Mathematics. - On non-holonomic connexions. By Prof. J. A. Schouten (Communicated by Prof. Jan de Vries).
(Communicated at the meeting of February 25, 1928).

Introduction.

Non-holonomic parameters are well known in mechanics. In geometry they were first used by Hessenberg ${ }^{1}$), by the author ${ }^{2}$), by Cartan ${ }^{3}$) and by Hlavaty ${ }^{4}$). Using non-holonomic parameters, the equations of the general linear connexion get another form, given by HORAK ${ }^{5}$).

Vranceanu ${ }^{6}$) has brought something essentially new. He has shown that in a V_{n} containing a non- V_{m}-building field of m-directions there exists a connexion for quantities belonging to the local R_{m}, and that this connexion can be deduced from the connexion of the V_{n} by the use of the coefficients of rotation of RICCI. HORAK ${ }^{7}$) has independently found this same connexion and in a paper that is to be published in a short time he will give especially mechanical applications.

Now we get a more general point of view starting from an $A_{n}\left(X_{n}\right.$ with a symmetrical linear connexion) containing a non- X_{m}-building field of m-directions. Then we can show that in the case of a general ($n-m$)-direction being given in every point (the case of "Einspannung" of WEYL) there is induced a connexion for all quantities belonging to the local E_{m}. So we get an A_{n}^{m} some of whose properties will be studied more in detail. Especially we will consider the properties of curvature and the generalised equations of Gauss, which have the same form as in the case of an X_{m} in A_{n}, and also something will be said on the geodesics in A_{n}^{m} and A_{n}. Finally the "affine geometry" of an X_{n}^{n-1} in A_{n} will be treated. The first paragraph contains a short review on non-holonomic parameters in an A_{n}.

[^0]§ 1. Non-holonomic parameters in A_{n}.
In every point of the A_{n} we introduce besides the measuring vectors $e^{\nu}, e_{\lambda}, \lambda, \mu, \nu=a_{1}, \ldots, a_{n}$, belonging to the variables x^{ν}, an arbitrary system k $e_{i}^{\nu}, e_{\lambda}, i, j, k=1, \ldots, n$. Indicating the components with respect to the latter system with latin indices we have
\[

$$
\begin{gather*}
v^{k}=v^{\mu}{ }^{k} \mathrm{e}_{\mu} ; \quad w_{i}=w_{\mu} \mathrm{e}_{i}^{\mu} ; \quad e_{i}^{k}=\left\{\begin{array}{l}
1, i=k \\
0, i \neq k
\end{array} ; \quad e_{i}^{k}=\left\{\begin{array}{l}
1, i=k \\
0, i \neq k
\end{array}\right.\right. \tag{1}\\
A_{\lambda}^{\nu}=\left\{\begin{array}{l}
1, \lambda=v \\
0, \lambda \neq v
\end{array} ; \quad A_{\lambda}^{k}=A_{\lambda}^{\mu}{ }^{k} \mathrm{e}_{\mu} \quad ; \quad A_{i}^{\nu}=A_{\mu}^{\nu} \mathrm{e}_{i}^{\mu} ; \quad A_{i}^{k}=\left\{\begin{array}{l}
1, i=k \\
0, i \neq k
\end{array}\right.\right. \tag{2}
\end{gather*}
$$
\]

and

$$
\begin{equation*}
v^{k}=A_{\mu}^{k} v^{\mu} \quad ; \quad w_{i}=A_{i}^{\mu} \boldsymbol{w}_{\mu} . \tag{3}
\end{equation*}
$$

In the expression

$$
\begin{equation*}
(d x)^{k}=A_{\mu}^{k} d x^{\mu} \tag{4}
\end{equation*}
$$

the x^{k} have a signification by themselves if and only if

$$
\begin{equation*}
\partial_{[\omega} A_{\mu]}^{k}=0 \quad ; \quad\left(\partial_{\omega}=\frac{\partial}{\partial x^{\omega}}\right) \tag{5}
\end{equation*}
$$

In the other case the x^{k} play the same part as the non-holonomic parameters in mechanics, only their differentials having a signification. We consider just this latter case. A symmetrical linear connexion being given by the parameters $\Gamma_{\lambda \mu}^{\nu}$ with respect to the system of measuring vectors $\binom{\nu}{\lambda}$ we can fix this connexion also by parameters $\Lambda_{i j}^{k}$ with respect to the system $\binom{k}{i}$, so that

$$
\begin{align*}
& \nabla_{j} v^{k}=A_{j \gamma}^{\beta k} \nabla_{\beta} v^{\gamma}=\partial_{j} v^{k}+\Lambda_{i j}^{k} v^{i} \\
& \nabla_{j} w_{1}=A_{j i}^{\beta \alpha} \nabla_{\beta} \omega_{\alpha}=\partial_{j} w_{i}-\Lambda_{i j}^{k} w_{k} \tag{6}
\end{align*}
$$

writing ∂_{i} for $A_{i}^{\mu} \partial_{\mu}$. It is easily found that

$$
\begin{equation*}
\Lambda_{i j}^{k}=\Gamma_{i j}^{k}+A_{\alpha}^{k} \partial_{j} A_{i}^{\alpha}=\Gamma_{i j}^{k}-A_{i}^{\alpha} \partial_{j} A_{\alpha}^{k} \tag{7}
\end{equation*}
$$

hence

$$
\begin{equation*}
\Lambda_{[i j]}^{k}=-A_{i j}^{\alpha \beta} \partial_{[\beta} A_{\alpha]}^{k} \tag{8}
\end{equation*}
$$

So $\Lambda_{[i j]}^{k}=0$ is necessary and sufficient for the holonomity of the x^{k}, hence, notwithstanding the symmetry in λ and μ of the $\Gamma_{\lambda_{\mu},}^{\nu}$, the parameters $\Lambda_{i j}^{k}$ with respect to non-holonomic parameters are not symmetrical in i and j. Of course $\Lambda_{[i j]}^{k}$ is no affinor. Applicating (6) on e_{i}^{k} and e_{i}^{k} we get

$$
\begin{equation*}
\Lambda_{i j}^{k}=\nabla_{j} \mathbf{e}_{i}^{k}=-\nabla_{j}{ }_{j}^{k} \tag{9}
\end{equation*}
$$

If the A_{n} passes into a V_{n}, and if we choose the orthogonal system $i^{\nu}=\stackrel{i}{i^{\prime},}, \stackrel{k}{i_{\lambda}}$, as measuring vectors $\mathrm{e}^{\nu}, \stackrel{k}{e_{\lambda}}$, then

$$
\begin{equation*}
\Lambda_{i j}^{k}=-\nabla_{j}{ }^{k} i_{i}=+\nabla_{j}{ }^{i} i_{k}=\gamma_{k i j}=-\gamma_{i k_{j}} . \tag{10}
\end{equation*}
$$

where the $\gamma_{k i j}$ are the coefficients of rotation of RiccI. We will write $\gamma_{i j}^{k}=-\gamma_{k j}^{i}$ instead of $\gamma_{i k j}=-\gamma_{k i j}$ to render more conspicuous the signification of these coefficients as parameters of a connexion. Hence in orthogonal components the connexion is given by

$$
\begin{equation*}
\nabla_{j} v^{k}=\nabla_{j} v_{k}=\partial_{j} v^{k}+\gamma_{i j}^{k} v^{i}=\partial_{j} v_{k}-\gamma_{k j}^{i} v_{i}\left(=\partial_{j} v_{k}+\sum_{i} \gamma_{i k j} v_{i}\right) \tag{11}
\end{equation*}
$$

By differentiating and alternating (6) we get

$$
\begin{equation*}
\nabla_{[l} \nabla_{j \mid} v^{k}=\left\{\partial_{[l} \Lambda_{[|h|]}^{k}+\Lambda_{p[l}^{k} \Lambda_{[h \mid j]}^{p}-\Lambda_{[j l]}^{p} \Lambda_{h p}^{k}\right\} v^{h} \tag{12}
\end{equation*}
$$

hence for the quantity of curvature follows

$$
\begin{equation*}
R_{i j h}^{k}=-2 \partial_{[l} \Lambda_{[h \mid j]}^{k}-2 \Lambda_{p[l}^{k} \Lambda_{|h| j]}^{p}+2 \Lambda_{[j]}^{p} \Lambda_{h p}^{k} . \tag{13}
\end{equation*}
$$

an equation passing into the ordinary form for $\Lambda_{[i j]}^{k}=0$, viz. for the case of holonomic parameters.
§ 2. X_{n}^{m} in X_{n}.
In every point of an X_{n} an m-direction be given. In the simplest case these m-directions are X_{m}-building, viz. it is possible to link them together in such a way that they build a system of $\infty^{n-m} X_{m}$. This simplest case will not be considered here. In general there will be a system of $\infty^{n-M} X_{M}, m<M \leqq n$, in such a manner that the given m-direction lies in every point in the local M-direction. We suppose that $M=n$ and give up all simplifications possible for $M<n$. An X_{n} equipped in this way with local m-directions will be called an X_{n}^{m}. An affinor of the local E_{m}, defined over X_{n}, will be called an "affinor of the $X_{n}^{m "}$. Hence a field of contravariant vectors of the X_{n}^{m} is also a field of contravariant vectors of the X_{n}, but not vice versa, and a field of covariant vectors of the X_{n} (represented geometrically by two parallel E_{n-1} in every point) forms a field of covariant vectors of the X_{n}^{m} (represented geometrically by two parallel E_{m-1}) by intersection with the local E_{m}. All this is just the same as for an X_{m} in X_{n}.

We now introduce in every point of the X_{n} an $(n-m)$-direction, having no direction in common with the local m-direction. An X_{n} equipped in this way will be called rigged ${ }^{1}$). The essential difference between covariant vectors of the X_{n} and of the X_{n}^{m} disappears in a rigged X_{n}^{m}, because here every covariant vector of the X_{n}^{m} is in one to one correspondence with the covariant vector

[^1]of the X_{n}, whose E_{n-1} are determined by the E_{m-1} of the former vector and the $(n-m)$-direction of the rigging. Analytically we express this as follows. Besides the system $\binom{\nu}{\lambda}$ belonging to the x^{ν} we introduce in every point a system $\binom{k}{i}$, in such a manner that the first m contravariant measuring vectors $e^{\nu}, a, b, c, d=1, \ldots, m$, lie arbitrarily in the local m-direction, and that the other ones $e_{e}^{\nu}, e, f, g, h=$ $=m+1, \ldots, n$, lie also arbitrarily in the local $(n-m)$-direction. With respect to this system the quantities of the X_{n}^{m} only have components with indices from 1 to m. Writing
\[

$$
\begin{equation*}
B_{\lambda}^{\nu}={\underset{e}{e}}_{\lambda}^{\nu} e^{\nu} \quad ; \quad C_{\lambda}^{\nu}=A_{\lambda}^{\nu}-B_{\lambda}^{\nu}=\underset{e}{e} e_{\lambda}^{\nu} \tag{14}
\end{equation*}
$$

\]

we have

$$
B_{a}^{c}=\left\{\begin{array}{l}
1, a=c \tag{15}\\
0, a \neq c
\end{array} \quad, \quad B_{c}^{f}=0 \quad, \quad B_{a}^{f}=0, \quad B_{e}^{c}=0\right.
$$

and the X_{n}^{m}-component of a vector of X_{n} is given by the equation

$$
\begin{equation*}
v^{\prime \nu}=B_{\mu}^{\nu} v^{\mu} \quad ; \quad w_{\lambda}^{\prime}=B_{\lambda}^{\mu} w_{\mu} \tag{16}
\end{equation*}
$$

or, with regard to the system $\binom{k}{i}$:

$$
\begin{equation*}
v^{\prime k}=B_{\mu}^{k} v^{\mu} \quad ; \quad \boldsymbol{w}_{i}^{\prime}=B_{i}^{\mu} \boldsymbol{w}_{\mu} \tag{17}
\end{equation*}
$$

If we write $(d y)^{c}$ for the $\binom{k}{i}$-components of a translation $d x^{\nu}$ lying in X_{n}^{m} :

$$
\begin{equation*}
d x^{\nu}=B_{a}^{\nu}(d y)^{a} \tag{18}
\end{equation*}
$$

then the y^{c} are non-holonomic parameters and for B_{a}^{ν} follows

$$
\begin{equation*}
B_{\mathbf{a}}^{\nu}=\frac{\partial x^{\nu}}{(\partial y)^{a}} \tag{19}
\end{equation*}
$$

§3. The connexion induced in a rigged X_{n}^{m} in A_{n}.

By introducing the $\Gamma_{\lambda \mu}^{\nu}$ the X_{n} becomes an A_{n}. We are going to prove that the connexion of A_{n} induces a connexion in an X_{n}^{m} in A^{n} provided that this X_{n}^{m} is rigged. This connexion is defined as follows:

The covariant differential quotient of a quantity in X_{n}^{m} is the X_{n}^{m} component of the covariant differential quotient in A_{n}.

Thus, indicating the covariant differential quotient in X_{n}^{m} by ∇^{\prime} we have for vectors:

$$
\begin{align*}
\nabla_{\mu}^{\prime} v^{\nu} & =B_{\mu \nu}^{\beta \nu} \partial_{\beta} v^{\gamma}+B_{\mu \gamma}^{\beta \nu} \Gamma_{\lambda \beta}^{\gamma} v^{\lambda} \\
\nabla_{\mu}^{\prime} w_{\lambda} & =B_{\mu \lambda}^{\beta \alpha} \partial_{3} \boldsymbol{w}_{\alpha}-B_{\mu \lambda}^{\beta \alpha} \Gamma_{\alpha \beta}^{\nu} w_{\nu} \tag{20}
\end{align*}
$$

or, with regard to the system $\binom{k}{i}$:

$$
\left.\begin{array}{l}
\nabla_{b}^{\prime} v^{c}=B_{b \nu}^{\mu c} \nabla_{\mu} v^{\nu}=\partial_{b} v^{c}-B_{a}^{\nu} v^{a} \partial_{b} B_{v}^{c}+v^{a} B_{b v a}^{\mu c \lambda} \Gamma_{\lambda \mu}^{\nu} \tag{21}\\
\nabla_{b}^{\prime} w_{a}=B_{b a}^{\mu \lambda} \nabla_{\mu} w_{\lambda}=\partial_{b} w_{a}-w_{c} B_{\lambda}^{c} \partial_{b} B_{a}^{\lambda}-w_{c} B_{b a \nu}^{\mu \lambda c} \Gamma_{\lambda \mu}^{\nu}
\end{array}\right\}
$$

From this equation follows for the parameters $\Lambda_{a b}^{\prime c}$ of the induced connexion

$$
\begin{equation*}
\dot{\Lambda}_{a b}^{\prime c}=B_{a b \nu}^{i \mu c} \Gamma_{\lambda \mu}^{\nu}+B_{\nu}^{c} \partial_{b} B_{a}^{\nu} \tag{22}
\end{equation*}
$$

Quite as in an A_{n} the alternating part

$$
\begin{equation*}
\Lambda_{[a b]}^{c}=B_{v}^{c} \partial_{[b} B_{a]}^{\nu} \tag{23}
\end{equation*}
$$

is no affinor and depends on the choice of the systems $\binom{c}{a}$.
A rigged X_{n}^{m} thus equipped with a connexion will be called an A_{n}^{m}. Applying (21) to e^{c} and e_{a} we get

$$
\begin{equation*}
\Lambda_{a b}^{\prime c}=\nabla_{b}^{\prime} e_{a}^{c}=-\nabla_{b}^{\prime c} e_{a} \tag{24}
\end{equation*}
$$

but also, in consequence of the choice of the measuring vectors

$$
\begin{equation*}
\Lambda_{a b}^{\prime c}=\nabla_{b} e^{c}=-\nabla_{b}^{c} e_{a}^{c}=\Lambda_{a b}^{c} \tag{25}
\end{equation*}
$$

Starting from a V_{n} instead of from an A_{n} and choosing for $\binom{k}{i}$ an orthogonal system, we get easily

$$
\begin{equation*}
\Lambda_{a b}^{c}=\gamma_{a b}^{c}\left(=-\gamma_{c a b}\right) \tag{26}
\end{equation*}
$$

Hence the connexion induced in a $V_{n}^{m}\left(=X_{n}^{m}\right.$ in $\left.V_{n}\right)$ is obtained in a very simple manner by using the coefficients of rotation of Ricci with respect to a suitable chosen system of m congruences of curves ${ }^{1}$).
${ }^{1}$) Vranceanu has found the connexion, induced in V_{n}^{m}, just in this way.
§ 4. Properties of curvature of an A_{n}^{m} in A_{n}.
We define the first and the second affinor of curvature in the same way as in an A_{m} in A_{n} :

$$
\left.\begin{array}{c}
H_{b a}^{\prime \nu}=B_{b a}^{\mu \lambda} \nabla_{\mu} B_{\lambda}^{\nu}=-\left(\nabla_{b}^{\prime} e_{e}^{e}\right) \underset{e}{e_{e}^{\nu}}=\Lambda_{a b}^{e} e_{e}^{\nu} \tag{27}\\
L_{b}^{\cdot c}{ }_{\lambda}=B_{b \nu}^{\mu_{c}} \nabla_{\mu} B_{\lambda}^{\nu}=-\left(\nabla_{b} e_{e}^{e}\right) e_{\lambda}^{e}=-\Lambda_{e b}^{c} e^{e} e_{\lambda}^{e}
\end{array}\right\}
$$

It strikes that, just as in an A_{m} in $A_{n}, H_{b a}^{* *}$ lies with the index v in the local $(n-m)$-direction and $L_{b}{ }^{\text {c }}$, ${ }_{\lambda}$ contains with the index λ the local m-direction :

$$
\begin{equation*}
B_{\alpha}^{\nu} H_{b \dot{a}}^{\cdot{ }^{\alpha}}=0 \quad ; \quad B_{\lambda}^{\alpha} L_{\dot{b}}{ }^{c}{ }_{\alpha}=0 \tag{28}
\end{equation*}
$$

But here $H_{b a}{ }^{\nu}$ is no longer symmetrical in a and b, because

$$
\begin{equation*}
H_{[b a]}^{\prime \prime}=-B_{b a}^{\mu \lambda}\left(\nabla_{\left[u e_{\lambda]}^{e}\right.}^{\substack{e}}{ }_{e}^{\prime \prime}=\Lambda_{[a b]}^{e} e_{e}^{\nu}\right. \tag{29}
\end{equation*}
$$

and this expression vanishes if and only if all vectors ${ }^{c}{ }_{e}^{e}$ are X_{n-1} building viz. if the field of m-directions is X_{m}-building, the case which we have excluded expressely.

It follows from

$$
\left.\begin{array}{r}
H_{[b a]}^{\nu}=B_{[b a]}^{\mu \lambda}\left(\partial_{\mu} B_{\lambda}^{\nu}+\Gamma_{\alpha \mu}^{\nu} B_{\lambda}^{\alpha}-\Gamma_{\lambda \mu}^{\chi} B_{\alpha}^{\prime \prime}\right)=B_{b a}^{\mu \lambda} \partial_{[\mu} B_{\lambda]}^{\nu}= \\
=\partial_{[b} B_{a]}^{\prime \nu}-B_{\alpha}^{\nu} \partial_{[b} B_{a]}^{\alpha}=C_{\alpha}^{\nu} \partial_{[b} B_{a]}^{\alpha} \tag{30}
\end{array}\right\}
$$

that the field of m-directions is X_{m}-building if and only if $C_{\alpha}^{\nu} \partial_{[b} B_{a]}^{\alpha}$. vanishes.

The ordinary method of obtaining the quantity of curvature is here useless because in an A_{n}^{m} it is generally impossible to construct a parallelogram, this impossibility being exactly characteristic for a non X_{m}-building field of m-directions. In fact, if on the one side a translation $d y^{c}$ is followed by a translation $d y^{c}$, and on the other side $\underset{2}{d} y^{c}$ by $d y^{c}$. then by using (23) and (30) we find for the closing vector the equation

$$
\begin{equation*}
\underset{1}{2 d} y^{b} \underset{2}{d} y^{a} \partial_{[b} B_{a]}^{\prime}=2 \underset{1}{d} y^{a} \underset{2}{d} y^{b}\left(H_{[b a]}^{\prime}+\Lambda_{[a b]}^{c} B_{c}^{\prime \prime}\right) . \tag{31}
\end{equation*}
$$

giving the decomposition into one component in the A_{n}^{m} and one in the local ($n-m$)-direction. The latter one only vanishes when the field of m-directions is X_{m}-building, the other one depends on the choice of the systems $\binom{c}{a}$.

So we choose another way and start with $\nabla_{I t}^{\prime} \nabla_{j l}^{\prime} v^{k}$ which certainly is an affinor. We get

$$
\begin{align*}
& \nabla_{[d}^{\prime} \nabla_{b]}^{\prime} v^{c}=H_{[d b]}^{\alpha, \alpha} B_{\beta}^{c} \nabla_{\alpha} v^{\beta}+\left\{H_{[d b]}^{\alpha}\left(B_{a}^{\beta \beta} \partial_{\alpha} B_{\beta}^{c}-B_{\gamma a}^{c \beta} \Gamma_{\beta \alpha}^{\gamma}\right)+1\right. \tag{32}\\
& \left.+\partial_{[d} \Lambda_{[a \mid b]}^{c}+\Lambda_{p[d}^{c} \Lambda_{[a \mid b]}^{p}-\Lambda_{[b d]}^{p} \Lambda_{a p}^{c}\right\} v^{a} \quad ; \quad p=1, \ldots, m .
\end{align*}
$$

The expression corresponding with the right hand side of (13) ${ }^{1}$) is here no longer an affinor, but the expression

$$
\left.\begin{array}{c}
R_{d \dot{b a}}^{\prime} \ddot{c}=-2 H_{[d b]}^{\alpha}\left(B_{a}^{\beta} \partial_{\alpha} B_{\beta}^{c}-B_{\gamma \dot{\beta}}^{c \beta} \Gamma_{\beta \alpha}^{\gamma}\right)-2 \partial_{[d} \Lambda_{[a \mid b]}^{c}-2 \Lambda_{p \mid d}^{c} \Lambda_{|a| b]}^{c}+ \tag{33}\\
+2 \Lambda_{[b d]}^{p} \Lambda_{a p}^{c} \quad ; \quad p=1, \ldots, m,
\end{array}\right\} .
$$

which we call the quantity of curvature of the A_{n}^{m}, is. Using the parameters belonging to the systems $\binom{k}{i}$ and the equations (25) and (29), we may write for the first term of $R_{d b a}^{\prime}{ }_{c}^{c}$

$$
\begin{equation*}
-2 H_{[d b]}^{a} B_{a}^{\beta} \nabla_{\kappa}{ }^{c}{ }_{\beta}^{c}=-2 H_{[b d]}^{e} \Lambda_{a e}^{c}=2 \Lambda_{[b d]}^{e} \Lambda_{a e}^{c} . \tag{34}
\end{equation*}
$$

and this expression can be added to the last term of (33) so that finally

$$
\left.\begin{array}{r}
R_{d b a}^{\prime \ldots c}=-2 \partial_{[d} \Lambda_{[a \mid b]}^{c}-2 \Lambda_{p[d}^{c} \Lambda_{[|a| b]}^{p} \\
+2 \Lambda_{[b d]}^{j} \Lambda_{a j}^{c} \tag{35}\\
p=1, \ldots, m \\
j=1, \ldots, n
\end{array}\right\}
$$

From (32) and (33) follows

$$
\begin{equation*}
\nabla_{[d}^{\prime} \nabla_{b]}^{\prime} v^{c}=H_{[d b]}^{\beta} B_{\gamma}^{c} \nabla_{\beta}^{\beta} v^{\gamma}-1 / 2 R_{d b a}^{\prime} \ddot{d}^{c} v^{a} \tag{36}
\end{equation*}
$$

If the field of m-directions is X_{m}-building, then $H_{[b a]}{ }^{\nu}$ vanishes, (36) takes the ordinary form and (33) regains the same form as (13).

If the A_{n} passes into a V_{n}, the quantity of curvature passes into

$$
\left.\begin{array}{c}
\left.K_{d b a}^{\prime}=-2 \partial_{[d} \gamma_{[a \mid b]}^{c}-2 \gamma_{p[d}^{c} \gamma_{[a \mid b]}^{p}+2 \gamma_{[b d]}^{j} \gamma_{a j j}^{c}\right) \tag{37}\\
p=1, \ldots, m \\
j=1, \ldots, n .
\end{array}\right\}
$$

§5. The generalised equation of Gauss.
From the definition of the induced connexion it is easily deduced for a field v^{c} of the A_{n}^{m} :
from which follows

This is the generalised equation of Gauss for an A_{n}^{m} in A_{n} and we see that it has the same form as the equation for an A_{m} in A_{n}^{*}.
§ 6. Geodesics in A_{n}^{m} and in A_{n}.
A geodesic in A_{n}^{m} is a curve, generated by the pseudoparallel

[^2]displacement of a contravariant vector in its own direction. t being a parameter on a geodesic, $\frac{d y^{b}}{d t} \nabla_{b}^{\prime} \frac{d y^{c}}{d t}$ must have the direction of $d y^{c}$:
\[

$$
\begin{equation*}
\frac{d^{2} y^{c}}{d t^{2}}+\Lambda_{a b}^{c} \frac{d y^{\mathrm{a}}}{d t} \frac{d y^{b}}{d t}=\alpha \frac{d y^{\mathrm{c}}}{d t} \tag{40}
\end{equation*}
$$

\]

Hence a geodesic in A_{n}^{m} is also a geodesic in A_{n} if and only if the vector

$$
\begin{array}{r}
\frac{d x^{\mu}}{d t} \nabla_{\mu} \frac{d x^{\mu}}{d t}-\frac{d x^{\mu}}{d t} \nabla_{\mu}^{\prime} \frac{d x^{\mu}}{d t}=\frac{d x^{\mu}}{d t}\left(\nabla_{\mu} \frac{d x^{\alpha}}{d t}\right) C_{\alpha}^{\nu}= \\
=\frac{d x^{\mu}}{d t} \frac{d x^{\lambda}}{d t} \nabla_{\mu} B_{\lambda}^{\mu}=\frac{d y^{\alpha}}{d t} \frac{d y^{b}}{d t} H_{b a}^{\mu \nu} \tag{41}
\end{array}
$$

has the direction of $d x^{\nu}$. In consequence the geodesics in A_{n}^{m} are always geodesics in A_{n} if and only if $H_{(\dot{b} a)}{ }^{\text {² }}$ vanishes. Thus the alternating part $H_{[b a]} \ddot{b}^{*}$ which is of such a fundamental importance for the non-holonomity of A_{n}^{m}, has nothing to do with this question concerning the geodesics. To the case of a geodesic A_{m} in A_{n} corresponds the case of an A_{n}^{m} with $H_{(\ddot{b a})}=0$, all geodesics being also geodesics of A_{n}. If the A_{n} passes into a V_{n}, there exist also shortest curves in V_{n}^{m}. But it is immediately clear that shortest curves and geodesics are not identical here. In fact, through a point of V_{n}^{m} only ∞^{m-1} geodesics pass but generally ∞^{n-1} shortest curves, because every point of the V_{n} can be connected with every other point by a curve lying wholly in V_{n}^{m}. As an example we take the linear complex in R_{3} belonging to a system of forces. The field of the 2 -directions belonging to every point is not V_{2}-building and may be given by the equation

$$
\begin{equation*}
p_{\lambda}=a_{\lambda}+r^{\alpha} f_{\alpha \lambda} \tag{42}
\end{equation*}
$$

a ${ }_{\lambda}$ being a constant vector, $f_{i \mu}$ a constant bivector and r^{ν} the radiusvector. Writing p for the length of p_{i} and i_{λ} for the unit vector belonging to p, we have

$$
\begin{equation*}
B_{\mu \lambda}^{\beta \alpha} \nabla_{\beta} i_{\alpha}=\frac{1}{p} B_{\mu \lambda}^{\beta \alpha} \nabla_{\beta} p_{\alpha}=\frac{1}{p} B_{\mu \lambda}^{\beta \alpha} f_{\beta \alpha}=\frac{1}{p} f_{\mu \lambda}^{\prime} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\mu \lambda}^{\prime \prime}=-\frac{1}{p} f_{\mu \lambda}^{\prime} i^{\nu} \tag{44}
\end{equation*}
$$

$f^{\prime}{ }_{\mu \lambda}$ being the V_{3}^{2}-component of $f_{\mu \lambda .}$. The straight lines of the complex are geodesics as well in R_{3} as in V_{3}^{2}. Obviously two arbitrary points in R_{3} can not be connected by a geodesic of V_{3}^{2} but always by a curve lying wholly in V_{3}^{2}. The quantity of curvature of V_{3}^{2} is

$$
\begin{equation*}
K_{d b \mathrm{ac}}^{\prime}=-2 H_{[b|a|}^{e} H_{d] \mathrm{ce}}=-\frac{2}{p^{2}} f_{[b|a|}^{\prime} f_{d] \mathrm{c}}^{\prime} \tag{45}
\end{equation*}
$$

§ 7. Affine geometry of an X_{n}^{n-1} in A_{n}.
We will prove that an X_{n}^{n-1} in A_{n} determines an affine-normal direction in the same way as an X_{n-1} in A_{n} does, if the following two conditions are fulfilled.

1. The connexion in A_{n} leaves invariant each volume. (In E_{n} this condition is always fulfilled).
2. t_{λ} being a covariant vector having in every point the ($n-1$)direction of the X_{n}^{n-1}, the affinor $h_{b a}=B_{b a}^{\mu i} \nabla_{\mu} t_{\lambda}$ has the rank $n-1$.

If the connexion A_{n} leaves invariant every volume, there exists a constant n-vectorfield $P_{\lambda_{1} \ldots \lambda_{n}}$. Every other constant n-vectorfield can be obtained by multiplying $P_{\lambda_{1} \ldots \lambda_{n}}$ with a constant scalar. Now if $\boldsymbol{h}_{b a}$ has the rank $n-1, t_{\lambda}$ can be chosen in a unique way, so that

$$
\begin{equation*}
t_{\left[\mu_{1}\right.} t_{\left[\lambda_{1}\right.} k_{\mu_{2} \lambda_{2}} \ldots k_{\left.\left.\mu_{n}\right] \lambda_{n}\right]}=P_{\mu_{1} \ldots \mu_{n}} P_{\lambda_{1} \ldots \lambda_{n}} . . . \tag{46}
\end{equation*}
$$

If the constant n-vectorfield be changed, t_{λ} only takes a constant scalar factor. The affine-normal vector can now be defined by means of the equations

$$
\begin{gather*}
\boldsymbol{t}_{\mu} \boldsymbol{n}^{\mu}=1 \\
B_{a}^{\mu}\left(\nabla_{\mu} \boldsymbol{t}_{\mu}\right) \boldsymbol{n}^{\dot{\lambda}}=0 \tag{47}
\end{gather*}
$$

$h_{b a}$ having the rank $n-i, n^{\prime}$ is determined but for a constant scalar factor. Thus the affine-normal direction is found.

By use of the direction of n^{ν} just found, the X_{n}^{n-1} can be rigged, and an affine geometry can be obtained, as indicated in the former paragraphs.

Instead of $h_{b a}$ also $k_{b a}=h_{(b a)}$ or $f_{b a}=h_{[b a]}$ can be used to construct the affine-normal direction.

[^0]: $\left.{ }^{1}\right)$ Vektorielle Begründung der Differentialgeometrie, Math. Ann. 78 (18) 187-217.
 ${ }^{2}$) Die direkte Analysis zur neueren Relativitätstheorie. Verh. Kon. Akad. v. Wet. Amsterdam 12 (18) 6.
 ${ }^{3}$) Sur les variétés à connexion affine, Ann. de l'école normale (3) 40 (23) 325-412.
 4) Sur le déplacement linéaire du point, Věstn. České Akademie (24) XIII 1-8.
 ${ }^{5}$) Die Formeln für allgemeine lineare Uebertragung bei Benutzung von nichtholonomen Parametern, Nieuw Archief v. Wisk. 15 (27) 193-201.
 ${ }^{6}$) Sur les espaces non holonomes, Comptes Rendus 183 (26) 825-854, Sur le calcul différentiel absolu pour les variétés non holonomes, Comptes Rendus 183 (26) 1083-1085.
 ${ }^{7}$) (Czechisch) Sur une généralisation de la notion de variété, Publications de la Faculté des sciences de l'université Hasaryk, Brno.

[^1]: ${ }^{1}$) Weyls expression "eingespannt" being untranslatable and the ($n-m$)-direction reminding of a hoisted sail on a ship (the local m-direction), the word "rigged" was suggested.

[^2]: ${ }^{1}$) This expression has been found by Vranceanu but the affinor $K_{d b a}^{\prime} \ldots c$ from (37) does not occur in his papers.

