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Introduction.

Non-holonomic parameters are well known in mechanics. In geometry
they were first used by HESSENBERG !), by the author ?), by CARTAN ?)
and by HravaTy?®. Using non-holonomic parameters, the equations of
the general linear connexion get another form, given by HORAK?).

VRANCEANU ¢) has brought something essentially new. He has shown
that in a V, containing a non-V,-building field of m-directions there
exists a connexion for quantities belonging to the local R,, and that
this connexion can be deduced from the connexion of the V, by the
use of the coefficients of rotation of Riccl. HORAK 7) has independently
found this same connexion and in a paper that is to be published in a
short time he will give especially mechanical applications.

Now we get a more general point of view starting from an A, (X,
with a symmetrical linear connexion) containing a non-X,-building field
of m-directions. Then we can show that in the case of a general
(n-m)-direction being given in every point (the case of , Einspannung”
of WEYL) there is induced a connexion for all quantities belonging to
the local E.. So we get an A some of whose properties will be studied
more in detail. Especially we will consider the properties of curvature
and the generalised equations of GAuUss, which have the same form as
in the case of an X, in A, and also something will be said on the
geodesics in AL and A,. Finally the “affine geometry” of an X7 ' in
A, will be treated. The first paragraph contains a short review on
non-holonomic parameters in an A,.
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§ 1. Non-holonomic parameters in A,.
In every point of the A, we introduce besides the measuring vectors
v

e’,ex A, u,v—=a,,..,a., belonging to the variables x’, an arbitrary system
A

K
e, er,i,j,k=1,...,n. Indicating the components with respect to the

latter system with latin indices we have

K l,i=k k L,i=k
k= gt : w—w e ; ef=1]" ; e=1{"' 1
vi=ute, A P T
A= aate s A=Al ;s a=lTE o
N— 0,1#:1’ ’ X == Aey, ’ i = ll-el ’ ‘—'0,i¢k. ()
and
=AY  w=Alw.. . . . . . . (3
In the expression
dof=Akax" . . . . . . . . . @
the x* have a signification by themselves if and only if
5 o)
6[:,, A,‘]——‘O H arn:g « e e e e W (5)

In the other case the x* play the same part as the non-holonomic
parameters in mechanics, only their differentials having a signification.
We consider just this latter case. A symmetrical linear connexion being
given by the parameters I}, with respect to the system of measuring

v
vectors ( }.) we can fix this connexion also by parameters A}; with

respect to the system i)' so that

V,v* = A Vo' =9, v* + Aiv'

(6)
Vj w, — qule:’l vﬂ wa—_—aj w; -‘Af] Wi
writing 0; for Aj 0u. It is easily found that
Ay =T+ A0, Ai=T; —AiQAL . . . . . (1)
hence _
Ay=—AFdsAY . . . . ... .8

So Af;;; =0 is necessary and sufficient for the holonomity of the x*,
hence, notwithstanding the symmetry in 1and u of the I'x,, the parameters
Af;, with respect to non-holonomic parameters are not symmetrical in

k
i and j. Of course Af;; is no affinor. Applicating (6) on ek and e; we get

k k *
dy=V;ee=—Vje,. , . . . . . .9
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If the A, passes into a V., and if we choose the orthogonal system
ik k
i’ =i’ i», as measuring vectors e’, e., then
i

k i

k ) {
Ai}z_vili:+vjlk:}’klj:—}'ikj o W E (10)
where the yi;; are the coefficients of rotation of Riccl. We will write
7{.‘1:——7;'(1. instead of yu;— — yx:; to render more conspicuous the signi-

fication of these coefficients as parameters of a connexion. Hence in
orthogonal components the connexion is given by

V; vk:vj vk = 0; oF + y,’-‘,- v'= 0j Uk — J’;.”' vi (=0, vk + 2 yikyvi). (11)
i
By differentiating and alternating (6) we get
VuVav* ={0p Aig+ dpu A — Ahin i} " . . . (12)
hence for the quantity of curvature follows

Riji*=—20uAlyy—2A5u Ay + 240y 45, . . . (13)

A

an equation passing into the ordinary form for 4f;=o, viz. for the

case of holonomic parameters.

§ 2. X7 in X..

In every point of an X, an m-direction be given. In the simplest
case these m-directions are X,,-building, viz. it is possible to link them
together in such a way that they build a system of oo™ X,,. This
simplest case will not be considered here. In general there will be a
system of oM Xy m< M=n, in such a manner that the given
m-direction lies in every point in the local M-direction. We suppose
that M —=n and give up all simplifications possible for M < n. An X,
equipped in this way with local m-directions will be called an X,. An
affinor of the local E,, defined over X, will be called an “affinor of
the X.". Hence a field of contravariant vectors of the X, is also a
field of contravariant vectors of the X,, but not vice versa, and a field
of covariant vectors of the X, (represented geometrically by two parallel
E.-, in every point) forms a field of covariant vectors of the X, (repre-
sented geometrically by two parallel E,_) by intersection with the local
E.. All this is just the same as for an X, in X,.

We now introduce in every point of the X, an (n—m)-direction,
having no direction in common with the local m-direction. An
X, equipped in this way will be called rigged !). The essential
difference between covariant vectors of the X, and of the X,
disappears in a rigged X, because here every covariant vector of
the X, is in one to one correspondence with the covariant vector

') WEYLS expression “eingespannt’’ being untranslatable and the (n—m)-direction
reminding of a hoisted sail on a ship (the local m-direction), the word “rigged” was suggested.
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of the X,, whose E,_, are determined by the E,_; of the former
vector and the (n—m)-direction of the rigging. Analytically we

v
express this as follows. Besides the system (1) belonging to the x* we

introduce in every point a system (1> in such a manner that the first

m contravariant measuring vectors e*, a, b,c,d=1, ..., m, lie arbitrarily
a
in the local m-direction, and that the other ones e, e fg,h=

=m+1,...,n, lie also arbitrarily in the local (n—m)-direction. With
respect to this system the quantities of the X, only have components
with indices from 1 to m. Writing

BZ_—Z,\e” ;. CX—_AK—BX:;Ae”. S 0 €3]
we have
l,a=c
c___ . f__ f__ —
B; = Oate ° Bi=0 , B.=0, B:=0 . . (15

and the X -component of a vector of X, is given by the equation

v'=B.v* ; wai=Biw.. . . . . . . (16)
x
or, with regard to the system ; :
'k k w ' w
v=B. ; w=Biw., . . . . . . (17

k
If we write (dy) for the (i)-components of a translation dx’ lying
in X,
d=B,dy) . . . . . . . . (18)

then the y° are non-holonomic parameters and for B, follows

by Ox
Bi=go| - c o 09

§ 3. The connexion induced in a rigged X, in A,.

By introducing the I'j, the X, becomes an A,. We are going to

prove that the connexion of A, induces a connexion in an X, in A"
provided that this X is rigged. This connexion is defined as follows:

The covariant differential quotient of a quantity in X, is the X, -
component of the covariant differential quotient in A,.
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Thus, indicating the covariant differential quotient in X, by V' we
have for vectors:

Vv’ = By 33 v + Biy I'ls v*

! Bu Ba v (20)
v“ wy=— BIJ.A alg Wy — By.A Faﬁ wy
or, with regard to the system (k) H
i
\7; v°: Zf V,‘ l)‘J :ab vc = B; Ua 6,, B: + v’ Bﬁf: FAV,‘ (21)

? 728 A A v
vbwa:Bba vfl-w)\:abwu_wc B:aan_wc stcp)\,u

From this equation follows for the parameters 4., of the induced
connexion

=B T+ BBl - - . . . . (22)

Quite as in an A, the alternating part

Agg=B; 0By . . . . . . . . (23
is no affinor and depends on the choice of the systems (C)
a

A rigged X, thus equipped with a connexion will be called an A;.
Applying (21) to e° and ce. we get

c=Vie=—View . . . . . . . (24

but also, in consequence of the choice of the measuring vectors

A5=Ve*=—Vea= A% . . . . . . (25

Starting from a V), instead of from an A, and choosing for (k)
i

an orthogonal system, we get easily
A=y =—ret) . - - . . . . . (26)

Hence the connexion induced in a V', (= X in V,) is obtained in
a very simple manner by using the coefficients of rotation of RicCI
with respect to a suitable chosen system of m congruences of curves!).

1) VRANCEANU has found the connexion, induced in V), just in this way.
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§ 4. Properties of curvature of an A; in A,
We define the first and the second affinor of curvature in the same
way as in an A, in A,:

Hi' =Bl VuBi=— (Vye)e' = A€ 2
) ) (27)
Li*a=Bg VuBi=— (Vs €)ex=— daen S

It strikes that, just as in an A, in A, H;.~ lies with the index » in
the local (n—m)-direction and L; . contains with the index 4 the local
m-~direction:

B, H;;*=0 ; BiL;.=0 . . . . . . (28)

But here Hj,” is no longer symmetrical in a and b, because
Hipg=—Bi (Vuey) e’ =dime” . . . . . (29

and this expression vanishes if and only if all vectors e are X,_i-
building viz. if the field of m-directions is X,.-building, the case which
we have excluded expressely.

It follows from

Hiy’ = Bl (0: By + I'o. By — I'iu B)) = B} 3y By =
=0 B.j— B. 0p By =C. 0p B

that the field of m-directions is X, -building if and only if C.0p B
vanishes.

The ordinary method of obtaining the quantity of curvature is here
useless because in an A} it is generally impossible to construct a
parallelogram, this impossibility being exactly characteristic for a non
X, -building field of m-directions. In fact, if on the one side a translation
dy is followed by a translation dyc and on the other side dy by dy,

(30)

then by using (23) and (30) we ﬁnd for the closing vector the equatlon
2c|1y czly O B.]=2<liy g’y (Hpa"+ Afy BS) . . . (31)
giving the decomposition into one component in the A7 and one in ‘the

local (n—m)-direction. The latter one only vanishes when the field of
m-directions is X, -building, the other one depends on the choice of the

c
systems )

So we choose another way and start with Vj; V;;v* which certainly
is an affinor. We get

V[d V,,] v =Hy Bj A + {Has (B O Bp—B Ig) + | (32)
+ 0w Afajo) + Apg ANy — Ay 423" 3 p=1,...,m ‘
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The expression corresponding with the right hand side of (13)') is
here no longer an affinor, but the expression
Rius:* = —2 Hyf (Bad. Bs — Bsa I'h) — 20 Afayn—2 A5 Ay +
+2Afbd]AZp : p:l,...,m,

which we call the quantity of curvature of the A;, is. Using the

. (33)

parameters belonging to the systems (k) and the equations (25) and
i

(29), we may write for the first term of Ry, °

 —2Huy B V. es=— 2 Hyi 47. =2 Apjpa) 4ze . . (34)
and this expression can be added to the last term of (33) so that finally

R =—20u Ay —2 Ao Ay sy + 2 Ay 455
p=1,...,m, .. (35)

j=1....n

From (32) and (33) follows

VeV ' =Ha B;Vav’ — 1, Ruav* . . . . (36)

If the field of m-directions is X,,.-bﬁilding. then Hj;;’ vanishes, (36)
takes the ordinary form and (33) regains the same form as (13).
If the A, passes into a V,, the quantity of curvature passes into

(37)

K = —20ufam — 2751 Yo+ 2 vloa) v5; 2
p=1,..., m, S

j=1....n

§ 5. The generalised equation of GAUSS.
From the definition of the induced connexion it is easily deduced for

a field v* of the A;':
V{dVL] vF = H[{fi,]’a B; v,a v’ + Ly ?Iﬂl }—'Ib']a'“va — 1, ij; Rs3.”v". (38)

from which follows

B Ris’ =R+ 2Hyef LaSe | - - - ¢ (39)

This is the generalised equation of GAUSS for an A; in A, and we
see that it has the same form as the equation for an A, in A;.

§ 6. Geodesics in Ay, and in A,.
A geodesic in A; is a curve, generated by the pseudoparallel

1) This expression has been found .by VRANCEANU but the affinor K;',;B‘C from (37)
does not occur in his papers.
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displacement of a contravariant vector in its own direction. ¢ being a

ic, W 7, I
parameter on a geodesic, ar VP dr
d*y° cdy'dy® dy°
ae Tl g @ = 0}

Hence a geodesic in A, is also a geodesic in A, if and only if the

vector
dx* dx’ dx* _, dx’ dx*
Gt Vede "t Vede — ( Volde )C

(41)

has the direction of dx’. In consequence the geodesicsin A, are always
geodesics in A, if and only if Hj;;, vanishes. Thus the alternating part
Hiy.] which is of such a fundamental importance for the non-holonomity
of A;, has nothing to do with this question concerning the geodesics.
To the case of a geodesic A, in A, corresponds the case of an A; with
Hi. =0, all geodesics being also geodesics of A,. If the A, passes into a
V.. there exist also shortest curves in V. But it is immediately clear
that shortest curves and geodesics are not identical here. In fact, through
a point of V7 only oo™ ! geodesics pass but generally oo"! shortest
curves, because every point of the V, can be connected with every
other point by a curve lying wholly in V. As an example we take
the linear complex in R; belonging to a system of forces. The field of
the 2-directions belonging to every point is not V2~bu11dmg and may
be given by the equation

p,=a,+rf, . . . . . . .. 42

a) being a constant vector, fi» a constant bivector and r* the radius-
vector. Writing p for the length of p; and ii for the unit vector
belonging to p» we have

Y13 ._1 B ____1 '
B:“}- Vﬁlz—? Blu}v,g p“—p ,u.}f,?a p f/‘} . . . (43)
and
v 1 '

f'usx being the V 2-component of f... The straight lines of the complex
are geodesics as well in R; as in V3. Obviously two arbitrary points in
R; can not be connected by a geodesic of VI but always by a curve
lying wholly in V%. The quantity of curvature of V2 is

’ e 2
de.c =—2 H[bla] Hd]ce— - ; [b|l| fd]c e e . (45)
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§ 7. Affine geometry of an Xn ' in A,.

We will prove that an X, ' in A, determines an affine-normal
direction in the same way as an X, in An does, if the following two
conditions are fulfilled.

1. The connexion in A, leaves invariant each volume. (In E, this
condition is always fulfilled).

2. t» being a covariant vector having in every point the (n—1)-

direction of the X ', the affinor hu = B}y Vut. has the rank n—1.

If the connexion A, leaves invariant every volume, there exists a
constant  n-vectorfield P, .. .. Every other constant n-vectorfield can
be obtained by multiplying P» ... with a constant scalar. Now if hy,
has the rank n—1, £, can be chosen in a unique way, so that

tp, k,u.‘;\2 e .k,un] Al :P,u,,.. P pA, oA (46)

.
If the constant n-vectorfield be changed, #» only takes a constant
scalar factor. The affine-normal vector can now be defined by means of
the equations
tu n* =1

| (47)
B (V, t)n" =0

hy. having the rank n—1, n’ is determined but for a constant scalar
factor. Thus the affine-normal direction is found.
By use of the direction of n* just found, the X7 ' can be rigged, and
an affine geometry can be obtained, as indicated in the former paragraphs.
Instead of hsa also ks = hpa) Or fioa = hps) can be used to construct
the affine-normal direction.





