Mathematics. - A Representation of a quadrifold set of Twisted Cubics on the Points of a Linear Four-dimensional Space. By J. W. A. van Kol. (Communicated by Prof. Hendrik de Vries).
(Communicated at the meeting of February 25, 1928).
§ 1. The twisted cubics k^{3} that pass through two given points H_{1} and H_{2} and cut two given lines a_{1} and a_{2} twice, may be represented on the points of a linear four-dimensional space R_{4} in the following way. In R_{4} we choose two quadratic spaces $\Omega^{2}{ }_{1}$ and $\Omega^{2}{ }_{2}$ that have a double line l_{1} resp. l_{2}. We suppose a projective correspondence to be established between the points of a_{1} and the planes in $\Omega^{2}{ }_{1}$ and another one between the points of a_{2} and the planes in $\Omega^{2}{ }_{2}$. Let a curve k^{3} cut a_{1} in A_{1} and A_{1}^{\prime} and a_{2} in A_{2} and A_{2}^{\prime} and let $R_{1}, R_{1}^{\prime}, R_{2}$ and R_{2}^{\prime} be the spaces that touch $\Omega^{2}{ }_{1}$ resp. $\Omega^{2}{ }_{2}$ along the planes associated to the said points. To k^{3} we shall associate as image point the point where the plane of intersection of R_{1} and R_{1}^{\prime} and that of R_{2} and R_{2}^{\prime} cut each other. Inversely an arbitrary point in R_{4} is the image of one curve k^{3}.
§ 2. Through an arbitrary point of l_{1} resp. l_{2} there pass two tangent spaces of $\Omega^{2}{ }_{1}$ resp. $\Omega^{2}{ }_{2}$. In this way in $\Omega^{2}{ }_{1}$ and $\Omega^{2}{ }_{2}$ there are defined quadratic involutions of planes to which quadratic involutions of points I_{1} and I_{2} on a_{1} resp. a_{2}, are associated. Each of the ∞^{3} curves k^{3} that cut a_{1} resp. a_{2} in a pair of points of I_{1} resp. I_{2}, bas its image point on l_{2} resp. l_{1}.
l_{1} and l_{2} are cardinal lines; an arbitrary point P of l_{1} e.g. is the image of each of the ∞^{2} curves k^{3} that pass through the points of a_{2} which are associated to the planes where $\Omega^{2}{ }_{2}$ is touched by its spaces of contact through P.

The transversal t_{1} resp. t_{2} of a_{1} and a_{2} through H_{1} resp. H_{2} is completed by the conics through H_{2} resp. H_{1} that cut a_{1}, a_{2} and t_{1} resp. t_{2}, to ∞^{3} curves k^{3} that are represented in the points of the plane of intersection σ_{1} resp. σ_{2} of the spaces which touch $\Omega^{2}{ }_{1}$ and $\Omega^{2}{ }_{2}$ in the planes associated to the points of intersection of a_{1} and a_{2} with t_{1} resp. t_{2}.

There are two singular planes σ_{1} and σ_{2} both of which cut l_{1} and l_{2}; an arbitrary point P of σ_{1} is the image of the ∞^{1} curves k^{3} formed by t_{1} and the conics that pass through H_{2}, cut t_{1} and cut a_{1} and a_{2} in the points corresponding to the planes where $\Omega^{2}{ }_{1}$ an $\Omega^{2}{ }_{2}$ are touched by its spaces of contact through P which are different from the spaces of contact $l_{1} \sigma_{1}$ and $l_{2} \sigma_{1}$.
$\sigma_{1} \sigma_{2}$ is a cardinal point that represents the ∞^{2} curves k^{3} formed by t_{1}, t_{2} and the transversals of a_{1} and a_{2}.
§3. Our set contains ∞^{2} curves k^{3} that are singular for the representation, viz. the curves k^{3} that cut a_{1} in a pair of points of I_{1} and a_{2} in a pair of points of I_{2}. Each of these curves k^{3} has ∞^{1} image points, viz. all the points of a transversal of l_{1} and l_{2}.
§4. $\Omega^{2}{ }_{1}$ and $\Omega^{2}{ }_{2}$ are the loci of the image points of the curves k^{3} that touch a_{1} resp. a_{2}.

The surface of intersection O^{4} of $\Omega^{2}{ }_{1}$ and $\Omega^{2}{ }_{2}$ is the locus of the image points of the curves k^{3} that touch a_{1} as well as a_{2}.
§5. Let us investigate the representation of the system Σ_{1} of the curves k^{3} that have a given chord b. The curves of Σ_{1} cut a_{1} as well as a_{2} in pairs of points of a quadratic involution. To these quadratic point involutions on a_{1} and a_{2} there correspond quadratic plane involutions in $\Omega^{2}{ }_{1}$ resp. $\Omega^{2}{ }_{2}$. These involutions have the property that two spaces which touch $\Omega^{2}{ }_{1}$ resp. $\Omega^{2}{ }_{2}$ in planes that correspond to each other through this involution, have a plane of intersection lying in a fixed space through l_{1} resp. l_{2}.

The plane of intersection a_{b} of these spaces is apparently the image plane of Σ_{1}.

Two planes $\alpha_{b_{1}}$ and $\alpha_{b_{2}}$ cut each other in one point. Hence:
There is one twisted cubic that passes through two given points and has four given chords.
O^{4} and α_{b} cut each other in four points.
There are four twisted cubics that pass through two given points, have a given chord and touch two given lines.
§6. Let us call the image surface of the system Σ_{2} of the curves k^{3} that pass through a given point P, O_{P}. We determine the degree of O_{P} by examining the intersection of it and a plane α that touches $\Omega^{2}{ }_{1}$ as well as $\Omega^{2}{ }_{2}$. As there is one curve k^{3} of Σ_{2} that passes through a given point of a_{1} as well as through a given point of a_{2}, α cuts O_{P} besides in the points αl_{1} and αl_{2} in one more point. l_{1} and l_{2} are single lines of O_{P} as through two given points of l_{1} and l_{2} there passes one curve k^{3} of Σ_{2}. As, accordingly, a cuts O_{P} in all in three points, O_{P} is a cubic surface. We can show that O_{P} has one conic that passes through the points $\sigma_{1} l_{1}, \sigma_{1} l_{2}$ and $\sigma_{1} \sigma_{2}$ in common with σ_{1} and one conic that passes through $\sigma_{2} l_{1}, \sigma_{2} l_{2}$ and $\sigma_{1} \sigma_{2}$ with σ_{2}.
O_{P} and α_{b} have one point in common besides the points $\alpha_{b} l_{1}$ and $\alpha_{b} l_{2}$. Hence:

There is one twisted cubic that passes through three given points and has three given chords.

By applying the method indicated in §8 we find that O_{P} and O_{Q} cut each other outside l_{1} and l_{2} in singular points only, whence:

There is no twisted cubic that passes through four given points and has two given chords.

The intersection of O^{4} and O_{P} gives:
There are four twisted cubics that pass through three given points and touch two given lines.
§7. Let Ω_{l} be the image space of the system Σ_{3} of the curves k^{3} that cut a given line l. We determine the degree of Ω_{l} by means of the intersection with a line p that touches $\Omega_{1}{ }^{2}$ as well as $\Omega_{2}{ }^{2} . p$ is the locus of the image points of the curves k^{3} that pass through a definite point A_{1} of a_{1}, through a definite point A_{2} of a_{2}, and cut a_{1} and a_{2} outside A_{1} resp. A_{2} in points that correspond to each other through a certain projective correspondence between the points of a_{1} and those of a_{2}. The number of points of intersection of p and Ω_{l} is, therefore, equal to twice the number of curves of Σ_{3} that pass through two given points of a_{1} as well as through a given point of a_{2}. This number is equal to two as the twisted cubics that pass through five given points and cut a given line, form a surface of the fifth degree that has triple points in the given points. Ω_{l} is, accordingly, of the fourth degree. We can show that l_{1} and l_{2} are double lines and that σ_{1} and σ_{2} are single planes of Ω_{l}.
$\S 8$. The intersection of Ω_{l} and Ω_{m} consists of σ_{1}, σ_{2} and a surface $\mathrm{O}_{l m}$ of the degree 14 , which is evidently the image surface of the system Σ_{4} of the curves k^{3} that cut two given lines l and $m . l_{1}$ and l_{2} are quadruple lines of $O_{I m}$ and σ_{i} has a curve of the sixth order that has triple points in the points $\sigma_{i} l_{1}$ and $\sigma_{i} l_{2}$ and a double point in the point $\sigma_{1} \sigma_{2}$ in common with $O_{l m}$.

The intersection of $O_{l m}$ successively with α_{b} and O^{4} gives:
There are six twisted cubics that pass through two given points, have three given chords and cut two given lines.

There are 24 twisted cubics that pass through two given points, touch two given lines and cut two other given lines.

According to a theorem of PIERI^{1}) the number of points of intersection of $O_{l m}$ and O_{p} outside l_{1} and l_{2} is found by subtracting from the product of the degrees of $O_{l m}$ and O_{P} the product of the multiplicities of l_{1} on $O_{l m}$ and O_{P}, the product of the multiplicities of l_{2} on $O_{l m}$ and O_{P} and the classes of the envelopes of the spaces through l_{1} or l_{2} that touch $O_{l m}$ and O_{P} at the same point of one of these lines. The class of the envelope of the spaces through l_{1} that touch $O_{l m}$ and O_{P} at the same point of l_{1}, is equal to the number of spaces that pass
${ }^{1}$) Rend. del Circolo Mat. di Palermo, t. V. 1891.
through an arbitrary point S and through l_{1} and touch $O_{l m}$ and O_{P} at the same point of l_{1}. It is easily proved that an arbitrary space through l_{1} cuts O_{P} along l_{1} and a conic that cuts l_{1} once; accordingly this space touches O_{P} once, viz. in the point of intersection of l_{1} and the said conic. An arbitrary space through l_{1} cuts $O_{l m}$ along the line l_{1}, which must be counted four times, and a curve of the tenth order that cuts l_{1} in six points; consequently this space touches $O_{l m}$ six times, viz. in the points of intersection of l_{1} and the said curve of the tenth order. To an arbitrary point L_{1} of l_{1} we shall now associate the six points L_{1}^{\prime} of l_{1} where $O_{l m}$ is touched by the space that is defined by S and the plane touching O_{P} at L_{1}. Inversely through this correspondence there are associated to an arbitrary point L_{1}^{\prime} the four points L_{1} where O_{P} is touched by the four spaces that are defined by S and the four planes touching $O_{l m}$ at L_{1}^{\prime}. The $(4,6)$-correspondence between the points L_{1} and L_{1}^{\prime} arising in this way, has 10 coincidences, hence the class in question is ten. Consequently the number of points where O_{p} and $O_{l m}$ cut each other outside l_{1} and l_{2}, is equal to $3 \times 14-2.1 .4-2.10=14$. This number contains 4 points where the intersections of O_{p} and $O_{l m}$ with σ_{1} cut each other outside the points $l_{1} \sigma_{1}, l_{2} \sigma_{1}$ and $\sigma_{1} \sigma_{2}, 4$ points where the intersections of O_{P} and $O_{l m}$ cut each other outside the points $l_{1} \sigma_{2}, l_{2} \sigma_{2}$ and $\sigma_{1} \sigma_{2}$ and the point $\sigma_{1} \sigma_{2}$ itself, which must be counted twice. There remain, accordingly, 4 points that are neither singular nor cardinal points. Thus we have found the following number, which, however, may be derived more simply in a direct way:

There are four twisted cubics that pass through three given points, have two given chords and cut two given lines.

If we apply the method indicated above to two surfaces $O_{l m}$ and $O_{n o}$, we find:

There are 36 twisted cubics that pass through two given points, have two given chords and cut four given lines.
§ 9. The intersection of $O_{l m}$ and Ω_{n} consists of the lines l_{1} and l_{2}, which must be counted eight times, two curves of the sixth order lying resp. in σ_{1} and σ_{2} and a curve $k_{l m n}$ of the order 28 that is the image of the system Σ_{5} of the curves k^{3} that cut three given lines l, m and n. $k_{l m n}$ cuts l_{1} and l_{2} in 14 points, as the number of points of intersection of $k_{l m n}$ and l_{1} as well as the number of points of intersection outside l_{1} of $k_{l m n}$ and a tangent space of $\Omega^{2}{ }_{1}$ is equal to the number of curves of Σ_{5} that pass through a given point of a_{1}. The number of points of intersection of $k_{l m n}$ and σ_{1} is equal to the number of conics that pass through H_{2} and cut the six lines $a_{1}, a_{2}, t_{1}, l, m$ and n (in different points). The conics that pass through H_{2} and cut a_{1}, a_{2}, l, m and n form a surface of the degree 18^{1}) that is cut by t_{1} outside the points of inter-
${ }^{1}$) Cf. Schubert, Kalkül der abzählenden Geometrie, p. 96, where the numbers of conics $P \nu^{6}=18$ and $P^{2} \nu^{4}=4$ are derived.
section of t_{1} with a_{1} and a_{2}, which are quadruple lines of the surface, in ten points. Accordingly σ_{1} and σ_{2} are cut by $k_{l m n}$ in ten points.

The intersection of $\Omega^{2}{ }_{1}$ and $k_{\text {lmn }}$ gives:
There are 28 twisted cubics that pass through two given points, have a given chord, cut three given lines and touch another given line.
§ 10. We can further investigate the representations of several other systems, as the systems of the curves k^{3} that touch one, two or three given planes, that touch a given plane and at the same time cut one or two given lines, that touch a given plane and at the same time pass through a given point and others.

The numbers that may be deduced in this way and those already found above are the following ones:

$$
\begin{array}{llll}
P^{4} B^{2}=0 & P^{3} B^{2} v^{2}=4 & P^{2} B^{3} v^{2}=6 & P^{2} B^{2} v^{4}=36 \\
P^{3} B^{3}=1 & P^{3} B^{2} v \varrho=8 & P^{2} B^{3} \varphi \varrho=12 & P^{2} B^{2} v^{3} \varrho=72 \\
P^{2} B^{4}=1 & P^{3} B^{2} \varrho^{2}=16 & P^{2} B^{3} \varrho^{2}=24 & P^{2} B^{2} v^{2} \varrho^{2}=144 \\
P^{3} T^{2}=4 & & & P^{2} B^{2} v \varrho^{3}=288 \\
P^{2} B T^{2}=4 & & & P^{2} B^{2} \varrho^{4}=576 \\
P^{3} B T v=4 & P^{2} B^{2} T v=4 & P^{2} T^{2} v^{2}=24 & P^{2} B T v^{3}=28 \\
P^{3} B T=8 & P^{2} B^{2} T \varrho=8 & P^{2} T^{2} v \varrho=48 & P^{2} B T v^{2}=56 \\
& & P^{2} T^{2} \varrho^{2}=96 & P^{2} B T v \varrho^{2}=112 \\
& & & P^{2} B T \varrho^{3}=224
\end{array}
$$

Here P indicates the condition that a twisted cubic pass through a given point, B that it have a given chord, v that it cut a given line, T that it touch a given line and ϱ that it touch a given plane.
§ 11. From the above we can derive properties of different surfaces formed by systems of ∞^{1} curves $k^{3}{ }^{1}$).

The curves k^{3} that touch a_{1} and a_{2} and cut a given line l, form a surface of the degree 24 that has 12 -fold points in H_{1} and $H_{2} ; a_{1}$ and a_{2} are eightfold lines and l is a quadruple line of this surface.

The curves k^{3} that touch a_{1} and cut two given lines l and m, form a surface of the degree 28 that has 14 -fold points in H_{1} and $H_{2} ; a_{1}$ is an eightfold line, a_{2} is a twelvefold line and l and m are quadruple lines of this surface. Etc.

[^0]
[^0]: ${ }^{1}$) Cf. also these Proceedings 30, p. 1016 (1927).

