are the CHRISTOFFEL symbols belonging to the g,,/Io' In the same 
way a vector field W •• defined in V m. has a covariant derivative. whose 
components with Latin indices are 

, owa 

\lb W. = oyb - r~~ We (9) 

and with Greek indices: 

\7 ' _ Bb. ow. Bb. r'e 
v /10 W ). - ). ~ - " . b We 

/10 UYb /10. 
(10) 

la: l' are the CHRISTOFFEL symbols belonging to the g'ab. For a vector 
field u" of Vno defined on V m. the expression \l/lo u" has no meaning. But 
the expression 

\7 \7 ou). 
Ba. v " u" = Ba B" v " u" = B' ~ - ~ r: Uv /10 /10 • /10 uy. /10 na. (11 ) 

has certainly a meaning. and represents another kind of covariant 
derivative. It can easily be proved. that for the case of u). lying in V m : 

(12) 

In the same way we can build different kinds of derivatives for 
quantities of higher order of the Vno defined on the V m. One of the 
most frequently occurring quantities is B~,~~ \ll' Va.". where v/lo) is a field 
with index fl within V m' For the baÀ~component of this derivative we 
easily find 

BPa. \7 - ov.). T'e B/Io Tv I) 
ba v l,V").-OYb - abVeJ.- b ÀI'V. y • 

(13) 

I) The factors B could he avoided in most cases by the introduction of new differentiation 
I 2 

symbols for the different derivatives. e.g. 'V , 'V. If however in th is way we want to come 
to a systematic notation applyable to all cases, the sign 'V must indicate In which way 
the factors B affect the indices. This makes the notation less clear and more complicated 
than the notation used here as weil as in Chapter III and IV of "Der Ricci Kalkül", 
SPRINGER 1924. 
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T ogether with the fundamental tensor the following fundamental 
quantities are the most important I). 

l"t The curvature affinor. 

(ti) 

This quantity lies with its first two indices in the V m' Hence it has 
also components with two Latin indices: 

H ·· y B~I'H'" B"j3\] BY 

ab = .b ÀI' = .b v" j3 (15) 

The vanishing of H~b" is necessary and sufficient for V m being 
geodesic. For m = n - 1 H~b' passes into - h.b n'. wh ere h.b is the 
second fundamental tensor and n' the unit vector normal to V n- I • 

2nd The mean curvature vector. 

DY-~ '.bH·· Y 

- m g .b (16) 

lts vanishing is necessary and sufficient for V m being a minimal 
manifold. For m = n - 1 we have - hn" = - h~. n' in stead of mD'. 

§ 2. The fundamental equations. 

Under a deformation w Y these quantities are changed in the following 
way: 

II d ' 2 B"13 \] 
• g.b = f. (ab) V" Vj3 

IV. dH~b' = - E H~b 13 
g 'Y" V" v /3 - E B:t CJ K;~~ J V'Y + 

+ C y B I3'Y\] B~ \]" H"« pY {3 
E " .b V j3 'Y V J V - E .b .L«~ V • 

V. óDv =- ED f3 g'Yr1.V" V{'- ~E CJ g'''/3 K;~~J V'Y + 
m 

VI. dK~bed = - '4 E Br![c HbldJ" K'Y"i3J V'Y + '4 E H[~r~" B~J~I V f3 B~ V'Y V" 

+ E B~I:c~' IK"/LÀY VOJ V" + KOJ"~Y V I' V" + KW/L"Y V À V" + KW/L1-« Vy VIl I 

+ 'B"13'Y. \] K EV.bed V, "{''Y'jo 

I) Compare e.g. Chapter V of "Der Rieci Kalkül" (further on referred to as R.K.). 
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VII. dK;'" = E (- B~ Hl, ,,; + mB';},' DJ - B~H/J + g'"'' Hi,/) v" K",,~, + 

+ 4 ' ad H .. " B" i \7 B" \7 Eg [ale bJd] V i' d V" V" 

2 K ' '~'d,.\7 +' '"J B,',,\7 K - E abcd g .a g V (,. V>-) EV' g bc V, "h" 

VIII. dK' = - 2 E H "'" V" K""I,d + 2 m E g'''~ DJ V" K"" I>J + 

+ 2 E H l'''''\] ~ B; \]. v" - 2 m E D" g'13,,\] ~ B~ \]J v" 

+ 4 E K",.>-, g'('" g'''>-\]., V" - 4 E K''' 13 \]"v~ +E ti' g'''d g'13,,\], Krxp"J. 

We obtain (I) starting from (1) and (2). From (I) equations (II) are 
deduced. For m = n (11) passes into the weil known equation for the 
variation of the fundamental tensor of the V n under an infinitesimal 
transfor~ation I). We obtain (III) and (IV) from (I) and (14); and (V) 
from (11). (VI-VIII) are deduced from (IV) and GAUSS' equation. For 
m = n the quantities H~;. Y and D' vanish. and (VI) passes into the 
equation ex pressing the change of the curvature quantity under an 
infinitesimal transformation 2). For m = n - 1 we have in stead of 111. 
IV and V: 

IV'. dh - B"" K"··" B I,J\7 B" \7 " ab-E ab ""l nJ v -En" ab VI' ;1 V"v . 

If we decompose in this case vY into a component w' in the V n- I 

and another. 'IJlnv, normal to the V n- I (n' being unit vector) we find 

(17) 

" " ,,\7 J \7 _ ."\7' \7'" ." \7' \7' n Bw,. V 13 B" V J V" - - h." V,. w" - v.~ h,. W" - V' h" h,." + V" V ,.11'. (18) 

The equation of KILLING \](11- v>-) = 0 3) is characteristic for the rigid 
motions in V n • It can indeed be shown without difficulty that in th is 
case all diffferentials vanish. 

I) R.K., p. 209. 
2) R.K .. p. 208. 
3) R.K .. p. 212. 
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§ 3. Geodesie V m ' 

Necessary and sufficient condition th at a geodesie V m remains geodesie 
under a deformation w v

• is. af ter (IV). that 

CV B /1'Y\7 BJ \7 '" -B"'I~ Cv K ··· · '1- 0 '" ab V f" '1 V • V ab. 'Y"' I~ V - (19) 

For m = n - 1 this equation passes into 

B"'Y \7 BJ 
\7 '" B"'i~ K '1. - 0 n", ab V 13 '1 V • V - .b "''1,'. V n - (20) 

and for m = 1 into: 
(52 

• .", 13 K " . ~ '1 - 0 ds2 V - I I '1"',' V - • (21) 

the equation of LEVI~CJVITA. 

§ 4. Minimal~ V m ' 

Necessary and sufficient condition that the minimal property is not 
changed is 

C~ g' P'Y\l f" B; \l. v'" ~ C; g' '''" K;~,3· v'Y - H "'13v \l '" v,3 = O. (22) 

For m = 2 and V V 1. V 2 this equation is equivalent to CARTAN'S 

equation, 
For m = n - 1 equation (22) passes into 

(23) 

IE we take vY = 11' nY and the unit vector nY 1. Vn- I • we get 

\l'a \l~ 11' - 11' K",!, n'" ni' + 11' h"'" h"'I' = 0 (24) 

and, if in th is case V n = R3' m = 2. we obtain the equation of SCHWARZ 

\l'd \l~ 11' -2K~VJ = 0 

in wich K'o is the curvature of the V 2• 

§ 5. Bending. 

(25) 

A V m is bended wh en its metric is not changed under the deformation. 
Hence the necessary and sufficient condition is dg'ab = O. or. with 
respect to (11) 

(26) 

For m = n - 1 we get from (17) 

\l;a Wb) ' - VJhab (27) 

lf V n = Rn and the rank of hab is larger than 1. we can obtain from 
this differential equation an equation of the second order with \l[a Wbl 
as dependent variabIe. whieh does no longer contain the function 11'. IE 
we write \l;aWbl= {..b, the integrability conditions of (27) are : 

1 ' . . . d f _ I /2 K cab Wd - \l[cfalb-- (\l[cVJ)h a1b• . (28) 
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For the deduction of the right member we have used CODAZZI's equation 

\7;c h alb = 0 . (29) 

From (28) we obtain. making use of GAUSS ' equation: 
. d I I 

hb!c h al Wd - \7 [e falb = - (\7 [e 1jJ) h alb (30) 

Transvection with hab gives 
.ah· d +hab\7' {: .a\7 ' 

pe a Wd V a ,eb = pe V a 1jJ (31) 

in which we have used the abbreviation 

h
ab h h db h Aa . a eb - db c=pc • (32) 

The rank of pab is always n when the rank of hab is not equal to 1. 
Hence there exists an inverse tensor Pab of pab and the introduction of 
Pab into equation (31) gives the simpIer formula 

h ·• +p.a hdb \7' {: \7' 
e Wa e Vdlab=V e lP· 

from which we obtain by differentiation and alternation 

I h[~ a {dIa = \7;e Udl I 
in which we have used the abbreviation: 

P ·ahdb \7' ,. 
eV d {ab = Ue 

(33) 

. (A) 

(34) 

If (33) is substituted into (17). we get. making use of (27) and (34) 

B~ \7" v}. = {I'}. + UI' n}. (35) 

The integrability con di ti ons of this equation are. so far as they are 
not a consequence of (A): 

I \7~ tbc = 2 ha[b Uc[ I . (B) 

It can easily be shown that the integrability conditions of (A) are a 
consequence of (B). Those of (B) are 

and the integrability conditions of th is equation are a consequence of (B). 
Hence the system (A). (B). (C) is complete I). If we compute for this 
case the right side of equation (VI). we see that (C) expresses the fact 
that dK'abcd = O. 

Now we win first investigate under which conditions the bending is 
improper. that is to say. is only a pure motion of the Rn. Necessary 
and sufficient condition for this is that we can find a vector field in the 
Rn being equal to v}. in every point of the Vm and being choosen in 
other points in such a way. that 

(36) 

I) The equations (A). (B) and (C) are equivalent with a system deduced by SSRANA: 
Sulla deformazione infinitesima delle ipersuperficie. Ann. di Mat. (3) 15 ('08) 329-348. 
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is a constant bivector in R.; that is to say that there exists in V m a 
vector field p}.. such that the bivector 

(37) 

is constant in Rn. This is however then and only then the case. when 
the system 

\7~ 6e = 2 ha [b pel I· 
admits a solution. It can be shown without difficulty that (Aa) and (Ba) 
also form a complete system. the equation corresponding tot (C) being 
here a consequence of (Aa). If a solution of (Aa. Ba) is found. we have 
for the corresponding motion 

(38) 

Hence a solution of (A. B. C) is then and only then not a proper 
bending. if this solution also satisfies (Aa) for u = p. 

Now the following theorem holds and can be proved easily by writing 
out the components with respect to the principal directions of hab : 

Given the equation . hlalc kbldJ = O. in which hab is real and symmetrical 
and kab arbitrary. Then if hab has the rank 2. kab lies totally in the R 2 

of h.b. and if h.b has a rank > 2. kab vanishes. 
Hence we .deduce from (C) that a V m in Rn admits only th en proper 

bendings. if the rank of hab is 2 or less. a well~known property. first 
published by KlLLlNG I). If the rank of hab is 2. we have the only case 
that the oon-3 directions of hab form. at each point. a plane Rn-3 lying 
totally in the V n - I and with the same tangent~Rn_1 at each point. This 
was proved bij BOMPIANI 2

). Hence the V n- I is thus built up by 00 2 

of such Rn-3. According to (B) f}.fL is constant in each of these Rn-3. If 
the above mentioned theorem is applied to (C). we find th at hb a. fda.

- \7~ nd lies totally in the R2 of h}.fL; and this shows that also Ua in 
each of the Rn-3 of V n- I is constant. We have besides. from (IV') 
and (35): 

(39) 

Hence if yl and y2 are chosen in such a way that the Rn-3 become 

I) Die nichteuklidischen Raumformen in analytischer Behandlung. Leipz .• 1885. p. 236 a.f. 
2) Forma geometrica delle condizione per la deformabilità delle ipersuperficie. Rend. Acc. 

Lincei (5) 23. I (14) 126-131. The first part is an immediate consequence of CODAZZI's 
equation. if written in orthogonal components with respect to the principal direction of 
hab. the second part follows from the geometrical meaning of B~ 'Va. n}.. Comp. STRUIK. 
Grundzüge der mehrdimensionalen Differentialgeometrie. SPRINGER 1922. p. 140. CARTAN. 
La déformation des hypersurfaces dans l'espace euclidéen réel à n dimensions. Bull. Soc. 
Math. de France H (16) 65-99. has a complete classification of all possible cases where 
a Vn-I is bended in a Rn. 
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the intersections of the systems of V n - 2 belonging to yl and y2. we see 
from this last equation that dhab always vanishes ex cept for n -< 2 and 
b -< 2 simultaniously. Hence the plane Rn-3 remain plane under bending. I). 

Starting with a definite solution VJ. of (A. B. C) we can always obtain 
that {!"J. and UÀ vanish at some point P. without essential change of the 
solution. We have only to determine the corresponding proper motion v'À. 
giving at P the same value for {!"À and UJ.. Then VJ. - v'J. .is thedesired 
solution not differing essential1y from VJ.. This will be cal1ed the 
reduction of the ben ding with respect to P. 

Let us give besides a short treatment of the case m = 2. in which 
case (!"À passes into rpI!"À; I!"J. being the unit bivector of the V 2 • The 
function rp is WEINGARTEN'S "Verschiebungsfunktion" 2). Then equations 
(A. B. C) become: 

From (AI) and (BI) we obtain: 
\7' H ab \7' _ I/ • 
Va Vbrp-- grph .a (40) 

in which Hab is reciprocal to hab. 
This equation comes in stead of (A) and is equivalent to the charac~ 

teristic equation of WEINGARTEN 3). It can easily be shown that every 
value of rp deduced from a solution of the characteristic equatiori 
satisfies (Cd identical1y. 

A remarkable case of proper bending is that in which the (n-l)~ 
direction of each element of the V n- I remains unchanged. The necessary 
and sufficient condition for this is that not only dg 'ab. but also dg'J.!" 
vanishes. This occurs th en and only then if. as we see from (I) and (11) 
B; \la: VÀ lies totally in V n _ t and is at the same time alternating. Then 
the equations (A. B. C) pass into 

I h[/ {dJ a =0 I (A 2) 

I \l~ tbc =0 I (B2) 

h[.re hi,t (dJ a: = 0 (C2) 

I) BOM PlAN I, Forma geometrica delle condizioni per la deformabilità delle superficie. 
Rend. Linc. 33 (li) 126-131. 

2) Comp. e.g. BIANCHI-LuKAT, Vorlesungen über Differentialgeometrie, Leipzig, 1899, 
p. 289 a.f. 

3) E.g. BIANCHI-LuKAT, l.c. p. 292, equation (7*). 
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It follows from (C2) that. except for a scalar factor. {ab is equal to 
the unit bivector in the R2 of hab. It follows from (B2). that this scalar 
factor is a constant and that the R2 of h.b is geodesically parallel (in 
V n- I ) at all points of V n- I • If (A 2) is written out in orthogonal com
ponents with respect to the principal axes of hab. it appears that this 
equation is then and only th en satisfied if the V n- I is mini mal. If we 
reduce the bending with respect to some point P. we see that there is 
essentially only one solution. Hence we have obtained the theorem. 
obtained by DARBOUX for the case of a V 2 in R3 I): 

Necessary and sufllcient condition that a V n- I in Rn' for which 
hab has the rank 2. can be subjected to a proper infinitesimal bending. 
with preservation of the (n-l)-direction of each element. is, that the 
V n- I be a minimal- V n- I ' and that the R2 of hab be geodesically 
parallel in V n- I at all points of V n - I • If one such a bending is given, 
then any other can be obtained from it by the adjunction of a proper 
motion. 

§ 7. Infinitesimal deformations normal to V n - I that keep the 

principal directions of hab invariant. 

Suppose v· .l V n- I • Then we have from (IV') and (18): 

d hab = E 'IjJ B:: K;;,.,3· n. n'Y + E 'IjJ h~ c hbc -- E \7: \7~ 'IjJ (41) 

The tensor h~ c hbc has the same principal directions as hab. Hence the 
necessary and sufficient condition that the principal directions of hab 
remain invariant. is: 

ia i" ( \7~ \7;, 'IjJ - 'IjJ K;;,3' n. n'Y ) = 0; a. b = 1 •...• n - I, a =f:- b. (42) 
a b . 

in which the i are unit vectors in the principal directions of hab. Such 
a transformation exists wh en we pass from one of the V n - I of an 
n-uple orthogonal system to a neighbouring V n- I • It can be shown 
indeed. that in this case one of the conditions for the existence of such 
a system is given byequatlon (42) 2). 

§ 8. Infinitesimal transformations that keep invariant the 

the m-dimensional volume. 

The volume of the parallepiped with sides dy', dy2 .. . . • dym is. according 
to a well-known formula: 

dl = dy' . .. dym V g' (43) 

I) Leçons sur la théorie générale des surfaces. Paris. 19H. I. p. 383. 
2) Por literature compare SCHOUTEN aad STRUIK. On n-uple orthogonal systems of 

Vn-I in Vno These Proceedings 22. (1919). p_ 591-605. 680-695_ 
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A transformation is equivoluminar, when dr: remains invariant, or 

in consequence of (43) when d V g'= O. But 

d V g' = 1/2 g'-'/, dg' = 1/2 V g' g ,.b dg:b = E V g'g' f'A\7 f' VA (44) 

This formula passes for m = n - 1 into 

d V g' = E'Ijl V g' ( \7" w. + 'Ijl h\) (45) 

on account of (17). This shows th at an infinitesimal transformation of a 
V n- I in V n perpendicular to this V n - I is th en and only then equi~ 
voluminar if the V n- I is minima\. This theorem is due to BOMPIANI. I) 2). 

I) Studi sugli spazi curvi, Atti del R.1. Veneto 80. 2 (20/21) 1113-1145, p. 1 Hl. 
2) In a recent dissertation at the Massachusetts Institute of Technology, with title 

"Infinitesimal Deformation of Surfaces in Riemannian Space", W. F . Cheney investlgates 
the bending of V2 in V n , especially for the cases n = 3, n = 4. In these cases he comes 
to equations. which for the case Vn = Rn correspond to the equations (Alo BI) of our 
paper. An abstract of this dissertation is published in "Abstracts of Publications of 
the Massachusetts Institute of Technology", Vol. I (1928) . 




