
Physics - A formula expressing the deflection of the plumb~line in the 
gravity anomalies and some formulae for the gravity~field and the 
gravity~potential outside the geoid. By F. A. VENING MEINESZ. 

(Communlcated at the meeting of }anuary 28, 1928). 

§ 1. In the middle of the 19th century STOKES succeeded in deducing a 
formula, which expresses the distance between the geoid and some chosen 
spheroid in the gravity anomalies of the whole earth, These gravity 
anomalies have to be computed by taking the difference of the observed 
gravity, reduced to the geoid by free air reduction (reduction of FAYE), 

and the normal gravity value, corresponding to the spheroid, which has been 
chosen; that is to say th is normal value represents the gravity~field, which 
would exist on an outside potential surface of some theoretica 1 earth of the 
same mass as the actual earth, for which th is potential surface coincides 
with the spheroid. This condition determines the normal gravity~field 

completely, as a weIl~known potential theorem indicates. To the formula of 
the normal gravity may however be added any constant or any spherical 
harmonic of the first degree without changing the result given by the formula 
of STOKES. This is an advantage, which we will secure also in § § 2 and 3 
for some other formulae, as it renders harmiess any error in the constant 
term of the formula for the normal gravity, which is not impossible so long 
as gravity is unknown for the greater part of the earth's surface. 

The chosen spheroid has to fulfill the following conditions : The volume 
as weIl as the centre of gravity must coincide with the volume and the 
centre of gravity of the actual earth. The radius of curvature has not to 
deviate more from the earth's radius than in the ratio of the first order 
of the flattening and we assume further for the spheroid as weIl as forthe 
geoid that the angle between the norm al and the radius towards the earth's 
centre is of that same order. We suppose lastly that the distance between 
both surfaces is of the second order of the flattening in proportion to the 
earth's radius. 

With these restrictions the spheroid is wholly arbitrary; it may he an 
ellipsoid, but this is not necessary and it is not even necessary that it is 
a body of revolution. It may further be emphasized that the formula of 
STOKES, corresponding to the fixed relation between gravity~field and 
shape of the geoid, is independent of the distribution of the masses of the 
earth, which are the causes of both; it is therefore independent of any 
assumption about the mass distribution. 

It is clear that the existence of this fixed relation hetween the gravity~ 
field and the shape of the geoid impHes also a fixed relation between the 
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gravity and the position of the normal on the geoid, that is to say between 
the gravity and the deflection of the plumb~line 1). It is the object of th is 
paper to deduce the corresponding equation, expressing the deflection of the 
plumb~line in the gravity~anomalies. 

The easiest way to deduce such an equation is the differentiation of the 
distance between the geoid and the spheroid, given by the formula of 
STOKES, according to a direction tangent to the ge~id; we find in this 
way the angle between the normal on the geoid and the normal on the 
spheroid, which may be considered as the deflection of the plumb~hne with 
regard to the chosen spheroid. It is however necessary first to c1ear up 
two points concerning the equation of STOKES. 

The first point is how far th is formula gives also the local deviations 
of the geoid. This is questionable because of the fact, that in deducing it, 
a constant value R is substituted at a certain moment for the earth's radius. 
HELMERT for instance expresses doubt about it in "Die Theorien der höhe~ 
ren Geodäsie" , and considers the equation as only valid for giving the 
general shape of the geoid. W ould this be true, then the result for the 
deflection of the plumb~line got in this way, would be valueless; it is 
therefore necessary to prove, as we think it is possible to do, that this doubt 
is not founded. In this regard we may drawattention to a remarkable paper 
of POINCARÉ: "Les mesures de gravité et la géodésie", which is not 
generally known to geodesists and which appeared in the "Bulletin 
Astronomique" of 1901 . POINCARÉ makes a study of the whole problem 
and, without knowing apparently about the work of STOKES, deduces 
the same formula and enlarges speciallyon the possibility of determining 
with this formula the local shape of the geoid with this equation. We will 
look into this question more c10sely in § 4. 

The second point, which has to be examined, is the question concerning 
the effect of the masses outside the geoid. In deducing the formula of 
STOKES or one of the formulae of this paper, it is supposed that there are no 
masses butside the geoid, so that their validity is questionable so long as 
there are such masses. We will eliminate this difficulty by considering a 
regulated earth, for which these masses are removed. As the masses outside 
the geoid are fairly weil known, the changing over from the actual earth 
to the regulated one presents no difficulty: we can compute the effect 
of these masses and find in th is way the changes of the gravity anomaly 
and of the geoid, caused by the removal of these masses. The change of 
the gravity anomalies is about the same as the ordinary BOUGUER reduction. 
Af ter having determined the shape of the regulated geoid by introducing 
these reduced anomalies in the formula of STOKES, the actual geoid can be 
derived by applying the difference between both geoids. It may be remarked 
- LAMBERT drew first attention to this point - that the change of the 

I) See also of M . MARC EL BRILLOUlN: .. Champ de gray. extérieur et densités internes", 
Comptes Rendus de rAcad. d. Sciences. t. 180, and t. 18f. 
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geoid will also bring along a shifting of the centre of gravity, 50 that the 
centre of gravity of the spheroid, which has to coincide with that of the 
regulated earth, will not quite coincide with that of the actual earth. 

In order to lessen the difference between the geoids of the actual 
earth and of the regulated earth, of which we determine the shape 
with the formula of STOKES, we may partly compensate the taking away 
of the masses by adding at the same time corresponding masses inside 
the geoid. We may do th is by applying the condensation method of 
HELMERT, who adds in the same vertical at a depth of 21 km the same 
quantity of mass as has been removed. Or we may do it according to the 
inversion method of RUDZKI, who compensates the removal of an outside 
mass at a distance I from the centre of the earth, by adding a mass, which 
is Ril times the former one, at a distance R211 from the earth 's centre, R 
being the mean earth's radius. RUDZKI obtains in this way, that the geoid 
remains unchanged, so that the formula of STOKES gives at once the actual 
geoid. Or lastly we may follow the isostatic method, adding the same 
quantity of mass, as has been taken away, and distributing it inside the 
geoid according to one of the accepted methods. The reduction of the 
gravity anomalies, corresponding to this last method, is the ordinary isostatic 
reduction, if we extend this mass-regulation also to the oceanic part of the 
earth's crust, filling up the oceans till they have normal density with masses 
removed from the crust below. For the purpose, which we have in view here, 
this extension to the oceans would not of course be necessary. 

Of the th ree compensation methods the isostatic one gives thegreatest 
shift of the geoid, because the di stance between the removed masses and 
the added masses is greatest. Still it seems to me that th is method is 
preferabIe to the other ones. The greater shift of the geoid is no serious 
drawback, as it can he computed. and the method has the advantage that the 
field of gravity anomalies becomes more regular by the isostatic reduction 
than by any other : it removes as weil as possible the effect of the local 
mass-irregularities in the cru st. This advantage is worth mentioning because 
it makes each anomaly value representative for a greater area of the 
earth's surface, 50 that a certain limited number of anomalies will give 
a better image of the geoid. 

When we adopt one of these methods for removing the otitside masses 
in order to be able to apply the formulae on the regulatéd earth, we must 
take care of the following question. As has been remarked in the beg inning, 
we have to reduce the observed gravity by free air reduction to the geoid, 
that is to say that we have now to reduce to the regulated geoid. We have 
therefore to apply an extra free air reduction for the distance between both 
geoids. If we take for instance the isostatic method of regulation we have 
the following series of reductions to the observed gravity : First the 
free air reduction to the actual geoid and then the reductions belonging to 
the regulation of the earth, including first the ordinary isostatic reduction, 
representing the change of gravity caused by the transport of masses and 

21 
Proceedings Royal Acad. Amsterdam. Vol. XXXI. 
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then the free air reduction from the original geoid to the regulated geoid. 
This last reduction is the same as the reduction of BOWIE. 

Objection might be made that the masses outside the actual geoid have 
been removed and not the masses outside the regulated geoid. As a matter 
of fact we ought to remove the masses outside th is last geoid. The 
difference may however be neglected if one of the compensation methods 
has been used, as in this case the distance between both geoids is small ; 
it wiU in fact not exceed some twenty meters. 

We will now proceed to the deduction of the formula for the deflection of 
the plumb-Iine, which we will do by differentiating the formula of STOKES 

according to a direction tangent to the geoid. This formula may be written : 

N . i~ "J ST .60 do . 

in which : N = distance between geoid and spheroid, 
R = mean earth's radius , 
do = surface-e1ement of a sphere with radius I, 
.60 = gravity anomaly corresponding to the element do, 

(JA) 

ST = function of the angle 1f' between the radius of the point A , 
where N is computed, and the radius of the point P 
coinciding with do : 

ST= cosec t 1f' + 1-6 sin t 1f' - 5 cos 1f' - 3 cos 1f' 19 [sin t 1f' (1 +sin t 1f')] (1 B) 

We choose in A an X direction tangent to the geoid and introduce an 
azimuthal coordinate a , representing the angle between OAX and OAP 

A 
~-':;:;:::::----

Br------
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Besides the system of coordinates 1jJ and a we introduce a second system 
() and fJ. () being the angle between the radii of Pand B (OB perpendicular 
to OAX), and f3 the angle between AOB and POB. 

Let {} be the deflection of the plumb-line in A with regard to the spheroid, 
and let {}" be its component in the X direction. Neglecting quantities of 
higher order, we have then: 

in which last formula N is expressed in the second system of coordinates 
() and f3 : 

~ 

N = 4~Y.[ Sr((), fJ) X 6 0 ((). fJ) do. 

For differentiating N according to f3 we have to determine the value 

of N + aa~ df3 in a point A' at a distance Rdf3 from A. The field 6 0 

remains at the same place, but the field 5 T shifts with the centre A towards 
A ', that is to say it rotates an angle df3. If the system of coordinates is kept 
unmoved, we find : 

a 

àN R J . N + at dfJ = 4ny. Sr[O, (fJ-dfJ)] X 6 0 ((), fJ) do 

but we mayalso shift the system of coordinates in the same way as the field 
ST by rotating it an angle df3, and we find then : 

p 

àN R f' N + öjid(3 = 4ny ~ Sr((), fJ) X 6 0 [f). ((3 + dfJ)] do 

The two expressions give the formulae: 

which are both worth while examining: The first expresses 
gravity anomaly itself and the second expresses {}" in the 
gradient of the anomaly. 

{}x in the 
horizontal 

21* 
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We will go back to the original system of coordinates, and express both 
formulae in tp and a. The spheric triangle APB gives : 

otp 
op = cos a 

oa . op = - sm a cotg tp 
! ...... (4') 

and therefore: 

:f3 = cos a o~ - sin a cotg 11' oOa' . . . . . (4B
) 

so that we get : 

• 
I J' aST {}" = - 4:nr cos a 011' 6 g do . 

a 

{}" = + 4~r J ST [ COS a °o~o - sin a cotg 11' o~o ] do. . (3B
) 

We may introduce 

do = sin 11' da dtp 

and muItiply with e" = cosec I", in order to express {}% in seconds. The 
second formula gives then : 

2'1r"'" 2"".". 

{}~ = 4~r.f~os ~ d1~in 11' ST °o~o dtp - 4~"r.Jsin a d~~ostp ST o~o dtp (3e) 
o 0 0 0 

which we will not further ex amine in th is paper. 
The first formula gives : 

2?1' '71' 

{}~ = 2~Jcos a da J Q 6 0 dtp. . . . . . (2C
) 

with 
o 0 

e". aST Q=- -smtp-
2r otp 

that is to say in introducing the expression for ST: 

Q = ~: cos2 t 11' [cosec t tp + 12 sin t 11' - 32 sin2 t tp + l 
+ 1 + s~n t tp - 12 sin2 i tp tg I sin t tp (1 + sin i tp) I ] 

(2D) 
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The following table gives the va lues of Q for intervals of 10° for '" (.6 0 and y are supposed to be expressed in 0.001 cm) : 

V' Q V' Q V' Q 

1° +12.35 70° +0.03 liOo -0.25 

JOo + 1.59 80° -0.15 1500 -0.16 

20° + 1.02 90° -0.29 1600 -0.08 

30° + 0.79 100° -0.38 J700 -0.02 

iOo + 0.61 llOo -O.il 1800 -0.00 

500 + 0.i3 J20° -O.iO 

60° + 0.22 1300 -O.3i 

For increasing "1'. Q first decreases rather quickly. afterwards more 
slowly. is zero for V' more than 70°. gets to a minimum -0.41 for 'Ijl 

about 110°. and increases then towards zero. which value is reached for 
'Ijl = 180°. 

For small V' we can neglect in the formuIa for Q all but the first term. 
and we get by introducing in stead of'ljl the Iinear distance AP = r. so that 

r = 2R sin Y2 "1': 

Q= 1338. 
r 

in which r is expressed in km. 
By substituting in (2e) the surface element df in stead of the expression 

in d", and da. we find for the effect of the anomalies in the neighbouring 
region : 

{J" = 2e" Jeas a ~o df 
x ny rA (5) 

We may express this formula in the following way: IE we apply to 
1/ 

every surface element df of the geoid a mass equal to -2e- .6 0 df. the 
ny 

reflection of the plumb~line is the resultant of the attractions. exerted by 
these masses in A if these attractions élct along the radii towards df and 
are equal to the mass divided by the square of the distance. 

The decrease of the influence of a certain anomaly with the distance 
is therefore greater than for the formula of STOKES: This formuIa reduces 
for the neighbouring region to: 

N=_l J60 df . (6) 
2ny r 

sa that the influence on N decreases only in inverse ratio to the first 
power of r. 
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Formula (6) is in harmony with formula (5) as this last formula indeed 
represents the gradient of the former. 

The property that the influence of a certain anomaly decreases more 
quickly with the distance than for the formula of STOKES, gives the advan
tage that the formula for the deflection of the plumb-Iine is more 
independent of the anomalies in other parts of the earth 's surface, so that 
the fact , that as yet the gravity is only very imperfectly known over the 
globe, need not necessarily prevent its application. 

The formula for the deflection of the plumb-Iine may be useful for 
connecting the results of both types of geodetic opera ti ons : the astronomic 
observations and the determinations of the gravity. Besides it may be of use, 
as weil as the formula of STOK ES itself, to study the local deviations of 
the geoid for the central area of a region where the gravity has been 
determined. The anomalies in the other parts of the globe will generally 
have an equable effect for the whole central area : for the deflection of the 
plumb-Iine for instance a small and nearly constant amount. So by neglecting 
the influence of the anomalies in those distant region we will get aresuIt 
for the shape of the geoid, which will perhaps be slightly wrong in position, 
but which will not be much deformed. We may even put the question, if 
the determination of the geoid along this line will not better answer the 
purpose, than that, which is founded on the direct observations of the plu mb
line deflection. The disadvantage of the uncertainty of the gravity in other 
parts cif the globe, may perhaps be more than compensated by the 
uncertainty, resulting from the fact that in using this last method, N is 
determined by integrating a quantity, which is only known in isolated spots. 

A provisional computation for the Netherlands has shown, that the 
differences of the plumb-Iine deflections for the three stations in the central 
part : Urk, Wolberg , and Utrecht, are in good harmony with the va lues 
which have been deduced from the gravity anomalies : the deviations do 
not exceed 0".5. For this computation only the gravity-anomalies in the 
Netherlands have been used . 

It appears doubtful if the accuracy of the result can ever attain such a 
perfection, that the formula could be used to controll the results of the 
triangulations by giving for each astronomical station an equation for the 
latitude and longitude components of the plumb-line deflection. Still it may 
give a useful control for traverse surveys, of which the errors are so much 
ureater, as is weil known : We may considerably improve in this way the 
con trol of these surveys by astronomical observations. For this purpose it is 
of course necessary to have a sufficient number of gravity stations in an 
area of somewhat greater extension than the area of the survey. 

Besides the formulae for the deflection of the plumb-line, it is a simple 
matter to deduce other formulae from the formula of STOKES by further 
differentiation. In this way we may derive formulae , ex pressing the second 
differential coefficients of N in the gravity anomalies or in the gradient ol 
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these anomalies . These second differential coefficientsmay be considered as 
the difference of the reciprocal values of the radii of curvature of the geoid 
and the spheroid, so that the curvature of the geoid may be determined in 
th is way. We wiIl not take up this question in th is paper and we will only 
remark that in this way a formula may be found, connecting the two series 
of quantities, given by the torsion balance: the horizontal gradients of the 
gravity and the curvature data. These data are therefore not independent, 
although the curvature cannot be brought in connection with a single value 
of the gradient but with the gradient field over the whole earth. 

The next paragraphs will treat of tbe neglected terms of the formula 
of STOI<ES and will prove the validity of this formula and of the formulae 
found by differentiating it, as weIl fol' the determination 'of the general 
shape of the geoid as for that of the local irregularities. Besides they will 
treat of some formulae about the gravity field outside the geoid, which we 
will need for our purpose. 

§ 2. Gravity anomaly in an arbitrary point outside a sphere, which 
encloses all the masses and on (:Jhich the anomaly is known . 

Before looking into the question of the validity of the formula of STOI( ES, 

we will derive the solution of the above problem, which will be wanted for 
that research. PracticaIly th is wiIl also give the formula for ex pressing the 
gravity anomaly outside the geoid in the anomalies on the geoid : the 
error committed by replacing the geoid by the sp here with a radius equal 
to the mean earth-radius is of the same order as the error in the STOI< ES 

formula i.e. the percentual error will not exceed the order of the flattening. 
Let T be the difference of the potentials caused in the same point by the 

actual earth and by the theoretical earth; by the last we mean one of the 
infinite number of possible mass-distributions inside the geoid with the same 
total mass as the earth and with an outside potential surface coinciding with 
the spheroid. Only values of T in points outside both mass-distributions will 
be considered, that is to say in points outside the geoid or on the geoid. 

Let further : 
a = aequatorial radius of the spheroid, 
f = flattening of the spheroid, 
g = gravity in an arbitrary point , caused by the actual earth, 
r = gravity in an arbitrary point, caused by the theoretica I ea rth, 
e= radius of an arbitrary point towards the centre of gravity of 

geoid and spheroid, 

go. ro. eo = values of g. rand e on the geoid. 
g •• r •. e. = values of g. rand e on the spheroid. 

No = distance between geoid and spheroid. 
R = radius of the sphere. which is considered , 

/:::"0 = go - r. = gravity anomaly on the geoid. 
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As we suppose No to be of the order of (a f2) . ~o of the order of 
(g f2) and the angle between e and g or I' oE the order of (f). we have: 

Therefore: 

T. 
No=~+(ar) . 

1'0 

_ oTo + ( fi) go - 1'0 - - ae g . 

1'0 - r. = No <;ro + (g[i) = <;ro To + (g[i). ue u(! ro 

~ = _ oTo + OI'o To + ( fi) 1) . 
o oe oe"o g 

(79 

In the same way as the anomaly ~o has been defined for the geoid. 
we may define the anomaly ~ Eor a point outside the geoid as the 
difference of the actual gravity in this point and the gravity of the 
theoretical earth in a point in the same vertical. where the potentiaI is 
equaI to the potentialof the actual earth in the first point. By rough 
approximation we may say that the second point is at the same di stance 
outside the spheroid as the first point is outside the geoid. We have 
again: 

IE the spheroid were a sphere. the differential-quotient ~; would be: 

Or =_ 2.1:'.
oe e (8) 

For a spheroid it has to be multiplied by a factor 1 + (f) (see e.g. 
HELMERT. Theor. d. h. Geod. 11. page 94) and so we get: 

~ = _ oT _ 2 T + (gf3) (9) 
oe e 

with a corresponding equation for ~o. As ~ is of the order of (gf2) 
the last term in (9) is small with regard to the others. It will in fact 
not surpass 0.0001 or 0.0002 cm in ~. We will neglect it as welI as 
all the last terms of the formulae (7). 

The problem which we want to solve is to express ~ in ~R. ~R 
representing the value of ~ on the sphere. It is weil known that for a 
point outside the attracting masses. T can be written in the shape: 

T=k
2

[K22+ .... +K .. + .... l. (IOA) 
(! e e" 

1) In the original paper (Kon. Akad. v. Wet. Amsterdam. DI. 37 NO. 1) the sec::ond 
term of the right member of (7D ) has been neglec::ted. The reasoning remains the same 
when taking it into ac::c::ount. 
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in whieh k2 is the gravitational constant and K2 . . . Kn ., are spherieal 
harmonies of the 2nd ••• nth~degree. There are no spherieal harmonies of 
zero and Srst degree, because the total mass of the actual and of the 
theoretica I earths are the same, so that the differential masses, which 
cause the potential T, have a total mass zero, and because the centres 
of gravity of the ma ss es of the actual and the theoretieal earths coincide 
with the origin of the radius e. 

We have now: 

g-,,=-~=- 3 2 + .... + n+ 1)- + .... aT k
2 

[ K2 (Kn ] 
ue e e en 

(10.8) 

~ = - ~T _ 2 T = ~22 [K22 + .... + (n - 1) Kn + .... ] 
ue e· e e en 

and for e =R: 

When ~R is known we can develop ~R into a series of spherieal 
harmonies, whieh gives us K2 ••• Kn . .. and by substituting these va lues 
in the formula for ~, the problem is solved because formula (IOC) is 
convergent when e:::=- R. We can however deduce an equation whieh 
allows a simpIer computation, by expressing ~ directly in ~R. This 
gives besides a more useful formula for the case ~R is not completely 
known over the whole globe, whieh is of course the actual state of 
things. The deduction is quite analogous to the method of STOKES, who 
solved the problem of computing T R (and thereby N R = TRI,,) from 
~R, by expressing T R directly in ~R, so th at the elaborate way of 
Srst computing all K2 ••• Kn . .. can be avoided. 

The spherical harmonie of the nth degree of ~R is: 

2n+lJ' --~r;;- Pn ~R do . (11) 

o 

in whieh: do = surface~element corresponding to ~R of a sphere with 
radius 1. 

Pn = LEGENDRE'S spherieal harmonie of the angle 1jJ between 
the radius e of the point A where we want ~ and the 
radius R of the point P where we have ~R. 

This gives: 
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whieh is convergent because e =- R. Therefore : 

or 

with 

Now S", can be expressed in R. e and 1jJ by making use of the well~ 
known formula: 

1 P n (~)n = ft - 1 - ~ cos 1jJ 
2 ere 

in whieh r is the distance AP. given by: 
I 

r={e2- 2eRcos1jJ +R2)2 . 
I 

. (13) 

. (14) 

Multiplying (11) by (~y. differentiating according to ~ and multi~ 

(R)2 ~ 
plying by 2 e makes the first member equal to S", . and we find: 

R 2 (e 2 - R2) R2 R 3 

S", = 3 - 2 - 3 3 cos 1jJ • (15) 
er e e 

(l2A ) combined with (15) gives I"::,. expressed in I"::,. R-. 
Still we have to be careful if we want to use these formulae for 

determining the difference between I"::,. and I"::,.R : IE I"::,.R does not contain 
spherieal harmonies of zero and first degree as has been assumed. the 
difference can indeed be found simply by subtracting 6R from formula 
(12A ). but if in the formula for 6R those spherical harmonies are not 
zero. we must first subtract those terms from 6R before taking the 
difference with 6. 6 is certainly free from those terms even if 6R is 
substituted in (12A ) without correction. because S", does not contain 
spherical harmonies of zero and first degree. The terms of zero and first 
degree in 6R are easily found by applying formula (11) and in this way 
we find for the difference 6 - 6R = b : 

d = i~J SJ 6R do - I"::,.R 
o 

with: 
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in which formulae !::"R may be substituted as it is. without taking away 
its terms of zero and first degree. b will not contain those terms. 

Formula (16B ) converges towards zero wh en e - R is converging 
towards zero. IE the difference e - R which we will represent by h. is 
smalI. we can write. neglecting second and higher powers of h in SJ: 

Applying these formulae to the geoid in stead of to a sphere with 
radius R. we have to substitute for R the mean earth's radius and for 
h the elevation above the geoid. 

For giving an idea of the magnitude of the variation of !::" outside 
the geoid. we will apply the formulae to a special case. 

Supposing a circular patch of anomalies. defined by the formula: 

in which !::"c is the value in the centre. u the horizontal radius from 
!::"R to this centre and 1 the outer Iimiting radius. Suppose 1 small with 
regard to the earth's radius. In this case we can neglect the second and 
third term of (I6C ). We find for a point at an elevation h above the 
centre: 

For h = 0.36 [ we get bh = 0.5 !::"c. that is to say that the anomaly 
has diminisheci to half its value for an elevation about one sixth of the 
diameter of the patch. 

This allows the conclusion. that. generally speaking. the effect of the 
diminution of !::" with the elevation is too small to warrant a corresponding 
reduction in bringing back the result of a gravity determination to sea 
level: it will seldomly exceed 0.001 or 0.002 cm sec2 per 1000 m 
elevation. 

The formulae (12). (15). (16) and (17) may be applied to all other 
quantities which can be represented by a series like: 

in which C. Q2 •••• an • • •• are constants and therefore independent of 
the radius e or the angle 'P. We have simply to substitute q and qR for 
!::" and !::"R. In this way they may for instance be used to express the 
variation of g - y outside the geoid in go - )'0 on the geoid. g - y 
representing the difference of the actual and the theoretica I gravity in 
the same point. 
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§ 3. Potential outside the geoid. 

T 0 express the variation of T outside the geoid in To on the geoid. 
we have analogous formulae deduced in the same way: 

T 

T = 4~ J ST T o do . 
o 

ST = R (e
2 

- R2) ~ ~ _ 3 R2 cos tp • 
r 3 e e2 

For the difference t = T - To we find: 
a 

t = ~:n.r St Todo - To 
o 

R (e 2 - R2) (e-R) (e2-R2) 
St = +- -+ 3--2-costp 

r3 e e 
and for a small elevation h: 

. (198) 

For expressing the di stance N in some outside point between cor~ 
responding potential surfaces of the actuaI and theoreticaI earths. we 
have to substitute for T: r N and for To: ro No. 

For local irregularities in T or N of an extension. which is small 
with regard to the earth's radius. we can neglect the second and third 
terms of (20<:) and we find the same formuIa for the diminution with h 
as for 6.. This is aIso true for the generaI case. if 6.R. and To are 
free of spherical harmonies of zero and first degree. because the difference 
between SJ and St contains onIy spherieaI harmonies of zero and first 
degree. 

Lastly we will ask to express T outside the geoid in the anomaly 
6.0 onthe geoid. or if we replace again the geoid by the sphere with 
radius R. to express T in 6.R.. This is an enIargement of the problem 
of STOKES; by making the radius e of the point. where we want T. 
equal to R. it is brought back to the identieaI problem. 

Following the same way of deduction as for the formula for 6. we get : 

with 

.. 
T = !JS6T 6.R.do 

o 

_ 00 (2 n+l) (R)"+' S6T-I-(--1) P,. -
2 n- e 
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1 

and we ffnd Sb.T by multiplying (13) by (~)2, differentiating according 

RI' I . to -, mu tIp ymg 
e 

ing by (~y: 

1 
- 1-

by 2 (~) 2, integrating according to ~ and multiply-

Sb.T= 2B. +~ - 5 R2 costp-3 Rr -3 R2cos tp log nat [e-Rcostp+r] (21 C) 
r e t/ e2 e2 2 e 

By putting e = R, which gives r = 2 R sin t tp, we get back to the 
formula of STOKES. The di stance N is of course found by dividing T 
by y. In this way th~ formula gives the outside potential surfaces of the 
earth, wh en the gravity anomaly on the geoid is known and provided the 
theoretical outside potential surfaces have been computed. N may of course 
be differentiated in the same way as has been done in the first paragraph ; 
we find th en the deflection of the plumb-line in a point outside the geoid, 
expressed in the gravity anomalies on the geoid, or in their horizontal 
gradient. Executing the same thing with the formula for N deduced 
from formula (19), we can get this plumb-line deflection expressed in the 
value of No on the geoid or in the plumb-line deflections on the geoid. 

§ 4. The validity of the formula of STOKES. 

To find the order of magnitude of the neglected terms of the formula 
of STOKES, we suppose a fictitious earth with a mass equal to the total 
mass of the real earth, and of which the outside potential surface is a 
sphere with a radius R. The difference of Rand the earth's radius is of 
the order of the flattening. The gravity on this sphere is, according to 
a potential theorem, constant over the whole surface. 

To this fictitious earth is added a mass-distribution of positive and 
negative masses with a zero total mass, in such a way, that the combi
nation of these masses with the fictitious earth gives a geoid on which 
the gravity anomalies (i.e. the gravity minus the above mentioned 
constant value) are the same as the gravity anomalies 6 0 of the real 
earth in corresponding points of the real geoid; for corresponding points 
we may for instance take points with the same geographical coordinates. 
We will henceforth indicate this added mass-distribution with the letter M. 

If 6 0 is supposed to be known, the formulae of §§ 2 and 3 all ow the 
complete determination of the outside gravity-field of this mass-distribution 
M without any further neglections than those, given by the last terms 
of the formulae (7); in the same way the formula of STOKES may give 
the distance N R between the sphere and the geoid of the above combi
nation without neglecting more than these terms of (7). 

We will now combine the mass-distribution M with the theoretical 
earth, which has been defined in the beginning of § 2, and of which 
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the outside potential surface is the spheroid. This addition to the theo~ 

retical earth causes the potential surface to shift from the spheroid to a 
geoid. which will nearly coincide with the real geoid. If we suppose 
6.0 to be known. the distances N'o between this geoid and the spheroid. 
and the anomaly 6.'0 on this geoid. may be computed with the formulae 
of §§ 2 and 3; we have to introduce in these formulae for h the di stance 
between the speroid and the sphere. 

We will now prove that the difference /JI = 6.'0 - 6.0 is of the order 
of gf3. i. e. of the order of the flattening with regard to 6.0 itself. If 
this is true we may neglect lJl as we have al ready neglected quantities 
of the same order in formula (9); these neglections are insignificant 
considering the accuracy of the determination of the gravity anomalies. 
And secondly; if we neglect the difference between the anomaly 6.'0 
and the real anomaly 6.0 we may confound the geoid. which we have 
got by combining M with the theoretical earth. with the real geoid. so 
that the distance N'o can be considered to be also valid for this last 
geoid. 

We need not doubt that /JI is of the order of ge as far as /JI is given 
by the second and third terms of (16C) in combination with (16A). 

h 
because R is of the order of the flattening. while we assumed that 6.0 

is of the order of gf2. The only doubt. which might arise. concerns the 
effect of the first term of (l6C) for small r. We have seen in § 2. page 
13. that because of this term. the difference /J. caused by local anomalies. 

2h 
may get a value of the order of T 6.0, in which I is the horizontal 

ex ten sion of the anomaly. So we see that. locally. values of lJl may 
occur. exceeding the order of magnitude of gf3. It is dear th at these 
local va lues of lJ' may be neglected for the determination of N'o in some 
point A of the spheroid which is far away ; a more thorough investigation 
which we will not repeat here. confirms this opinion. The question is 
however. if they have na effect if they occur near to A. 

In order to prove that this is not the case. we will suppose that our 
sphere with radius R is tangent to the spheroid in A. while the radius 
is supposed to coincide with the smallest radius of curvature of the 
spheroid in that point (see the supposition about this radius on page I). 
so that the whole sphere is inside the spheroid. This is necessary if we 
want to apply the formulae of the previous paragraphs. because we 
assumed there: e ==- R. This supposition makes it of course impossible 
that the centre of the sp here should coincide with the centre of gravity 
of the earth, but it may easily be seen, that this only affects the deduction 

in this way. that e in formula (8) for ~; is not measured from the centre 

of gravity of the earth. but from the centre of the sphere at some 
distance of the order of fR. This means a deviation of the formula (9) 
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of the order of g[3. which does not exceed the term. which has al ready 
been neglected. 

If we introduce in A an azimuthal coordinate a. representing the 
angle between the vertical plane through A in which the sphere and 
the spheroid osculate. and the vertical plane through A and through 
the point P. where we suppose that the value of 15' occurs. we find in 
P a distance h between the sp here and the spheroid. which may approxi~ 
mately be given by: 

r 2 

h = (f) R sin2 a 

in which (f) means ·a constant of the order of the flattening. while r 
represents again the distance AP. 

We find th us that IJ' is of the order of: , 
r 2 

(f) RI X 6p 

in which 6p is the value of 6 0 in P. We see therefore that. even for 
small r. we need not fear that 15' would exceed the order of gfJ. 

We may conclude that. if we neglect in 6 0 quantities of the order 
of gf3. our problem is brought back to the determination in A of the 
distance N'o. corresponding to the mass~distribution M. which has been 
defined in the beginning of this paragraph. As A is also a point of the sphere. 
N 'o equals NR. so that it can be computed by applying the formula of 
STOKES : we have to substitute in th is formula the anomalies 6 0 and 
the radius R. We may notice however. that it will doubtless be some~ 
what better to substitute in this formula for R the mean earth's radius: 
we only chose a slightly ,different value for R in order to be able to 
apply the formulae of the previous paragraphs. 

The conclusion at which we arrive. is that we are justified in using 
the formula of STOKES: the neglections in N will not exceed the order 
of Rf3. i. e. one metre. We may apply the formula of STOKES as weil 
for the determination of the general shape of the geoid as for the 
deduction of its local shape and obviously we may follow the same 
reasoning and arrive at the same conclusion for the formulae. derived 
from the formula of STOKES by differentiating it once or twice according 
to a direction tangent to the geoid. 




