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Introduction. 

N on-holonomic parameters are well known in mechanics. In geometry 
they were first used by HESSEN BERG I). by the au thor 2) . by CARTAN 3) 
and by HLAVATY 4). Using non-holonomic parameters. the equations of 
the general linear connex ion get another form. given by HORAK 5). 

VRANCEANU 6) has brought something essentially new. He has shown 
that in a V M containing a non- V m -building field of m-directions there 
exists a connexion for quantities belonging to the local Rm. and that 
this connexion can be deduced from the connexion of the V M by the 
use of the coefficients of rotation of RICCI. HORAK 7) has independently 
found th is same connexion and in a paper that is to be published in a 
short time he will give especially mechanical applications. 

Now we get a more general point of view starting from an AM (XM 

with a symmetrical linear connexion) containing a non-Xm-building field 
of m-directions. Then we can show that in the case of a general 
(n-m)-direction being given in every point (the case of .. Einspannung" 
of WEYL) there is induced a connexion for all quantities belonging to 
the local Em . So we get an A;:' some of whose properties will be studied 
more in detail. Especially we will consider the properties of curvature 
and the generalised equations of GAUSS. which have the same form as 
in the case of an X m in AM, and also something will be said on the 
geodesics in A;:' and AM' Finally the "affine geometry" of an X~-I in 
An will be treated. The first paragraph contains a short review on 
non-holonomic parameters in an AM' 
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§ 1. Non-holonomic parameters in An. 
In every point of the An we introduce besides the measuring vectors 
v 

eV. e},. l. ft. v=at ••.• an. belonging to the variables xv. an arbitrary system 
}, 

Ic 

eV. e},. i.j. k = 1. .... n. Indicating the components with respect to the 
i 

latter system with latin indices we have 

p.l=v 
A~= jO.l*v 
and 

w.=wef' 
I f' . 

I 

Ie l1.i=k . e-
• i - O. i =f- k 

Ic Ie 
A},=A~ef' 

Ie Ale f' 
U = f'u wl=A:'wf'. 

In the expression 

(dxt = A~dx . 

the x lc have a signification by themselves if and only if 

(1 ) 

(2) 

(3) 

(4) 

(5) 

In the other case the x le play the same part as the non-holonomic 
parameters in mechanics. only their differentials having a signification. 
We consider just this lat ter case. A symmetrical linear connexion beiog 
given by the parameters r;U. with respect to the system of measuriog 

vectors (;) we cao fix th~s coonexioo also by parameters A~j with 

respect to the system ( ~). 50 that 

"Ie A~Ic" or ~ Ie + Ale ; 
V jU = jor V /3 U = Uj U Ij U 

\ljw, = AJ~ \l j3 w,,=Oj wl-A7j W Ie 

writiog Ol for A; Ol-'. It is easily fouod that 

A7j = r,~ + A: Oj A~ = 1';; - A~ ojA~ 
heoce 

(6) 

(7) 

(8) 

So Ai;i) =0 is necessary and sufHcieot for the holonomity of the x le• 
hence. notwithstaodiog the symmetry io Á and ft of the r;fL' the parameters 
A~i with respect to noo-holooomic parameters are not symmetrical in 

Ie 

i and j. Of course Aili ) is no afHoor. Applkating (6) on é and e; we get 
; 

Ie 

A7i = \Ij ele =- \lje; . 
i 

(9) 
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If the An passes into a V n , and if we choose the orthogonal system 
i k k 

i ll == tI, iJ.., as measuring vectors e:l, eJ.. t th en 
i 

k ~ ~ 
Aii=-\ljti=+ \ljtk=Yk1i=-Yikj (10) 

where the Yk ij are the coefHcients of rotation of Rlccl. We will write 
Y7i = - Y~j instead of Yikj= - Ykij to render more conspicuous the signi~ 

fkation of these coefHcients as parameters of a connexion. Hence in 
orthogonal components the connexion is given by 

k k k i i 
\ljV =\ljvk=àjv +Yij v =àjVk-YkjVi(=àiVk+IYlkJVi)' (11) 

1 

By differentiating and alternating (6) we get 

\lIl \ljJ v
k = là(l ArhlJJ + A; [I AfhlJJ - Afj IJ A;p! v

h 

hence for the quantity of curvature follows 

(12) 

Rij i. k = - 2 à(l Arhl iJ - 2 A; [I AfhlJJ + 2 AFjlJ A~p • (13) 

an equation passing into the ordinary form for Aiij) = 0, viz. for the 
case of holonomic parameters. 

§ 2. X: in Xn. 
In every point of an X n an m~direction be given. In the simplest 

case these m~directions are X m -building, viz. it is possible to link them 
together in such a way that they build a system of oon-m Xm. This 
simplest case will not be considered here. In general there will be a 
system of oon-M X M , m < M -=:: n, in such a manner that the given 
m-direction lies in every point in the local M~direction. We suppose 
that M = n and give up all simplifications possible for M < n. An X n 

equipped in this way with local m-directions will be called an X:. An 
afHnor of the local Em' defined over X n, will be called an .. affinor of 
the X:". Hence a field of contravariant vectors of the X: is also a 
field of contravariant vectors of the X n , but not vice versa, and a field 
of covariant vectors of the X n (represented geometrically by two parallel 
En-I in every point) forms a field of covariant vectors of the X: (repre~ 
sented geometrically by two parallel Em - I ) by intersection with the local 
Em. All this is just the same as for an X m in Xn. 

We now introduce in every point of the X n an (n-m)~direction, 
having no direction in common with the local m~direction. An 
X n equipped in this way will be called rigged 1). The essential 
difference between covariant vectors of the X n and of the X: 
disappears in a rigged X:, because here every covariant vector of 
the X: is in one to one correspondence with the covariant vector 

I) WEYLS expression "eingespannt", being untranslatab!e and the (n-m)-direction 
reminding of a hoisted sai! on a ship (the !oca! m-direction), the word "rigged" was suggested. 
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of the X n , whose En-t are determined by the Ern-t of the former 
vector aod the (n-m)~direction of the rigging. Analytically we 

express this as follows. Besides the system (~) belonging to the x Y we 

introduce io every point a system (~). in such a manner that the Brst 

m contravariant measuring vectors eY
, a, b, c, d = I, ... , m, lie arbitrarily 

a 

in the local m~direction, and that the other on es eY
, e, {. g, h = 

• = m + 1. ... , n, lie also arbitrarily in the local (n-m)~direction. With 
respect to this system the quantities of the Xr;: only have components 
with indices from 1 to m. Writing 

we have 

a • 

B~=eÀe· , . C~ = A~ -B~=e>.eY 
• 

C ~I.a=c 
Ba= 0 -I­,alc 

B!=O 

(14) 

(15) 

and the Xr;: ~component of a vector of X n is given by the equation 

(16) 

or, with regard to the system (~): 
'k Bk,... 

V = ,...v (17) 

IE we write (dg)c for the (~}components of a translation dx· lying 

in Xr;:: 

. (18) 

th en the gC are non~holonomic parameters and for B~ follows 

. oxY 

B.=~ (19) 

§ 3. The connexion induced in a rigged Xr;: in An . 

By introducing the r~p' the X n becomes an An. We are going to 

prove that the connex ion of An induces a connexion in an Xr;: in A n 

provided that this Xr;: is rigged. This connexion is defined as follows: 

The covariant differential quotient of a quantitg in Xr;: is the X: ~ 
component of the covariant di[ferential quotient in An. 
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Thus. indicating the covariant differential quotient in X: by V' we 
have for vectors: 

(20) 

or. with regard to the system (~) : 

From this equation follows · for the parameters A:~ of the induced 
connexion 

(22) 

Quite as in an An the alternating part 

is no afHnor and depends on the choice of the systems (Ca)' 
A rigged X: thus equipped with a connexion will be called an A:. 

Applying (21) to eC and ea we get 
• 

'c ' c' C 

A.b = V be = - V bes' (24) 

but also. in consequence of the choice of the measuring vectors 

C 

A:'b = V b e
C = - V b ea = A:b (25) 

• 

(~.) Starting from a V n instead of from an An and choosing for • 

an orthogonal system. we get easily 

(26) 

Hence the connexion induced in a V: (= X: in V n ) is obtained in 
a very simple manner by using the coefficients of rotation of RICCI 

with respect to a suitable chosen system of m congruences of curves I). 

I) VRANCEANU has found the connex ion. Induced in V:. just in this way. 
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§ 4. Properties of curvature of an A~ in A". 
Wedefine the first and the second affinor of curvature in the same 

way as in an Am in An : 

. (27) 

It strikes that. just as in an Am in An. Hb." lies with the index v in 
the local (n-m)~direction and Li, ~ À contains with the index À. the local 
m~direction : 

But here Hb.' Y is no long er symmetrical in a and b. because 

Hib~l = - B~aÀ Cv Lu ;À]) e'J = Afab] e
Y 

C 

(28) 

(29) 

and this expression vanishes if and only if all vectors eÀ are Xn-l~ 
building viz. if the field of m~directions is X m ~building. the case which 
we have exduded expressely. 

It follows from 

H .. Y B IA
}. (à BY + r. Y B~ r" B') BiJ.Àà BY 

[ba] = [ba] IJ. À "I'- ~- À: " Y ba ~J~] Y "l (30) 

- a[b Ba] - B" a[b Ba] - C" a[b Ba] 

that the field of m~directions is X m ~building if and only if C; à[b B:] 
vanishes. 

The ordinary method of obtaining the quantity of curvature is here 
useless because in an A~ it is generally impossible to construct a 
parallelogram. this impossibility being exactly characteristic for a non 
Xm~building field of m~directions. In facto if on the one side a translation 
dyc is followed by a translation dyc. and on the other side dyc by dyC. 
1 2 2 1 

th en by using (23) and (30) we find for the dosing vector the equation 

2d yb d y"a[b B:] = 2 d y. d l (H[i,~]Y + Alab] B~). . (31) 
1 2 1 2 

glvmg the decomposition into one component in the A~ and one in the 
local (n-m)~direction. The latter one only vanishes wh en the field of 
m~directions is X m ~building. the other one depends on the choice of the 

systems (:). 

,So we choose another way and start with V;, V;1 vk which certainly 
is an affinor. We get 

V'[d V~] v
C = H[d bi m V" vI' + IH[a bl (B: à" B~ - B1. rp~) + 

. (32) 
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The expression corresponding with the right hand side of (13) I) is 
here no longer an affinor. but the expression 

R~b~c = -2 H[dbt (B~à" m - B;,~ r; .. )-2à[d Afalb]-2A;[d Afalb] + (. (33) 
+ 2 Afbd] A~p P = 1. ... , m. 

whieh we call the quantity of curvature of the A;. is. Using the 

parameters belonging to the systems ( ~) and the equations (25) and 

(29). we may write for the first term of R'db~ c 

- 2 H[dbt B: \j,,;,3 = - 2 H[bdt A~. = 2 A[bd] A~. . (34) 

and this expression can be added to the last term of (33) 50 that finally 

R'di,~ C = - 2 à[d Af.1 b]- 2 A; [d Afal b] + 2 A{bd] A~j \ 

p = 1. .. .. m. (35) 

j = 1. .. . . n. 

From (32) and (33) follows 

\j'[d V'~] VC = H[db/' B;, \j ,3 v" - 1/2 R'db~ C Va 

If the field of m-directions is X m -b~i1ding. then H[b~] ~ vanishes. 
takes the ordinary form and (33) regains the same form as (13). 

(36) 

(36) 

If the An passes into a V n• the quantity of curvature passes into 

K '· . C 2 à c 2 c p 2 j C \ . dba = - [d rlalb] - r p [d rl.lb] + r[bd] r aj 

p-l ..... m, . 

j=L . . . . n. 

(37) 

§ 5. The generalised equation of GAUSS. 

From the definition of the induced connexion it is easily deduced for 
a field VC of the A; : 

n ' '<;7 ' c H .. /3 B C '<;7 ')' + L' C H " " a I/ B d{3c R .. ')' .. V [d V b] V = [db] ')' V ,3 V [d . 1"1 blo V - 2 db')' J ,l .. V • (38) 

from which follows 

,-_B_!_Z,:_' ~_R_j(i_~')' __ R_' d_b a_' c_+_2_H_[_bl_~ I_" _L_d_] ~_"_II . (39) 

This is the generalised equation of GAUSS for an A; in An and we 
see that it has the same form as the equation for an Am in A~. 

§ 6. Geodesics in A; and in An. 
A geodesie in A; is a curve. generated by the pseudoparallel 

I) This expression has been found by VRANCEANU but the affinor Kdb~ c from (37) 
does not occur in his papers. 
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displacement of a contravariant vector in its own direction. t being a 
dyb , dye 

parameter on a geodesie. Tt V b dt must have the direction of dye : 

(40) 

Hence a geodesie in A: is also a geodesie in An if and only if the 
vector 

dx,u. dx' dxp , dx' dxl' ( dX")' 
dt VI' dt - dt V ,u. dt = dt V .. ' dt C" = 

= dxl' dx" V " B' = dy· dyb H"· 
dt dt ' " dt dt b. 

(41) 

has the direction of dx· . In consequence the geodesics in A: are always 
geodesics in An if and only if H(b~)· vanishes. Thus the alternating part 
H['b~] whieh IS of such a fundamental importance for the non-holonomity 
of A~. has nothing to do with this question concerning the geodesies. 
To the case of a geodesie Am in A n corresponds the case of an A~ with 
Há)~t = O. all geodesics being also geodesics of An. If the An passes into a 
V n • th ere exist also shortest curves in V:. But it is immediately clear 
that shortest curves and geodesics are not identieal here. In facto through 
a point of V: only oom- I geodesies pass but generally oon-I shortest 
curves. because every point of the V n can be connected with every 
other point by a curve lying wholly in V:. As an example we take 
the linear complex in R3 belonging to a system of forces. The field of 
the 2-directions belonging to every point is not V 2-building and may 
be given by the equation 

(42) 

a ). being a constant vector. {i,,1J. a constant bivector and rY the radius­
vector. Writing p for the leng th of p j, and iJ. for the unit vector 
belonging to pI. we have 

(43) 

and 
1 ' H '/ =- - {I'A C I' P . (44) 

{'I'A being the V ~ -component of {pA, The straight lines of the complex 
are geodesies as weil in R, as in V~ . Obviously two arbitrary'points in 
R3 can not be connected by a geodeSie of V; but always by a curve 
lying wholly in V; . The quantity of curvature of V~ is 

, H .. e 2" 
Kdb oe = - 2 [blal Hd1ee = - "'2 Dbl.1 (rI) e p 

(45) 
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§ 7, Afllne geometry of an X:- 1 in An' 
We will prove that an X:- 1 in An determines an afHne~normal 

direct ion in the same way as an X n- I in An does. if the following two 
conditions are fulfilled. 

I, The connexion in An leaves invariant each volume. (In En this 
condition is always fulfilled). 

2. t" heing a covariant vector having in every point the (n-1)~ 

direction of the X:- I
• the afHnor hbo = B~: \l" tJ, has the rank n-1. 

If the connexion An leaves invariant every volume. there exists a 
constant n~vectorfield PJ, ... "n' Every other constant n~vectorfield can 
be obtained by multiplying p", .. . "n with a constant scalar. Now if hb. 
has the rank n-1 # t" can he chosen in a unique way. so that 

(46) 

If the constant n~vectorfield be changed. t" only takes a constant 
scalar factor. The afHne~normal vector can now be defined by means of 
the equations 

tI' n lJ· = 1 

B: (\lp' tJ nA = 0 
(47) 

hbo having the rank n-1. n> is determined but for a constant scalar 
factor. Thus the afHne~normal direction is found. 

By use of the direction of nV just found. the X:- 1 can be rigged. and 
an afHne geometry can be ohtained. as indicated in the former paragraphs. 

Instead of hb. also kb. = h1b.) or fbo = h[bal can be used to construct 
the afHne~normal direction. 




