
Mathematics. - On the Motion of a Plane Pixed System with Two 
Degrees of Preedom. (Second Communication I)). By Prof. W. 
VAN DER WOUDE. 

(Communicated at the meeting of March 31. 1928). 

§ 1. By the motion of a fixed system we always understand. at least 
in purely kinematica I considerations. the motion of two fixed systems 
relative to each other; already in the usual indication of the problem 
we notice the peculiar lack of symmetry that strikes us in the further 
treatment 2). In the simplest case. where this motion depends on one 
parameter. this lack is very little troublesome ; it seems to me that 
already in the next case - the motion depending on two parameters­
it is certainly worth while to pass on to a more symmetrical repre~ 

sentation. 
As in this case we choose a system ofaxes that is not nxed to either 

of the systems. the formulas are in the beginning slightly more com~ 
plicated than in the usual methad ; this disadvantage disappears. however. 
as soon as we give this system ofaxes the movement that is prescribed 
by the problem so that the symmetry remains intact. 

The followed methad is briefly this: With the exception of a few 
special cases (§ 3) there always exists a dennite line d. that is not fixed 
to either of the systems and that is the locus of the possible poles of 
rota ti on; this line may be chosen as the X~axis of a system ofaxes. 
It is then obvious that a definite point must be chosen as origin. In this 
way the formulas for the motion have become sa simple that the known 
conclusions may be read at once. 

Por the sake of a more outward consequence the usual expressions 
"fixed" and "movable system" have been replaced by "the systems 
XI and X 2". 

§ 2. Let OXY be a rectangular system ofaxes ; the coordinates (x. y) 
of any point always relate to this system; whenever th ere is question 
of the components of a vector we always mean the projections of this 

I) The earlier communication (these Proceedings, Vol. 29. p . 652) gives a list of literature. 

I received for perusal an article on thls subject of Dr. H. J. E. BETH. which will appear 
in the next number of the Nieuw Archief voor Wiskunde (2e reeks, deel XV, vierde stuk). 
The method of Dr. BETH, however, Is entirely different from mine. Dr. BETH has always 
treated also the non holonomous cases; I restrict myself in this paper to the holonomous 
cases, although an extension would not be difficult. 

2) Except in a few chapters of : 
R. BRICARD. Leçons de Cinématique. Tome I. Paris, Gauthier-Villars ; 1926. 

34* 
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vector on this system. Let further I 1 and I 2 be two plane fixed systems 
the motion of which relative to each other depends on two parameters u 
and v; we shall assume that the motion of both relative to OXY also 
depends on u and v, that, however, it is possible that the motion of 
one, e.g. of I I' depends on one parameter, e.g. of u, but that in this 
case the motion of I 2 relative to OXY depends either on both u and v 
or on v only. 

Por convenience' sake th ere follows here first a summary of the 
formulas that express the displacements occurring in this motion. The 
elementary displacement relative to OXY of a point (x, y) that is fixed 
to Ii (i = 1, 2) is defined by 

éJx = (';\i) - W\i) y) du + (.;~) - w~) y) dv ~ 

éJy = ('r]\il + W\i) x) du + ('r]~) + w~) x) dv \ . 
(1) 

Here 
';\i) , .;~) , 'r]\i) , 'r]~) , w\i), w~) 

have the weIl known signification; between these quantities exist the 
relations 1) 

OW\i) ow~) 

ov -Öu-

~w ~w ! -' - _2 = 'r](i) w(i) - 'r](i) w(i) ov ou 2 I I 2 

o (i) 0 (i) 

~ _ _ 'YJ~ = _ ';(i) W(i)+';(i)W(i) 
Ov ou 2 I I 2 

In the same way the elementary displacement relative to I I of a 
point (x, y) that is fixed to I 2 is given by 

éJx= (';1 - WI y) du + (';2 - W 2 y) dv ~ (3) 
éJy = ('r]I + WI x) du + ('YJ2 + W2 x) dv ~ , 

WI and W2 are the rotations of I 2 in its motion relative to II; Çl is 
the projection on OX of the vector that expresses the velocity relative 
to Il of the point (0,0) fixed to I 2• If we consider (x, y) as a point 
that is fixed to Il and if in (3) we replace ';1 by -';1 etc. the dis~ 
placement relative to I 2 of a point fixed to II is expressed by these 
equations. 

In this case it follows from (1) and (3) that 

Çl = ç\2) - ~I); Ç2 = ç~) - Çli); .'r]1 = 'r]\2) - 'r]:; 'r]2 = 'r]~ - 17~11 ~ (4) 

WI = wf) - W\I); W2 = w~) - w~l) ~ 

I) Cf. e.g. G. DARBOUX: Théorie des Surfaces I. p. 67. 71 (Ga ut hier-Villars, Paris), 
or L. P. ElSENHART: A Treatise on Differential Geometry, p. 168, 170 (Ginn and Co., 
Boston, New Vork, London). Dur formulas (2) however are only identical with the cited 

ones when we replace ~~i) by _~~i) etc. as l.c. always the inverse motion, the motion of 

OXY relative to LI' is considered. 
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The equations (2,') do not hold good for ~I •••• W2' (2") remains valid ; 
we can see th is by filling in i= 1 and i=2 in (2~) and by subtracting 
the two equations from each other. It appears that 

(5) 

§ 3. We start from (3) and we consider. therefore. the motion of ~ 2 

relative to ~ I' We shall call the possible movements depending on two 
parameters the system [91F]. 

The locus of the poles is found from: 

()x= ()y = 0 

and has. therefore. as equation 

11 ~: +:: ~ 
or 

(~I W2 - ~2 w I ) x + (171 W2 - 172 wd y + ~I 172 - ~2 171 = 0 

If for the moment we exclude the cases where 

WI =W2=0 
or 

11 

~1171 WI 11 =0. 
~2 172 w 2 

(6) represents a straight line d. 
It is evident that 

WI =W2=0 

means that [9112] contains only translations and that 

11 !:~::: 11 = 0 

indicates that the system [91F] depends on 'one parameter only. 
In the future we shall always exclude these cases. 

§ 4. We shall now make the condition that d coincide with OX; 
for this it is necessary and sufficient that 

~I =~2=0 

Por the sake of a further simplification we first remark that owing 
to (5) we can introduce a new variabie (J through 

2 d (J = WI du + W2 dv (7a
) 

1 
We denote an integrating factor of 171 du + 1]2 dv by 2H(u. v) so that 

we can put 
2 H dl = 171 du + 172 dv . . . 
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We shall further introduce in H the variables 0 and r defined through 
(7a ) and (7b) but for a constant. in stead of u and v. 

The displacement relative to IJ of a point (x. y) of I 2 is .now ex~ 
pressed by 

äx= -2 Y dO ( 

(jy = 2 H dr + 2 x dO ~ 
. (I) 

It is evident that dO = 0 means a translation and d-r; = 0 a rotation 
round the origin; also that 0 is twice the angle between two lines one 
of which is fixed to IJ and the other to I 2 and that 1: may be replaced 
by any function of r without the form of (I) changing. 

We shall now represent the displacement relative to OXY of a point 
(x y) that is fixed to IJ by 

(Jx= (UI - QI y) dr + [U2 - (Q2 - 1) y] dO ~ 

(jy = (VI-H+QIX) dr+ [V2+ (Q2-1) x] dO ~. 
(8) 

accordingly for the displacement relative to OXY of a point of I 2 

we have 

()x= (UI - QI y) dr + [U2 - (Q2 + 1) y] dO ( 

(jy = (VI+H+Qlx) dr+[V2+[Q2+ 1) x] dO f (9) 

From (8) as weIl as from (9) there follow relations (see 2~ and 2') 
between U I' U 2. VI' V 2. QI' Q2 and H; through addition and sub~ 
traction these are simplified to 

àQI àQ2 
àO àr 

VI + HQ2=O 

àH 
àO= UI 

~UI_à~=V2Q -V Q-H 
àO àr 1 1 2 

à VI _ à'0 - U Q2 U Q 
àO àr - 1 - 2 1 

§ 5. Let a definite displacement out of [W12] be defined by 

dB _ À' 
dr - • 

. (10) 

if (x. 0) is the pole of rotation for the motion of II and I 2 relative 
to each other. we have 

H+Àx=O 

Now in the system II d turns about the point (x'. 0) for which in (9) 

(jy = 0 

hence about the point that is defined by 

VI - H + QI x' + À [V2 + (Q2 - 1) x'] = 0 ; 

in the system I 2 d turns about the point (x". 0) that is defined by 

VI + H + QI x" + À [V2 + (Q2 + 1) x"] = O. 
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The former two points coincide when 

. . (11) 

if this is the case (x, 0) and (x",O) also coincide as might be expected. 
Through (11) two points are defined - at least if QI ± 0 -; we can 
call them the stationary po/es of rotation (for the given position). Por 
the moment we shall further put 

In the future we shall always choose the middle between these 
stationary poles of rotation as origin of our system of coordinates of 
which so far we had defined the X~axis, not the origin. Now we have 
always 

V 1 - HQ2=0. 

In connection with one of the formulas (10) it follows from this th at 

V 1 =Q2=0. 

It is impossible that H is identically equal to zero as in th is case the 
motion of ~ 1 and ~ 2 relative to each other would only have one 
degree of freedom. 

The formulas (8), (9). and (10) are now greatly simplified. We have 
already found 

further in (10) 

O~-O 
08 -

hence QI is a function of "l only. Accordingly we can again denote 
I QI dl by a new variabIe ; if this is again called "l we have - cf. (10) -

SUMMARISING. The displacement relative to 2'1 of a point of ~ 2' 

hence any displacement out of [WP] , is expressed by 

bx= -2 yd 8 ( 
by = 2 H d"l + 2 xd 8 ~ , 

. (I) 

the displacement relative to OXY of a point of ~ 1 by 

(oH ) (OV2 
) ! bx = 08 - Y d"l + -a-;- + y d8; 

by= (- H+ x) dl + (V2 -x) d8 

. (11) 
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the displacement relative to OXY of a point of I 2 by 

( oH ) . (0 V 2 
) l dx= Of} - y dl+ ~- y dO 

dy = (H + x) dl + (V2 + x) dO 

(lIl) 

Between the functions H (l. 0) and V 2 (l. 0) th ere only exists the 
relation 

§ 6. Simple Results. Let any displacement be given by 

dO 
dl =l. 

(IV) 

The pole of rotation for the displacement of I [ and I 2 relative to 

each other is the point P ( - ~. 0); in the plane I[ d turns round 

the point Q[ (Hl li2
, 0) for which 

dy=O; 

in I2 d turns round Q2 (-~-~/lV2. o} 
In any position there exists a projective correspondence between P 

and Q[ and also between Pand Q2 I). 
Special cases: 
1. The three points coincide in the stationary poles of rotation. 
2. If 0 is the pole of rotation V 2 and - V 2 are the abscissae of Q[ 

and Q2. 
3. IE I[ and I 2 have a translation relative to each other (P lies at 

infinity; l = 0); d turns round Q[ (H.o) in I[. round (-H.o) in I 2• 

4. If a has a translation in I [. (-H.o) is the pole of rotation ; if d 
has a translation in I 2• (H.o) is the pole of rotation. 

o is always the middle between the found pairs of points. 
The motion of d in I [ depends on one parameter only in the case 

that 
-H+ V 2 =0 

for then in (11) 
dy=O 

for any point (x = 0) if the displacement is defined by 

dl-dO=O; 

I) Cf. BETH l.c. who derives a complete classification of the movements wlth two para­
meters, Inc1uding the Iion-holonomous ones, Erom the projectlve relations between p, Q l and Q2. 
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in this case all points of d move on d and d is a fixed line in ~ I. For 
any other displacement d turns in ~I about the point (H.o) . 

But on the same condition the motion of d in 22 depends on only 
one parameter; the displacement defined by 

dl + d8=O 

leaves d at rest in ~ 2; Eor any other dis placement it turns about the 
point (-H. 0). This gives the 

THEOREM OF KOENIGS. If the displacement of d in "II depends on 
only one parameter. this is also the case' with the motion of d in ~ 2. 

The displacements that leave d at rest in ~ \ and those that leave it at 
rest in 22' are different. 

A second interesting special case is the following one. Suppose 

V 2 =O. 

In this case the two stationary poles of rotation coincide in 0; they 
correspond to the displacement for which 

dl=O. 

In order to examine the displacement of 0 re1ative to 2\ and 22 we 
have only to calculate bx and by in (11) and (111) for 0 (0. 0) and to 
replace them by their opposites. Then eVidently 

bx=by=O. 

The o[1gm is accordingly at rest in 2 1 and 22. in other words: 
If V 2 is identically equal to zero the system of moveme'!ts [9]12] of 

the systems ~ \ and 22 relative to each other contains a finite rotation 
about a point that is fixed to ~I and to 22. 

This leads to the problem: when does the system [9]F] contain finite 
rotations about a point that is fixed to ~ 1 and to 22? 

The pole of rotation must be fixed in 2 1 and 2?: d always passes 
through the pole. hence d turns about the same point in ~ \ and ~ 2. 

which point is accordingly one of the stationary pol es of rotation. The 
problem is therefore: is it possible that for the finite movement defined by 

V H dl + V'V;d8=O 

the pole of rotation (± ~/ H V 2 • 0) is fixed to 21. The vector of the 
displacement of a point (x. y) relative to ~ \ is given by the components 

dx - bx. dy - by wh en bx and by are taken Erom (11) and if for ~~ 
(± V HV2• 0) is substituted. 

It is tberefore necessary that for one of the points (± V H V 2• 0) 

dx-bx=O 
or 
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If Hand V 2 satisfy this equation besides (IV), [9.J12] contains a 
{inite rotation about a {ixed point. 

As might be expected this equation is always satisfied if V 2 = O. 
Does the system [9.J12] contain {inite rectilinear translations ? The trans~ 

lation is always parallel to d (cf. (I)); however we have se en that d 
turns about a point at finite di stance in ~ I as weIl as in ~ 2 and, accord~ 
ingly, has neither a fixed direction in ~ I nor in ~ 2' A finite rectilinear 
translation can, therefore, only be expected in the case that we have 
exc1uded until now ; in that case it is in fact contained in [9.JF] (cf. §§ 5. 
7; QI = 0). 

§ 7. We shall now briefly discuss the case that has so far been 
exc1uded where (cf. § 5) 

QI=O 

If we suppose in the first place 

VI - Q1 H::f 0 . 

it appears from (II) § 5 that: 

(a) 

there is only one stationary pole of rotation (or the other one iies at 
infinity). 

If we choose this stationary pole of rotation (not at infinity) as origin 
we have: 

V 2 =0. 

It appear~ further from (10) that Q2 is a function of 8 only and Q2H2 

of r only. hence 

H- <p(r) 
-V'Q; 

We shall introduce I <p (r) dr as new variabIe ; if we call this variabIe 
again r the form of (I) does not change and H is a function of f) only. 
Further 

Any displacement re1ative to II of a point of ~ 2 is still expressed by 

bx= - 2 y d8 I 
by = 2 H (8) dr + 2 xd8 \ . 

the displacement re1ative to OXY of a point of II by 

bx = ~: dr + [ U 2 - (~2 - I ) yJ d8 ~ 

by=- (~+H) dr + (~2-1) xd8 f 

(I) 

(11) 



527 

the displacement relative to OXY of a point of 2: 2 by 

(5 x = ~~ dr + [U2 - ( ~2 + 1) y J dO ~ 

i5y = - ( ~- H ) dr + ( ~2 + 1 ) x dO ~. 
Between the functions U 2 and H there exists the relation 

(111) 

This proves: if always (i. e. for any pair of va lues of u and v) 
QI = 0, the system [9J12] contains a rectilinear finite translation of 2:1 

and 2: 2 relative to each other. corresponding to dO = O. If besides 
H = ± 1 the motion of d in 2: I as weil as in 2: 2 depends on one 

parameter only. 
There remain the possibilities 

QI = O. VI - Q2 H = O. V 2 ~ 0 (f3) 

d does not contain any stationary pole of rotation. 

(y) 

Any point of d is a stationary pole of rotation. 
If. accordingly. QI' VI - Q2 H a~d V 2 are always equal to zero, about 

any point of d a fini te rotation is possible. Iintend to come back to 
this remarkable case in a later short paper. 

In the following discussion of the quantities of the second order this 
case QI = 0 is again excluded. 

§ 8. The quantities of the second order. 
dO 

If we start from a given original position. for a given d~ the tangent 

to the path in II of any point of 2: 2 is defined (and inversely); the 
quantities of the second order. e.g. the radius of curvature of any point 

d 20 
in its path. are not defined before also dr2 is given. 

We shall now put 

~~-). 
dr- • 

and we shall only consider the system of infinitesimal displacements 
where ). is kept constant and ).' is variabIe. In other words. we choose 
movements from [9112] with a fixed pole of rotation' wh ere to any point 
a definite tangent to its pa th is al ready assigned. 

Por the present we assume that the movement of 2: 2 relative to II 
is given by the functions t 1]. w that depend on one parameter t (the 
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time) and that the movement of .2'1 relative to OXY is given by ~(J). '1](1). w(l) 

that also depend on t only. For the components of the ve1ocity~ and 
acceleration relative to .2'1 of a point (x. y) of .2' 2 we have 

Vx = ~ - wy. Vy = 'I] + wx. 

dvx d~ dw 
Ix = dt + w(l) Vy = dt + w(l) 'I] - ('1](1) + '1]) w - dt y - w2 

X. 

) =c!Y~ _ w(l) v =d'l] - W(l) ~ + (~(I) +~) w + ~9!. x- w 2 y 
y dt x dt dt 

The radius of curvature of a point (x. y) of .2'2 in its path in .2'1 is 
given by 

PROOF. If we use fixed axes we have 

1 _ (x' y" - y' X")2 
If - (X'2 + y'2)3 

1 . 
i.e. R2 IS equal to the square of the vector product of the velocity and 

the acce1eration divided by the sixth power of the velocity. That is 
exactly what the above mentioned formula expresses. 

In the same way it appears that the center of curvature in the path 
of M (x. y) is the point 

l1-(x- V
y 

V2. y+ V x V2) 
Vxly - Vylx Vxly - Vylx 

We now pass on to the case in question by the following substitu~ 

tions (cf. the formulas (I) and (II). § 5) 

~ = O. 'I] = 2 H. w = 2 À. 

~(1)= ~1+ À. O~2, '1](1) = - H + À.V2• w(l)= 1 - À.. 

d 0 0 
dt= Ot" + À. Ofl 

These entirely determine the elements of the second order. 

§ 9. As a first example we shall determine the system of inflexional 
circ1es for these displacements. 

First we find 

V x =-2À.y; V y=2H+2À.x 

Ix = 2 H - 2 À.2V2 - -4 À.2 - 2 À.'y 

Iy = 2 °O~ + -4 À. ~~ + 2 À.2 0 ~2 - -4 À.2y + 2 À.' x. 
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The equation of the inflexional circle, i.e. the locus of the points where 
the curve has an infinite radius of curvature, runs: 

or 

2 .1.3 (x2 + y2) - (). H + 2 ).2 H - ).3 V 2) x -

- ().aa~ + 2).2~; +).3 a~2 -).'H) y - H(H-).2 V2) =0. 

As ). is a c..)nstant, i a variabIe parameter, this gives: 
For all displacements about the same pole of rotation the inflexional 

circles form a pencil; the base points lie on d; one of them is the po Ie 

of rotation, the other a point H ( H ~~2 V 2
, 0)- In all these displace-

ments H describes a point of inflexion. 
We found above: if f1.. (~, '/}) is the center of curvature of M (x, y) 

we have 

~=x--_YJl_- V2, '/}= y+ V
x

/ y ~ V y/
x 

V2. 
Vx}y - Jx V y 

·We substitute the values indicated for V x, V y, Jx and Jy but at the same 

time, in order to simplify the formulas, we choose the pole (- ~, 0 ) 

of the movement as new origin, i.e. we put 

- H 
x=x+T' y=y 

- H - V 
ç=~--=x- Y V2, '/}='/}. 

). VxJy - V y Ix 

Thus we find 

~ = (2 B x + 2 Cg - ).' H"iJ) x , 
8 ).3 (x2 + y2) + 2 B x + 2 Cy - ).' Hy 

_ (2 Bx+ 2 Cg-X Hg) g 
'/} - 8).3 (x2 + "iJ2) + 2 B~-+ 2 Cy - ).' Hy 

Here Band Care functions of )., land f), i.e. in all the considered 
elementary displacements - where the initial position and the value 

af) ). = a~ have been chosen - they have the same values; ).' is a para-

meter that assumes any value. 
If for the moment we choose also l' constant, any point M has a 

definite center of curvature f1..; in this case the aforesaid formulas express 
a weil known quadratic correspondence bet ween Mand f1..; it is especially 
interesting that in the inverse movement M is the center of curvature 
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of ft . Analytically this means that x and y are expressed in f and ~ 
through similar formulas. 

The eorrespandenee is quadratieally invalutary; to any line 1 described 
by M (or ft). there corresponds a eonic as locus of ft (or M). The 
latter is sometimes called the con ie of RIVALS. associated to l. 

If now again we eonsider ,t' as a parameter. it is at onee evident 1) 
that: 

The eanies af RIVALS that in the different displacements abaut the 
same pale af ratatian earrespand ta the same line. farm a peneil. The 
paints af d - and these anly - always have the same center af eurvature. 

1) H. J. E . BETH. I.c. 




