Physics. — Isotherms of di-atomic substances and their binary mixtures. XXXIV. Isotherms of hydrogen at temperatures of 0° C. and +100° C. By G. P. NIJHOFF and W. H. KEESOM. (Comm. N⁰. 188d from the Physical Laboratory at Leiden.)

(Communicated at the meeting of December 17, 1927).

The isotherms of $+100^{\circ}$ C. and 0° C. have been measured with a piezometer with a capacity of 1500 cm³, the same with which VAN URK and KAMERLINGH ONNES¹) have measured part of their nitrogen isotherms. To this we connected a reservoir with a capacity of 33.6 cm³. The pressures were measured with the aid of the closed manometer M 60. The temperature of 0° C. was obtained with the aid of finely planed ice made from water of the main, whereas for that of $+100^{\circ}$ C. the steam apparatus described by KAMERLINGH ONNES in Comm. N⁰. 27²) was used, still in the old shape³). The temperature of the vapour in this apparatus was measured with a BECKMANN-thermometer of which the steam point had been determined separately.

Beforehand, for the sake of control, we have first measured three points at $+20^{\circ}$ C., which agreed well with SCHALKWIJK's isotherm. In the last column of table I we give the differences between the observed pv_A 's and the values of pv_A calculated with the aid of values of B_A and C_A , which we communicate in table II and which, in order to make them correspond as well as possible, we chose somewhat differing from the values of SCHALKWIJK⁴) and from the later ones of KAMERLINGH ONNES, CROMMELIN and Miss SMID ⁵).

Concerning the isotherms of $+100^{\circ}$ C. and 0° C., the region of pressures in which we have measured does not seem to be too favourable for the determination of the values of B; for the C plays a not to be neglected part here.

For 100° C. we determined B_A and C_A as follows. HOLBORN and OTTO ⁶), who have measured to about 100 atmospheres, give for $\pm 100^{\circ}$ C. in their development according to ascending powers of the pressure, only a second term, whereas they don't want a quadratic term. If we compare

¹) A. TH. VAN URK and H. KAMERLINGH ONNES, Comm. Leiden N⁰. 169d. For the calibration see also A. TH. VAN URK, Thesis Leiden.

²) H. KAMERLINGH ONNES, Verslagen Kon. Ak. v. Wet. Amsterdam 5, 79, 1896, Comm. Leiden N⁰. 27.

³) Compare W. H. KEESOM and Miss H. v. D. HORST, These Proc. 30, 970, 1927; Comm. Leiden N⁰. 188a.

⁴⁾ J. C. SCHALKWIJK, These Proc. 4, 107, 1902; Comm. Leiden N⁰. 70.

⁵) H. KAMERLINGH ONNES, C. A. CROMMELIN and Miss E. I. SMID, These Proc. 18, 465, 1915, Comm. Leiden N⁰. 146b.

⁶⁾ L. HOLBORN and J. OTTO, Zs. f. Physik. 33, 1, 1925.

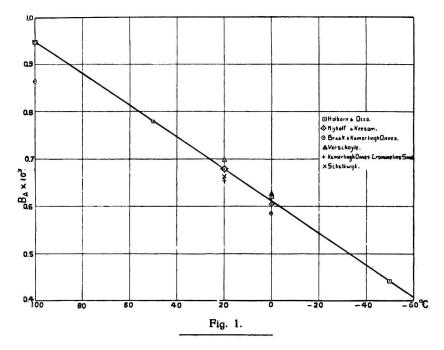
their development according to p with a development in series according to d_A , then from the coefficients of the first development in series, we can calculate the corresponding coefficients of the last mentioned series. In this way we calculated the value of B_A and C_A communicated in table II. In the last column of table I we give the differences between the observed values of pv_A and the values, which we calculated with the values just mentioned of B_A and C_A . We conclude from these that the values of B_A and C_A derived from HOLBORN and OTTO give sufficient correspondence also for our measurements.

As the value $C_A = 0.606 \times 10^{-6}$ calculated from the measurements of AMAGAT for the same temperature, is only little different, we can also put some trust into the value used by us $C_A = 0.635 \times 10^{-6}$.

For the isotherm of 0° C. we find the best correspondence with $B_A = 0.605 \times 10^{-6}$ and $C_A = 0.565 \times 10^{-6}$, whereas from the measurements of HOLBORN and OTTO follows $B_A = 0.620 \times 10^{-3}$ and $C_A = 0.760 \times 10^{-6}$, and from AMAGAT has been calculated for $C_A = 0.670 \times 10^{-6}$.

The measured quantities are following here :

°С.	p int. atm.	pv _A	d _A	0–C	(pv _A)
+ 20	32.0065	1.0947	31.0635	-0.0003	
	40.098	1.0990	36.485		0
	45.7715	1.1021	42.527	-	6
+ 100	39.964	1.3929	28.691	_	2
	43.852	1.3951	31.4315	+	3
	48.746	1.3987	34.850	_	05
	54.603	1.4028	38.924		0
	59.391	1.4061	42.237	+	İ
0	32.3125	1.0188	31.715	-0.0003 ⁵	
	32.323	1.0190	31.721	_	15
	33.524	1.0194	32.885	-	5
	34.875	1.0206	34.171	_	1
	36.3065	1.0217	35.536	+	1
	37.883	1.0226	37.047		0
	39.5 4 5 ⁵	1.0231	38.652		5
	42.905 ⁵	1.0260	41.817	+	3
	44.085	1.02645	42.949	+	05
	44.119	1.0266	43.284		0


TABLE I.

In the following table we collect the values of B_A and C_A found by the different observers.

	200500
TABLE	II.

	$B_{A} . 10^{3}$	C _A . 10 ⁶
0° C.		
Амадат	0.669	0.670
KAMERLINGH ONNES and BRAAK	0.580	0.670
Witkowski	0.619	
Снарриіз	0.605	
HOLBORN and OTTO	0.620	0.760
VERSCHOYLE	0.626	0.560
NIJHOFF and KEESOM	0.605	0.565
20° C.		
Schalkwijk	0.667	0.993
KAMERLINGH ONNES, CROMMELIN and Miss SMID	0.657	1.119
VERSCHOYLE	0.698	0.533
NIJHOFF and KEESOM	0.677	0.797
100° C.		
Амадат	1.057	0.606
WITKOWSKI	0.920	
HOLBORN and OTTO	0.937	0.635
KAMERLINGH ONNES and BRAAK	0.863	0.606
NIJHOFF and KEESOM	0.937	0.635

In fig. 1 the most important values of B_A for this temperature region have been indicated.

