Mathematics. - Linear Congruences of Twisted Cubics that Cut at least one Fixed Line Twice. By Prof. Jan de Vries.

(Communicated at the meeting of May 26, 1928).
§ 1. If the curves ϱ^{3} of a congruence Γ cut a fixed line b twice, and through an arbitrary point there passes only one ϱ^{3}, Γ may be represented on the points of a plane β through b. As the image of ϱ^{3} we consider the point R outside b that it has in common with β.

If the curves of Γ pass through four fixed points $A_{k}{ }^{1}$) the curves that cut b in B, lie on the quadratic cone β^{2} that has the lines b and $B A_{k}$ as generatrices (any ϱ^{3} has seven points in common with β^{2}). This system is represented on a line r of β.

Let k be a chord of a ϱ^{3}. The hyperboloid H through three of the points A that contains b and k, passes through ϱ^{3}. It contains ∞^{1} curves ϱ^{3}; for if we project H out of one of its points O on a plane, this contains a pencil of curves c^{3} all of which have a double point in one of the two cardinal points of the representation and pass through the second cardinal point and the images of the points A. These c^{3} are the images of curves ϱ^{3} through A that have the lines of the scroll to which b belongs, as bisecants. This pencil of ϱ^{3} is represented on the line r that H has still in common with β.
§ 2. To Γ belong four systems Σ_{k} of figures each of which consists of a line and a conic ϱ^{2}. The system Σ_{1} is formed by the conics in the plane a_{234} that have the points A_{2}, A_{3}, A_{4} and the transit of b as basis and each of which is completed by a ray t_{1} of the plane pencil about A_{1} in the plane $A_{1} b$. It is represented on a line c_{1}.

The four lines c_{k} form a quadrilateral; each of the six angular points is the image of a figure that belongs to two of the systems Σ and, accordingly, consists of three lines. Hence I^{\prime} contains six figures each of which consists of two crossing lines and one line that cuts them.

The system Λ of the ϱ^{3} that cut a line l, is represented on a conic λ^{2}. For the image line of a conic β^{2} contains the images R of the two ϱ^{3} belonging to β^{2} that rest on l. On two lines l_{1} and l_{2} there rest, therefore, four ϱ^{3} and the system Γ lies on a surface Λ^{4}. On this b is a double line. $A \varrho^{3}$ outside Λ^{4} can only cut Λ^{4} on b and in A_{k}; hence Λ^{4} has double points in A_{k}.

[^0]An arbitrary line l cannot be a chord of a ϱ^{3} belonging to Γ; for the scrolls on the hyperboloids H together form a complex. The complexcone projects a ϱ^{3}, is therefore quadratic, and the A_{k} are cardinal points; the complex is accordingly tetrahedral.
§ 3. The ϱ^{3} of an H define an I^{3} on the conic that H has in common with a plane φ; four of these curves touch φ. Accordingly on the image line r there lie four points R originating from curves ϱ^{3} that belong to the system Φ which is formed by the ϱ^{3} that touch a plane φ. Consequently the image curve of Φ is a φ^{4}.

As φ^{4} has eight points R in common with a λ^{2}, the system Φ lies on a surface Φ^{8} on which b is quadruple and the A_{k} are quadruple points.

The points of contact of the ϱ^{3} lie on a curve φ^{3} that has a double point on b. For a plane φ through l has besides a λ^{3} in common with Λ^{4} and any point of intersection of λ^{3} and l is a point of contact of a ϱ^{3} of Φ. Between the curves φ^{3} and φ^{4} there exists a $(1,1)$-correspondence; hence φ^{4} has three double points. Consequently φ is a plane of osculation for three curves of Γ.
§ 4. Let us now consider the congruence Γ of which the curves ϱ^{3} pass through the cardinal points A^{\prime} and $A^{\prime \prime}$ and have the lines b_{1}, b_{2}, b_{3} as cardinal chords (congruence of StuyvaErt).

It contains six systems Σ of composite figures. The line $a^{\prime \prime}{ }_{23}$ through $A^{\prime \prime}$ that cuts b_{2} and b_{3}, forms figures ϱ^{3} with any conic ϱ^{2} in the plane $A_{1} b_{1}$ which passes through A_{1} and rests on $b_{2}, b_{3}, a^{\prime \prime}{ }_{23}$. If the image plane β passes through b_{1}, the point $S^{\prime} \equiv a^{\prime \prime}{ }_{23} \beta$ is the image of all ϱ^{3} of this system $\Sigma^{\prime}{ }_{1}$; this point is, therefore, singular for the representation.

Analogously the singular point $S^{\prime \prime} \equiv a^{\prime}{ }_{23} \beta$ is the image of the system $\Sigma^{\prime \prime}{ }_{1}$ formed by $a^{\prime}{ }_{23}$ and the conics in the plane $A^{\prime \prime} b_{1}$.

The systems $\Sigma^{\prime}{ }_{2}, \Sigma^{\prime \prime}{ }_{2}, \Sigma^{\prime}{ }_{3}, \Sigma^{\prime \prime}{ }_{3}$ are represented on lines $c^{\prime}{ }_{2}, c^{\prime \prime}{ }_{2}, c^{\prime}{ }_{3}, c^{\prime \prime}{ }_{3}$.
The ϱ^{3} through the point of intersection S_{2} of b_{2} and β lie on the hyperboloid H_{2} that contains $b_{1}, b_{3}, S_{2}, A^{\prime}$ and $A^{\prime \prime}$; they have the singular point S_{2} as image.

Analogously $S_{3} \equiv b_{3} \beta$ is the image of the ϱ^{3} on the hyperboloid H_{3} that contains $b_{1}, b_{2}, S_{3}, A^{\prime}$ and $A^{\prime \prime}$.

The system $\Sigma^{\prime}{ }_{2}$ consists of the line $a^{\prime \prime}{ }_{13}$ and the conics in the plane $A^{\prime} b_{2}$ through A^{\prime} that rest on b_{1}, b_{3} and $a^{\prime \prime}{ }_{13}$. To (ϱ^{2}) belongs the pair of lines of which $a^{\prime}{ }_{23}$ is one of the lines, which, accordingly, with $a^{\prime}{ }_{13}$ forms a figure that belongs at the same time to $\Sigma^{\prime \prime}{ }_{1}$. The image line $c^{\prime}{ }_{2}$ contains, therefore, the point $S^{\prime \prime}$; it contains at the same time the point $S_{2} \equiv b_{2} \beta$.

Analogously $\mathrm{c}^{\prime \prime}{ }_{2} \equiv S^{\prime} S_{2}, c^{\prime}{ }_{3} \equiv S^{\prime \prime} S_{3}, c^{\prime \prime}{ }_{3} \equiv S^{\prime} S_{3}$.
§ 5. The conics through A^{\prime} and $A^{\prime \prime}$ that rest on b_{1}, b_{2}, b_{3}, lie on a dimonoid Δ^{4} with double torsal line $A^{\prime} A^{\prime \prime}$. They are completed to figures
of Γ by the transversals t of b_{1}, b_{2}, b_{3}. On Δ^{4} lie six pairs of lines each of which has one of the lines $a_{k l}^{\prime}, a^{\prime \prime}{ }_{k l}$ as component part. The image curve δ^{3} of the system contains, therefore, the points S^{\prime} and $S^{\prime \prime}$, and evidently also the points S_{2} and S_{3}.

The double point of δ^{3} lies on $A^{\prime} A^{\prime \prime}$ and is the image of the ϱ^{3} that consists of $A^{\prime} A^{\prime \prime}$ and the two lines t that cut $A^{\prime} A^{\prime \prime}$.

Each of the points $S^{\prime}, S^{\prime \prime}$ is the image of three figures, each of which consists of three lines, each of the points S_{2} and S_{3} is the image of two such figures; finally also the points $c_{3}^{\prime} c^{\prime \prime}{ }_{2}$ and $c_{2}^{\prime} c^{\prime \prime}{ }_{3}$ are the images of figures consisting of three lines. Hence Γ contains thitteen ϱ^{3} formed by three lines.
§ 6. A line l cuts two ϱ^{3} of H_{2} and two of H_{3}, hence S_{2} and S_{3} are double points of the image curve λ of the system Λ. This evidently contains the points S^{\prime} and $S^{\prime \prime}$, for l cuts one ϱ^{2} of each of the systems Σ. Accordingly the curve λ has the double point S_{2}, the point $S^{\prime \prime}$ and a point R in common with the image line c_{2}^{\prime}; it is, therefore, a $\lambda^{4}\left(S_{3}{ }^{2} S_{2}{ }^{2} S^{\prime} S^{\prime \prime}\right)$. Being a rational curve it has a third double point; this is the image of a ϱ^{3} that cuts l twice. Any line is, therefore, a bisecant of one curve ϱ^{3}.

Two curves λ^{4} have six points R in common; accordingly on two lines there rest six ϱ^{3} and the curves ϱ^{3} that are cut by l, form a surface Λ^{6}. On this b_{2} and b_{3}, but then also b_{1}, are double lines and $A^{\prime}, A^{\prime \prime}$ are triple points.

Two surfaces Λ^{6} have the double lines b, the six lines $a^{\prime}{ }_{k l}, a^{\prime \prime}{ }_{k l}$ and six curves ϱ^{3} in common. The curves $\lambda^{4}\left(S_{2}{ }^{2} S_{3}{ }^{2} S^{\prime} S^{\prime \prime}\right)$ and $\delta^{3}\left(S_{2} S_{3} S^{\prime} S^{\prime \prime}\right)$ have six points R in common; these are the images of six composite ϱ^{3}; of four of these ϱ^{3} the conic rests on l, of the other two the line t.
§ 7. A hyperboloid H contains again four ϱ^{3} that touch a plane φ, a system Σ contains two of them. The image curve of the system Φ is, therefore, a $\varphi^{8}\left(S_{2}{ }^{4} S_{3}{ }^{4} S^{\prime 2} S^{\prime \prime 2}\right)$. It has 12 points R in common with a λ^{4}; accordingly the system lies on a surface Φ^{12} on which the lines b are quadruple, the lines $\mathrm{a}^{\prime}{ }_{k l}, \mathrm{a}^{\prime \prime}{ }_{k l}$ double.

A plane φ through l has still a curve λ^{5} in common with Λ^{6}; this cuts l in the two points of support of the ϱ^{3} for which l is a chord and in the points of contact of three curves ϱ^{3} with φ. Hence the locus of the points of contact is a curve φ^{3} of the genus 1 . Accordingly also φ^{8} has the genus 1 ; it has, therefore, six double points besides the point S. Consequently a plane φ is osculated by six curves ϱ^{3}.
$\S 8$. Let us now consider the Γ of which the ϱ^{3} pass through the point A and have four fixed bisecants b_{k} (congruence of Godeaux).

Let the image plane β again pass through $b_{1} . \Gamma$ contains the system Σ_{1} formed by conics ϱ^{2} in the plane $A b_{1}$ and transversals t_{1} of b_{2}, b_{3}, b_{4}; it is represented on the conic $\gamma_{1}{ }^{2}$ in which the hyperboloid H_{1} (through b_{2}, b_{3}, b_{4}) cuts β.

The analogous system Σ_{2} is represented on a line c_{2}, the systems Σ_{3} and Σ_{4} on lines c_{3} and c_{4}.

The curves through A and $S_{2} \equiv b_{2} \beta$ that have b_{1}, b_{3}, b_{4} as chords and rest on l, form (§6) a surface O^{6} on which S_{2} is a triple point. It contains therefore three ϱ^{3} that cut b_{2} once more and accordingly belong to I. Consequently the ϱ^{3} of I through S_{2} form a cubic surface $O_{2}{ }^{3}$. Analogously the singular points $S_{3} \equiv b_{3} \beta$ and $S_{4} \equiv b_{4} \beta$ are images of systems that lie on surfaces $\mathrm{O}_{3}{ }^{3}$ and $\mathrm{O}_{4}{ }^{3}$.

The image lines c_{2}, c_{3}, c_{4} evidently contain resp. the singular points S_{2}, S_{3}, S_{4}.

Three of the ϱ^{3} that cut l belong to Σ_{2} for l rests on one ϱ^{2} and on two lines t_{2}. The image curve λ has three points R and the triple point S_{2} in common with c_{2}; it is, therefore, a $\lambda^{6}\left(S_{2}{ }^{3} S_{3}{ }^{3} S_{4}{ }^{3}\right)$. It contains also a double point, image of a ϱ^{3} that cuts l twice.

On two lines l there rest nine ϱ^{3} and the system Λ lies on a Λ^{9} with triple lines $b_{1}, b_{2}, b_{3}, b_{4}$ and triple point A.
§ 9. Let \triangle_{1} be the surface formed by the ϱ^{2} of Γ that rest on the four lines b and on their transversal t^{\prime}; analogously \triangle_{2} the surface corresponding to the second transversal $t^{\prime \prime}$. Evidently the systems \triangle_{1} and \triangle_{2} have only one ϱ^{3} in common, the figure consisting of $t^{\prime}, t^{\prime \prime}$ and their transversal through A. Accordingly their image curves have one point R in common; as they contain the points S_{2}, S_{3}, S_{4} they are conics $\delta_{1}{ }^{2}$ and $\delta_{2}{ }^{2}$.
\triangle_{1} contains a ϱ^{2} that passes through the point $b_{2} t^{\prime}$; the ϱ^{3} which it forms with t^{\prime}, belongs at the same time to Σ_{2}; its image point R lies, therefore, also on c_{2}. In fact this has only one point R in common with $\delta_{1}{ }^{2}$ outside S_{2}.

The curves $\delta_{1}{ }^{2}(3 S)$ and $\lambda^{6}\left(3 S^{3}\right)$ have three points R in common; hence \triangle_{2} is a cubic scroll with directrices $t^{\prime}, t^{\prime \prime}\left(\triangle_{1}{ }^{3}\right.$ has one more line in common with the plane of a ϱ^{2}).

There are seven ϱ^{3} composed of three lines; one of them consists of $t^{\prime}, t^{\prime \prime}$ and a; the other six are represented in the angular points of the quadrilateral formed by the lines c.
$\S 10$. The system Σ_{2} contains two ϱ^{2} that touch a given plane φ and two figures ϱ^{3} of which the point $\varrho^{2} t_{2}$ lies in φ; each of these must be counted twice.

The surface $\mathrm{O}_{2}{ }^{3}$ has a curve φ^{3} of genus one in common with φ; the I^{3} which the curves ϱ^{3} define on this, has six coincidences; S_{2} is, therefore, sextuple on the image curve of the system Φ. Of this curve c_{2} contains the 6 -fold point S_{2} and 6 points R; accordingly it is a φ^{12} ($3 S^{6}$). It has 18 points R in common with a $\lambda^{6}\left(3 S^{3}\right)$; the system Φ lies, therefore, on a Φ^{18} with sextuple lines b and sextuple point A.
§ 11. In the representation of the congruence Γ that has five cardinal
chords b, the points S_{2}, S_{3}, S_{4} and S_{5} in which $b_{2}, b_{3}, b_{4}, b_{5}$ cut β, are singular ${ }^{1}$).

The ϱ^{3} through S_{2} that have b_{1}, b_{3}, b_{4} and b_{5} as chords and rest on l, form (§8) an O^{9} on which S_{2} is a triple point. Accordingly there are six ϱ^{3} of this system that cut b_{2} once more. Hence the ϱ^{3} of Γ that are represented in S_{2}, form a surface $\beta_{2}{ }^{6}$.

The hyperboloid H_{234} with directrices b_{2}, b_{3}, b_{4} contains ∞^{1} curves of Γ; they all pass through the four points in which H_{234} is cut by b_{1} and b_{5}. The image curve of this system is a conic $;^{2}{ }_{234}$ through the singular points S_{2}, S_{3} and S_{4}.

The analogous hyperboloid H_{145} is represented on a line c_{145}. The hyperboloids H_{145} and H_{234} have a ϱ^{3} besides b_{4} in common that has the second point of intersection of c_{145} and $\gamma^{2}{ }_{234}$ as image. The curves $\gamma^{2}{ }_{234}$ and $\gamma^{2}{ }_{235}$ have two points R in common; these are the images of two figures that consist of a ϱ^{2} and one of the transversals $t^{\prime}, t^{\prime \prime}$ of b_{2}, b_{3}, b_{4}, b_{5} and are, accordingly, singular points for the representation; we shall indicate them by S^{\prime} and $S^{\prime \prime}$. That they are singular appears thus: any ϱ^{2} that has b_{1} as chord and rests on $b_{2}, b_{3}, b_{4}, b_{5}$ and t^{\prime}, forms with t^{\prime} a ϱ^{3} belonging to I; all these figures are represented in the point of intersection S^{\prime} of t^{\prime} and β. They form a surface $O^{\prime}{ }_{1}{ }^{4}$ with double line $b_{1}{ }^{2}$)

The analogous system $\mathrm{O}_{2}^{\prime}{ }^{4}$ with double line b_{2} is represented on the curve $\omega_{2}{ }^{3}\left(S_{2}{ }^{2}\right)$ which β has in common with this surface. $\mathrm{O}_{2}^{\prime}{ }^{4}$ contains the lines t^{\prime} and $t^{\prime \prime}$; for the plane $b_{2} t^{\prime}$ contains one line that cuts b_{1} and the transversal $t^{\prime}{ }_{1345}$ and with this and with t^{\prime} forms a ϱ^{3}.

Accordingly the image curve of this system is an $\omega_{2}{ }^{3}\left(S^{2}{ }_{2} S_{3} S_{4} S_{5} S^{\prime} S^{\prime \prime}\right)$.
§ 12. The system Λ has an image curve of which S^{\prime} and $S^{\prime \prime}$ are quadruple points, the points $S_{2}, S_{3}, S_{4}, S_{5}$ are sextuple points. Besides $S^{\prime}, S^{\prime \prime}$, $S_{2}, S_{3}, S_{4} \gamma^{2}{ }_{234}$ contains the images R of the two ϱ^{3} of H_{234} that rest on l; accordingly it has 28 points in common with the image curve λ and consequently it is a $\lambda^{14}\left(S_{2}{ }^{6} S_{3}{ }^{6} S_{4}{ }^{6} S_{5}{ }^{6} S^{\prime 4} S^{\prime 4}\right)$.

The line $S_{4} S_{5}$, image of H_{145}, contains two points R; also this shows that the order of λ is 14 .

Two curves λ have 20 points R in common; accordingly on two lines l there rest 20 curves ϱ^{3}.

As λ^{14} is rational it has six double points outside the points S; there are, therefore, six curves ϱ^{3} that have six given lines as chords.

The system Λ lies on a surface Λ^{20} on which the five lines b are sextuple and the ten transversals t are quadruple.

[^1]§ 13. Let us also consider the congruence Γ with cardinal chord b and the cardinal points A_{1}, A_{2}, A_{3} of which the curves ϱ^{3} rest on the line c_{1} that passes through A_{1} and the line c_{2} that passes trough $A_{2}{ }^{1}$).

The curves through the point $S_{1}\left(c_{2} \beta\right)$ and the points A that cut b twice and rest on l, form an O^{4} with double point $A_{2}(\S 2)$; it contains two ϱ^{3} that cut c_{2} once more. Accordingly the curves of Γ that pass through S_{1}, form a quadratic surface $\mathrm{O}_{1}{ }^{2}$. Analogously there is an $\mathrm{O}_{2}{ }^{2}$ of which the curves ϱ^{3} are represented in the singular point $S_{2}\left(c_{2} \beta\right)$.

In the plane $A_{3} b$ there lies one $\left(\varrho^{2}\right)$ of which any individual is completed to a ϱ^{3} by the line $a^{\prime}{ }_{12}\left(A_{1} A_{2}\right)$. All these ϱ^{3} have the singular point $S\left(a_{12} \beta\right)$ as image.

To this system Σ_{3} there belong three figures ϱ^{3} that consist of three lines. In the first place the system of a_{12}, the transversal through A_{3} of a_{12} and b and a line in $A_{3} b$ that cuts c_{1} and c_{2}. This figure may also be considered as the system of a pair of lines in the plane a $a_{123}\left(A_{1} A_{2} A_{3}\right)$ and a transversal of b, c_{1}, c_{2}. It belongs, therefore, at the same time to the system Σ_{123} of the ϱ^{3} that consist of a ϱ^{2} in α_{123} and a transversal of b, c_{1}, c_{2}. Accordingly the image of Σ_{123} is a line d_{123} through S.
Σ_{3} contains also the ϱ^{3} that consists of $a_{12}, A_{3} C_{1}$ and $A_{12} C_{2}\left(C_{1}, C_{2}\right.$ and A_{12} are base points of the pencil $\left(\varrho^{2}\right)$). As a_{12} forms a pair of lines in the plane $A_{1} c_{2}$ with $A_{12} C_{2}$, this ϱ^{3} belongs at the same time to the system Σ_{2} of which the ϱ^{3} consist of a ϱ^{2} in $A_{1} c_{2}$ and the line $a^{\prime}{ }_{3}$ through A_{3} cutting c_{1} and b.

The system Σ_{2} is represented on the line d_{2} that joins the points S and $S_{2}\left(c_{2} \beta\right)$.

Analogously the line $d_{1}\left(S S_{1}\right)$ is the image of the system Σ_{1}. The conics ϱ^{2} in $A_{3} c_{1}$ through A_{1} and A_{3} that cut b and c_{2} and are associated to a line t_{2} through A_{2} that rests on b, form a system Σ^{\prime} that has a line d^{\prime} through S_{1} as image.

Analogously there is a line $d^{\prime \prime}$ through S_{2} that represents the system $\Sigma^{\prime \prime}$.
The lines b, c_{2}, a_{2}^{\prime} (line through A_{2} cutting b and c_{1}), A_{1} and A_{3} define a hyperboloid H_{2}; it contains the system Σ_{13} of the figures that consist of $a^{\prime}{ }_{2}$ and a conic through A_{1} and A_{3}. This system is represented on a line d_{13} through the point $S_{2}\left(c_{2} \beta\right)$.

Analogously there is a system Σ_{23} of figures that consist of the line $a^{\prime \prime}{ }_{1}$ (through A_{1} cutting b and c_{2}) and a conic through A_{2} an A_{3}, and that lie on the hyperboloid H_{1} that is defined by $b, c_{1}, a^{\prime \prime}{ }_{1}, A_{2}$ and A_{3}. The image line d_{23} contains the point $S_{1}\left(c_{1} \beta\right)$.
§ 14. The image curve λ of the system Λ of the ϱ^{3} that rest on l, passes through S and has double points in S_{1} and S_{2}. The system Σ_{1}

[^2]contains one ϱ^{3} that cuts l; hence the image line d_{1} has a point R, the point S and twice the point S_{1} in common with λ, which is, accordingly, a $\lambda^{4}\left(S S_{1}{ }^{2} S_{2}{ }^{2}\right)$. Being a rational curve it has still a double point, the image of the ϱ^{3} that has l as chord.

Two curves λ^{4} have seven points R in common; accordingly the system Λ lies on a surface Λ^{7}.

The intersection of Λ^{7} with a_{123} consists of three ϱ^{2} and the line a_{12}; for l rests on three figures of Σ_{123} and on one ϱ^{2} of Σ_{3}. Hence A_{3} is a triple point and A_{1} and A_{2} are quadruple points on Λ^{7}, c_{1} and c_{2} are double lines and b is a triple line (points of intersection of Λ^{7} and an arbitrary ϱ^{3}). Further a^{\prime} and $a^{\prime \prime}{ }_{1}$ are double lines and Λ^{7} contains the lines a_{12}, a_{3}^{\prime} and $a^{\prime \prime}{ }_{3}$ and 14 conics, 3 rays $t_{12}, 2$ rays t_{1} and 2 rays t_{2}.

The image curve of the system Φ has S_{1} as quadruple point (system $O_{1}{ }^{2}$), S as double point (system Σ_{1}); the image line $d_{1}\left(S_{1} S\right)$ of Σ_{1} contains two more points R; hence the image curve of Φ is a $\varphi^{8}\left(S_{1}{ }^{4} S_{2}{ }^{4} S^{2}\right)$. In connection with $\lambda^{4}\left(S_{1}{ }^{2} S_{2}{ }^{2} S\right)$ we find that the curves of Φ lie on a surface $\Phi^{14} .{ }^{1}$)
§ 15. Let us also consider the congruence of the ϱ^{3} that has b_{1} and b_{2} as cardinal chords, A_{1} and A_{2} as cardinal points, and where each of the ϱ^{3} cuts the line c_{1} through A_{1} and the line c_{2} through A_{2} once more.

The image plane β is again passed through b_{1}. The point $S\left(b_{2} \beta\right)$ is singular. The ϱ^{3} through A_{1}, A_{2}, S that cut c_{1}, c_{2} once more, have b_{1} as chord and rest on l, form a surface Λ^{7} with triple point $S(\S 14)$. Accordingly this contains four ϱ^{3} that cut b_{2} once more, and the curves represented in S form a surface O^{4}.

Also $S_{1}\left(c_{1} \beta\right)$ is singular and is the image of the ϱ^{3} that lie on a hyperboloid H_{1} which is defined by $A_{1}, A_{2}, S_{1}, b_{1}$ and b_{2}.

Analogously $S_{2}\left(c_{2} \beta\right)$ is singular and is the image of a system ϱ^{3} on the hyperboloid H_{2} through $A_{1}, A_{2}, S_{2}, b_{1}, b_{2}$.

The plane $A_{1} b_{1}$ contains a (ϱ^{2}) of which the ϱ^{2} pass through A_{1} and rest on b_{2}, c_{2} and on the transversal a_{22}^{\prime} through A_{2} of b_{2} and c_{1}. Each of them forms with $a^{\prime}{ }_{22}$ a ϱ^{3} of Γ (system Σ_{22}) and is represented in the singular point $S_{22}\left(a^{\prime}{ }_{22} \beta\right)$.

Analogously the singular point S_{12} lying on the transversal a" ${ }_{12}$ through A_{1} of b_{2} and c_{2} is the image of the system Σ_{12} of which the conics ϱ^{2} lie in the plane $A_{2} b_{1}$.

The system $\Sigma^{\prime}{ }_{21}$ formed by the line $a^{\prime}{ }_{21}$ (through A_{2} and cutting b_{1}, c_{1}) with a $\left(\varrho^{2}\right)$ in the plane $A_{1} b_{2}$ is represented on the points of the line $d^{\prime \prime}$ that $A_{1} b_{2}$ has in common with β. This line contains the points $S\left(b_{2} \beta\right)$ and $S_{12}\left(a^{\prime \prime}{ }_{12} \beta\right)$; to $\Sigma^{\prime}{ }_{2}$ there also belongs a figure that contains $a^{\prime}{ }_{21}$ and $a^{\prime \prime}{ }_{12}$.

[^3]Analogously $\Sigma^{\prime \prime}{ }_{11}$ formed by $a^{\prime \prime}{ }_{11}$ (through A_{1} cutting b_{1}, c_{1}) with a $\left(\varrho^{2}\right)$ in the plane $A_{2} b_{2}$, has an image line $d^{\prime \prime}{ }_{11}$ that passes through S_{22} and S.
§ 16. Any line t_{1} that rests on b_{1}, b_{2} and c_{1}, forms a ϱ^{3} with a ϱ^{2} in $A_{1} c_{2}$ that passes through A_{1}, A_{2} and cuts b_{1}, b_{2}, t_{1} (system Σ_{1}). The image line d_{1} passes through $S_{2}\left(c_{2} \beta\right)$.

Analogously any transversal t_{2} of b_{1}, b_{2}, c_{2} forms a ϱ^{3} with a ϱ^{2} in A_{2}, c_{1} through A_{1}, A_{2} that cuts b_{1}, b_{2}, t_{2}. This system Σ_{2} has as image a line d_{2} through $S_{1}\left(c_{1}, \beta\right)$.

Let t be one of the transversals of $b_{1}, b_{2}, c_{1}, c_{2}$. Any ϱ^{2} through A_{1}, A_{2} that cuts b_{1}, b_{2} and t, forms a ϱ^{2} of Γ with t. The ϱ^{2} lie on the hyperboloid H that is defined by $A_{1}, A_{2}, b_{1}, b_{2}$ and a point of t. This system Σ is represented on the points of the line d which H has besides in common with $\beta ; d$ contains the point S.

Analogously the second transversal, t^{\star}, of $b_{1}, b_{2}, c_{1}, c_{2}$ defines a system Σ^{\star} with image line d^{\star} that passes through S.

The line a_{1} through A_{1} cutting b_{1}, b_{2} forms a ϱ^{3} with any ϱ^{2} that has c_{2} as chord and rests on $c_{1}, b_{1}, b_{2}, a_{1}$. The conics through A_{2} and a point of c_{2} that cut b_{1}, b_{2} and a_{1}, form a surface O^{2}; through the second point of intersection of O^{2} and c_{1} passes one of these ϱ^{2}. Hence c_{2} is a single line on the locus of the ϱ^{2} that are completed by a_{1} to curves of Γ, and this is a cubic monoid $\mathrm{O}_{1}{ }^{3}$ with double point A^{2}. This system Σ^{\prime}, is represented on a conic $\delta_{1}{ }^{2}$ that passes through the points S, S_{1}, S_{2} and through $S_{22}\left(a^{\prime}{ }_{22}\right.$ lies on $\left.O_{1}{ }^{3}\right)$.

Analogously the system $\Sigma^{\prime \prime}$, lying on the monoid $\mathrm{O}_{2}{ }^{3}$, is represented on a conic $\delta_{2}{ }^{2}$ that contains the points S, S_{1}, S_{2} and S_{12}.
§ 17. The system Σ_{1} contains a figure consisting of $a^{\prime \prime}{ }_{12}$, a line t_{1} and the transversal through A_{2} of b_{1} and t_{1}. The transversal forms a pair of lines of the plane $A_{2} b_{1}$ with t_{1}; accordingly the ϱ^{3} belongs at the same time to the system Σ_{12}. Hence the image line d_{1} of Σ_{1} joins the points S_{2} and S_{12}.
Σ_{1} contains three ϱ^{3} of the system A. As l cuts two ϱ^{3} of the system H_{2} and one ϱ^{3} of Σ_{12}, the image curve of Λ is a λ^{6}. On l there rest four ϱ^{3} of the system O^{4}; hence Λ has a $\lambda^{6}\left(S^{4} S_{1}{ }^{2} S_{2}{ }^{2} S_{12} S_{22}\right)$ as image.

Two curves λ^{6} have ten points R in common; consequently the curves that rest on l, form a Λ^{10}. On this b_{1}, b_{2} are quadruple, c_{1}, c_{2}, t, t^{*} double, a_{1}, a_{2} triple; besides Λ^{10} contains the lines $a^{\prime}{ }_{22}, a^{\prime \prime}{ }_{12}, a^{\prime}{ }_{21}, a^{\prime \prime}{ }_{11}$, three lines t_{1}, three lines t_{2} and 20 conics. Finally by noticing the points of intersection with an arbitrary ϱ^{3} of Γ, we find that A_{1} and A_{2} are quintuple points.

Two surfaces Λ^{10} have ten curves ϱ^{3} in common besides the lines $b, c, a, a^{\prime}, a^{\prime \prime}, t, t^{\star}$.

[^0]: ${ }^{1}$) Another representation of the congruence ($4 A, b$) has been treated by Dr. G. SchaAke in a paper in these Proceedings, Vol. 28. p. 776.

[^1]: ${ }^{1}$) I have treated another representation of this congruence in my paper: "The Congruence of the twisted Cubics that cut five given lines twice". (These Proceedings, Vol. 31, p. 454).
 ${ }^{2}$) L.c. p. 454.

[^2]: ${ }^{1}$) That this congruence is linear appears thus. Let P be an arbitrary point; the lines $A_{1} A_{2}, A_{1} A_{3}, A_{1} P$ and c_{1} form the basis of a pencil of quadratic cones. Analogously $A_{2} A_{1}, A_{2} A_{3}, A_{2} P$ and c_{2} define a similar pencil. The two pencils define an I^{2} on b each; there is, therefore, one ϱ^{3} of Γ that has b as chord.

[^3]: ${ }^{1}$) The congruence can also be represented on the field of points of the plane $A_{1} c_{1}$.

