Mathematics. — Linear Congruences of Twisted Cubics that Cut at least one Fixed Line Twice. By Prof. JAN DE VRIES.

(Communicated at the meeting of May 26, 1928).

§ 1. If the curves ϱ^3 of a congruence Γ cut a fixed line b twice, and through an arbitrary point there passes only one ϱ^3 , Γ may be represented on the points of a plane β through b. As the image of ϱ^3 we consider the point R outside b that it has in common with β .

If the curves of Γ pass through four fixed points A_k ¹) the curves that cut b in B, lie on the quadratic cone β^2 that has the lines b and BA_k as generatrices (any ϱ^3 has seven points in common with β^2). This system is represented on a line r of β .

Let k be a chord of a ϱ^3 . The hyperboloid H through three of the points A that contains b and k, passes through ϱ^3 . It contains ∞^1 curves ϱ^3 ; for if we project H out of one of its points O on a plane, this contains a pencil of curves c^3 all of which have a double point in one of the two cardinal points of the representation and pass through the second cardinal point and the images of the points A. These c^3 are the images of curves ϱ^3 through A that have the lines of the scroll to which b belongs, as bisecants. This pencil of ϱ^3 is represented on the line r that H has still in common with β .

§ 2. To Γ belong four systems Σ_k of figures each of which consists of a line and a conic ϱ^2 . The system Σ_1 is formed by the conics in the plane a_{234} that have the points A_2, A_3, A_4 and the transit of b as basis and each of which is completed by a ray t_1 of the plane pencil about A_1 in the plane A_1b . It is represented on a line c_1 .

The four lines c_k form a quadrilateral; each of the six angular points is the image of a figure that belongs to two of the systems Σ and, accordingly, consists of three lines. Hence I' contains six figures each of which consists of two crossing lines and one line that cuts them.

The system Λ of the ϱ^3 that cut a line l, is represented on a conic λ^2 . For the image line of a conic β^2 contains the images R of the two ϱ^3 belonging to β^2 that rest on l. On two lines l_1 and l_2 there rest, therefore, four ϱ^3 and the system Γ lies on a surface Λ^4 . On this b is a double line. A ϱ^3 outside Λ^4 can only cut Λ^4 on b and in A_k ; hence Λ^4 has double points in A_k .

¹) Another representation of the congruence (4A, b) has been treated by Dr. G. SCHAAKE in a paper in these Proceedings, Vol. 28, p. 776.

An arbitrary line l cannot be a chord of a ϱ^3 belonging to Γ ; for the scrolls on the hyperboloids H together form a complex. The complexcone projects a ϱ^3 , is therefore quadratic, and the A_k are cardinal points; the complex is accordingly tetrahedral.

§ 3. The ϱ^3 of an H define an I^3 on the conic that H has in common with a plane φ ; four of these curves touch φ . Accordingly on the image line r there lie four points R originating from curves ϱ^3 that belong to the system Φ which is formed by the ϱ^3 that touch a plane φ . Consequently the *image curve* of Φ is a φ^4 .

As φ^4 has eight points R in common with a λ^2 , the system Φ lies on a surface Φ^8 on which b is quadruple and the A_k are quadruple points.

The points of contact of the ϱ^3 lie on a curve φ^3 that has a double point on *b*. For a plane φ through *l* has besides a λ^3 in common with Λ^4 and any point of intersection of λ^3 and *l* is a point of contact of a ϱ^3 of Φ . Between the curves φ^3 and φ^4 there exists a (1,1)-correspondence; hence φ^4 has three double points. Consequently φ is a plane of osculation for three curves of Γ .

§ 4. Let us now consider the congruence Γ of which the curves ϱ^3 pass through the cardinal points A' and A'' and have the lines b_1 , b_2 , b_3 as cardinal chords (congruence of STUYVAERT).

It contains six systems Σ of composite figures. The line a''_{23} through A'' that cuts b_2 and b_3 , forms figures ϱ^3 with any conic ϱ^2 in the plane $A_1 b_1$ which passes through A_1 and rests on b_2 , b_3 , a''_{23} . If the image plane β passes through b_1 , the point $S' \equiv a''_{23} \beta$ is the image of all ϱ^3 of this system Σ'_1 ; this point is, therefore, singular for the representation.

Analogously the singular point $S'' \equiv a'_{23}\beta$ is the image of the system Σ''_1 formed by a'_{23} and the conics in the plane $A'' b_1$.

The systems Σ'_2 , Σ''_2 , Σ''_3 , Σ''_3 are represented on lines c'_2 , c''_2 , c''_3 , c''_3 . The ϱ^3 through the point of intersection S_2 of b_2 and β lie on the hyperboloid H_2 that contains b_1 , b_3 , S_2 , A' and A''; they have the singular point S_2 as image.

Analogously $S_3 \equiv b_3 \beta$ is the image of the ρ^3 on the hyperboloid H_3 that contains b_1 , b_2 , S_3 , A' and A''.

The system Σ'_2 consists of the line a''_{13} and the conics in the plane $A' b_2$ through A' that rest on b_1 , b_3 and a''_{13} . To (ϱ^2) belongs the pair of lines of which a'_{23} is one of the lines, which, accordingly, with a'_{13} forms a figure that belongs at the same time to Σ''_1 . The *image line* c'_2 contains, therefore, the point S''; it contains at the same time the point $S_2 \equiv b_2 \beta$.

Analogously $c''_2 \equiv S' S_2$, $c'_3 \equiv S'' S_3$, $c''_3 \equiv S' S_3$.

§ 5. The conics through A' and A'' that rest on b_1 , b_2 , b_3 , lie on a dimonoid \triangle^4 with double torsal line A'A''. They are completed to figures

of Γ by the transversals t of b_1 , b_2 , b_3 . On \triangle^4 lie six pairs of lines each of which has one of the lines a'_{kl} , a''_{kl} as component part. The *image curve* δ^3 of the system contains, therefore, the points S' and S'', and evidently also the points S_2 and S_3 .

The double point of δ^3 lies on A'A'' and is the image of the ϱ^3 that consists of A'A'' and the two lines t that cut A'A''.

Each of the points S', S'' is the image of three figures, each of which consists of three lines, each of the points S_2 and S_3 is the image of two such figures; finally also the points $c'_3 c''_2$ and $c'_2 c''_3$ are the images of figures consisting of *three* lines. Hence Γ contains *thirteen* ϱ^3 formed by three lines.

§ 6. A line l cuts two ϱ^3 of H_2 and two of H_3 , hence S_2 and S_3 are double points of the image curve λ of the system Λ . This evidently contains the points S' and S'', for l cuts one ϱ^2 of each of the systems Σ . Accordingly the curve λ has the double point S_2 , the point S'' and a point R in common with the image line c'_2 ; it is, therefore, a $\lambda^4 (S_3^2 S_2^2 S' S'')$. Being a rational curve it has a *third* double point; this is the image of a ϱ^3 that cuts l twice. Any line is, therefore, a *bisecant* of one curve ϱ^3 .

Two curves λ^4 have six points R in common; accordingly on two lines there rest six ϱ^3 and the curves ϱ^3 that are cut by l, form a surface Λ^6 . On this b_2 and b_3 , but then also b_1 , are double lines and A', A'' are triple points.

Two surfaces Λ^6 have the double lines *b*, the six lines a'_{kl} , a''_{kl} and six curves ϱ^3 in common. The curves $\lambda^4(S_2{}^2S_3{}^2S'S'')$ and $\delta^3(S_2S_3S'S'')$ have six points *R* in common; these are the images of six composite ϱ^3 ; of four of these ϱ^3 the conic rests on *l*, of the other two the line *t*.

§ 7. A hyperboloid H contains again four ϱ^3 that touch a plane φ , a system Σ contains two of them. The *image curve* of the system Φ is, therefore, a φ^8 ($S_2^4 S_3^4 S'^2 S''^2$). It has 12 points R in common with a λ^4 ; accordingly the system lies on a surface Φ^{12} on which the lines b are quadruple, the lines a'_{kl} , a''_{kl} double.

A plane φ through l has still a curve λ^5 in common with Λ^6 ; this cuts l in the two points of support of the ϱ^3 for which l is a chord and in the points of contact of three curves ϱ^3 with φ . Hence the locus of the points of contact is a curve φ^3 of the genus 1. Accordingly also φ^8 has the genus 1; it has, therefore, six double points besides the point S. Consequently a plane φ is osculated by six curves ϱ^3 .

§ 8. Let us now consider the Γ of which the ρ^3 pass through the point A and have four fixed bisecants b_k (congruence of GODEAUX).

Let the image plane β again pass through b_1 . Γ contains the system Σ_1 formed by conics ϱ^2 in the plane Ab_1 and transversals t_1 of b_2 , b_3 , b_4 ; it is represented on the conic γ_1^2 in which the hyperboloid H_1 (through b_2 , b_3 , b_4) cuts β .

The analogous system Σ_2 is represented on a line c_2 , the systems Σ_3 and Σ_4 on lines c_3 and c_4 .

The curves through A and $S_2 \equiv b_2 \beta$ that have b_1 , b_3 , b_4 as chords and rest on l, form (§ 6) a surface O^6 on which S_2 is a *triple* point. It contains therefore three ϱ^3 that cut b_2 once more and accordingly belong to Γ . Consequently the ϱ^3 of Γ through S_2 form a *cubic surface* O_2^3 . Analogously the singular points $S_3 \equiv b_3 \beta$ and $S_4 \equiv b_4 \beta$ are images of systems that lie on surfaces O_3^3 and O_4^3 .

The image lines c_2 , c_3 , c_4 evidently contain resp. the singular points S_2 , S_3 , S_4 .

Three of the ϱ^3 that cut *l* belong to Σ_2 for *l* rests on one ϱ^2 and on two lines t_2 . The image curve λ has three points *R* and the triple point S_2 in common with c_2 ; it is, therefore, a $\lambda^6 (S_2{}^3 S_3{}^3 S_4{}^3)$. It contains also a double point, image of a ϱ^3 that cuts *l* twice.

On two lines l there rest nine ϱ^3 and the system Λ lies on a Λ^9 with triple lines b_1 , b_2 , b_3 , b_4 and triple point A.

§ 9. Let \triangle_1 be the surface formed by the ϱ^2 of Γ that rest on the four lines b and on their transversal t'; analogously \triangle_2 the surface corresponding to the second transversal t''. Evidently the systems \triangle_1 and \triangle_2 have only one ϱ^3 in common, the figure consisting of t', t'' and their transversal through A. Accordingly their image curves have one point R in common; as they contain the points S_2 , S_3 , S_4 they are conics δ_1^2 and δ_2^2 .

 Δ_1 contains a ϱ^2 that passes through the point $b_2 t'$; the ϱ^3 which it forms with t', belongs at the same time to Σ_2 ; its image point R lies, therefore, also on c_2 . In fact this has only one point R in common with δ_1^2 outside S_2 .

The curves $\delta_1^2(3S)$ and $\lambda^6(3S^3)$ have three points R in common; hence Δ_2 is a *cubic scroll* with directrices t', t'' (Δ_1^3 has one more line in common with the plane of a ϱ^2).

There are seven ϱ^3 composed of three lines; one of them consists of t', t'' and a; the other six are represented in the angular points of the quadrilateral formed by the lines c.

§ 10. The system Σ_2 contains two ϱ^2 that touch a given plane φ and two figures ϱ^3 of which the point $\varrho^2 t_2$ lies in φ ; each of these must be counted twice.

The surface O_2^3 has a curve φ^3 of genus one in common with φ ; the I^3 which the curves ϱ^3 define on this, has six coincidences; S_2 is, therefore, sextuple on the image curve of the system Φ . Of this curve c_2 contains the 6-fold point S_2 and 6 points R; accordingly it is a φ^{12} (3 S⁶). It has 18 points R in common with a λ^6 (3 S³); the system Φ lies, therefore, on a Φ^{18} with sextuple lines b and sextuple point A.

§ 11. In the representation of the congruence Γ that has five cardinal

chords b, the points S_2 , S_3 , S_4 and S_5 in which b_2 , b_3 , b_4 , b_5 cut β , are singular ¹).

The ϱ^3 through S_2 that have b_1 , b_3 , b_4 and b_5 as chords and rest on l, form (§ 8) an O^9 on which S_2 is a *triple* point. Accordingly there are six ϱ^3 of this system that cut b_2 once more. Hence the ϱ^3 of Γ that are represented in S_2 , form a surface β_2^6 .

The hyperboloid H_{234} with directrices b_2 , b_3 , b_4 contains ∞^1 curves of Γ ; they all pass through the four points in which H_{234} is cut by b_1 and b_5 . The image curve of this system is a conic γ^2_{234} through the singular points S_2 , S_3 and S_4 .

The analogous hyperboloid H_{145} is represented on a line c_{145} . The hyperboloids H_{145} and H_{234} have a ϱ^3 besides b_4 in common that has the second point of intersection of c_{145} and γ^2_{234} as image. The curves γ^2_{234} and γ^2_{235} have two points R in common; these are the images of two figures that consist of a ϱ^2 and one of the transversals t', t'' of b_2 , b_3, b_4, b_5 and are, accordingly, singular points for the representation; we shall indicate them by S' and S''. That they are singular appears thus: any ϱ^2 that has b_1 as chord and rests on b_2, b_3, b_4, b_5 and t', forms with $t' = \varrho^3$ belonging to Γ ; all these figures are represented in the point of intersection S' of t' and β . They form a surface O'_1^4 with double line b_1 .²)

The analogous system O'_2^4 with double line b_2 is represented on the curve $\omega_2^3 (S_2^2)$ which β has in common with this surface. O'_2^4 contains the lines t' and t''; for the plane $b_2 t'$ contains one line that cuts b_1 and the transversal t'_{1345} and with this and with t' forms a ϱ^3 .

Accordingly the image curve of this system is an $\omega_2^3(S_2^2S_3S_4S_5S'S'')$.

§ 12. The system Λ has an image curve of which S' and S'' are quadruple points, the points S_2 , S_3 , S_4 , S_5 are sextuple points. Besides S', S'', S_2 , S_3 , S_4 , γ^2_{234} contains the images R of the two ϱ^3 of H_{234} that rest on l; accordingly it has 28 points in common with the *image curve* λ and consequently it is a λ^{14} ($S_2^6 S_3^6 S_4^{-6} S_5^{-6} S'^4 S''^4$).

The line $S_4 S_5$, image of H_{145} , contains two points R; also this shows that the order of λ is 14.

Two curves λ have 20 points R in common; accordingly on two lines l there rest 20 curves ρ^3 .

As λ^{14} is rational it has six double points outside the points S; there are, therefore, six curves ϱ^3 that have six given lines as chords.

The system Λ lies on a surface Λ^{20} on which the five lines b are *sextuple* and the ten transversals t are *quadruple*.

¹) I have treated another representation of this congruence in my paper: "The Congruence of the twisted Cubics that cut five given lines twice". (These Proceedings, Vol. **31**, p. 454).

²) L.c. p. 454.

§ 13. Let us also consider the congruence Γ with cardinal chord b and the cardinal points A_1, A_2, A_3 of which the curves ϱ^3 rest on the line c_1 that passes through A_1 and the line c_2 that passes trough A_2^{-1}).

The curves through the point $S_1(c_2\beta)$ and the points A that cut b twice and rest on l, form an O^4 with double point $A_2(\S 2)$; it contains two ϱ^3 that cut c_2 once more. Accordingly the curves of Γ that pass through S_1 , form a quadratic surface O_1^2 . Analogously there is an O_2^2 of which the curves ϱ^3 are represented in the singular point $S_2(c_2\beta)$.

In the plane A_3b there lies one (ϱ^2) of which any individual is completed to a ϱ^3 by the line $a'_{12}(A_1 A_2)$. All these ϱ^3 have the singular point $S(a_{12}\beta)$ as image.

To this system Σ_3 there belong three figures ϱ^3 that consist of three lines. In the first place the system of a_{12} , the transversal through A_3 of a_{12} and b and a line in A_3b that cuts c_1 and c_2 . This figure may also be considered as the system of a pair of lines in the plane a_{123} ($A_1 A_2 A_3$) and a transversal of b, c_1 , c_2 . It belongs, therefore, at the same time to the system Σ_{123} of the ϱ^3 that consist of a ϱ^2 in a_{123} and a transversal of b, c_1 , c_2 . Accordingly the image of Σ_{123} is a line d_{123} through S.

 Σ_3 contains also the ϱ^3 that consists of a_{12} , A_3C_1 and $A_{12}C_2(C_1, C_2)$ and A_{12} are base points of the pencil (ϱ^2)). As a_{12} forms a pair of lines in the plane A_1c_2 with $A_{12}C_2$, this ϱ^3 belongs at the same time to the system Σ_2 of which the ϱ^3 consist of a ϱ^2 in A_1c_2 and the line a'_3 through A_3 cutting c_1 and b.

The system Σ_2 is represented on the line d_2 that joins the points S and $S_2(c_2\beta)$.

Analogously the line $d_1(SS_1)$ is the image of the system Σ_1 . The conics ϱ^2 in A_3c_1 through A_1 and A_3 that cut b and c_2 and are associated to a line t_2 through A_2 that rests on b, form a system Σ' that has a line d' through S_1 as image.

Analogously there is a line d" through S_2 that represents the system Σ ". The lines b, c_2, a'_2 (line through A_2 cutting b and c_1), A_1 and A_3 define a hyperboloid H_2 ; it contains the system Σ_{13} of the figures that consist of a'_2 and a conic through A_1 and A_3 . This system is represented on a line d_{13} through the point $S_2(c_2\beta)$.

Analogously there is a system Σ_{23} of figures that consist of the line a''_1 (through A_1 cutting b and c_2) and a conic through A_2 an A_3 , and that lie on the hyperboloid H_1 that is defined by b, c_1 , a''_1 , A_2 and A_3 . The *image line* d_{23} contains the point $S_1(c_1\beta)$.

§ 14. The image curve λ of the system Λ of the ϱ^3 that rest on l, passes through S and has double points in S_1 and S_2 . The system Σ_1

¹) That this congruence is *linear* appears thus. Let P be an arbitrary point; the lines A_1A_2 , A_1A_3 , A_1P and c_1 form the basis of a pencil of quadratic cones. Analogously A_2A_1 , A_2A_3 , A_2P and c_2 define a similar pencil. The two pencils define an I^2 on b each; there is, therefore, one ϱ^3 of Γ that has b as chord.

contains one ϱ^3 that cuts l; hence the image line d_1 has a point R, the point S and twice the point S_1 in common with λ , which is, accordingly, a $\lambda^4 (S S_1^2 S_2^2)$. Being a rational curve it has still a double point, the image of the ϱ^3 that has l as chord.

Two curves λ^4 have seven points R in common; accordingly the system Λ lies on a surface Λ^7 .

The intersection of Λ^7 with a_{123} consists of three ϱ^2 and the line a_{12} ; for *l* rests on three figures of Σ_{123} and on one ϱ^2 of Σ_3 . Hence A_3 is a *triple* point and A_1 and A_2 are quadruple points on Λ^7 , c_1 and c_2 are double lines and *b* is a *triple line* (points of intersection of Λ^7 and an arbitrary ϱ^3). Further a'_2 and a''_1 are double lines and Λ^7 contains the lines a_{12} , a'_3 and a''_3 and 14 conics, 3 rays t_{12} , 2 rays t_1 and 2 rays t_2 .

The image curve of the system Φ has S_1 as quadruple point (system O_1^2), S as double point (system Σ_1); the image line $d_1(S_1S)$ of Σ_1 contains two more points R; hence the image curve of Φ is a $\varphi^8 (S_1^4 S_2^4 S^2)$. In connection with $\lambda^4 (S_1^2 S_2^2 S)$ we find that the curves of Φ lie on a surface Φ^{14} . ¹)

§ 15. Let us also consider the congruence of the ρ^3 that has b_1 and b_2 as cardinal chords, A_1 and A_2 as cardinal points, and where each of the ρ^3 cuts the line c_1 through A_1 and the line c_2 through A_2 once more.

The image plane β is again passed through b_1 . The point $S(b_2\beta)$ is singular. The ρ^3 through A_1 , A_2 , S that cut c_1 , c_2 once more, have b_1 as chord and rest on l, form a surface Λ^7 with triple point $S(\S 14)$. Accordingly this contains four ρ^3 that cut b_2 once more, and the curves represented in S form a surface O^4 .

Also $S_1(c_1\beta)$ is singular and is the image of the ρ^3 that lie on a hyperboloid H_1 which is defined by A_1 , A_2 , S_1 , b_1 and b_2 .

Analogously $S_2(c_2\beta)$ is singular and is the image of a system ϱ^3 on the hyperboloid H_2 through A_1, A_2, S_2, b_1, b_2 .

The plane $A_1 b_1$ contains a (ϱ^2) of which the ϱ^2 pass through A_1 and rest on b_2 , c_2 and on the transversal a'_{22} through A_2 of b_2 and c_1 . Each of them forms with $a'_{22} a \varrho^3$ of Γ (system Σ_{22}) and is represented in the singular point $S_{22}(a'_{22}\beta)$.

Analogously the singular point S_{12} lying on the transversal a''_{12} through A_1 of b_2 and c_2 is the image of the system Σ_{12} of which the conics ϱ^2 lie in the plane $A_2 b_1$.

The system Σ'_{21} formed by the line a'_{21} (through A_2 and cutting b_1 , c_1) with a (ϱ^2) in the plane $A_1 b_2$ is represented on the points of the line d'_{21} that $A_1 b_2$ has in common with β . This line contains the points $S(b_2 \beta)$ and $S_{12}(a''_{12} \beta)$; to Σ'_2 there also belongs a figure that contains a'_{21} and a''_{12} .

¹) The congruence can also be represented on the field of points of the plane $A_1 c_1$.

Analogously Σ''_{11} formed by a''_{11} (through A_1 cutting b_1, c_1) with a (ϱ^2) in the plane $A_2 b_2$, has an *image line* d''_{11} that passes through S_{22} and S.

§ 16. Any line t_1 that rests on b_1 , b_2 and c_1 , forms a ϱ^3 with a ϱ^2 in $A_1 c_2$ that passes through A_1, A_2 and cuts b_1, b_2, t_1 (system Σ_1). The image line d_1 passes through $S_2(c_2 \beta)$.

Analogously any transversal t_2 of b_1 , b_2 , c_2 forms a ϱ^3 with a ϱ^2 in A_2 , c_1 through A_1 , A_2 that cuts b_1 , b_2 , t_2 . This system Σ_2 has as image a line d_2 through $S_1(c_1, \beta)$.

Let t be one of the transversals of b_1 , b_2 , c_1 , c_2 . Any ϱ^2 through A_1 , A_2 that cuts b_1 , b_2 and t, forms a ϱ^2 of Γ with t. The ϱ^2 lie on the hyperboloid H that is defined by A_1 , A_2 , b_1 , b_2 and a point of t. This system Σ is represented on the points of the line d which H has besides in common with β ; d contains the point S.

Analogously the second transversal, t^* , of b_1 , b_2 , c_1 , c_2 defines a system Σ^* with *image line* d^* that passes through S.

The line a_1 through A_1 cutting b_1 , b_2 forms a ϱ^3 with any ϱ^2 that has c_2 as chord and rests on c_1 , b_1 , b_2 , a_1 . The conics through A_2 and a point of c_2 that cut b_1 , b_2 and a_1 , form a surface O^2 ; through the second point of intersection of O^2 and c_1 passes one of these ϱ^2 . Hence c_2 is a single line on the locus of the ϱ^2 that are completed by a_1 to curves of Γ , and this is a cubic monoid O_1^3 with double point A^2 . This system Σ' , is represented on a conic δ_1^2 that passes through the points S, S_1 , S_2 and through S_{22} (a'_{22} lies on O_1^3).

Analogously the system Σ'' , lying on the monoid O_2^3 , is represented on a conic δ_2^2 that contains the points S, S_1, S_2 and S_{12} .

§ 17. The system Σ_1 contains a figure consisting of a''_{12} , a line t_1 and the transversal through A_2 of b_1 and t_1 . The transversal forms a pair of lines of the plane $A_2 b_1$ with t_1 ; accordingly the ϱ^3 belongs at the same time to the system Σ_{12} . Hence the *image line* d_1 of Σ_1 joins the points S_2 and S_{12} .

 Σ_1 contains three ϱ^3 of the system Λ . As l cuts two ϱ^3 of the system H_2 and one ϱ^3 of Σ_{12} , the image curve of Λ is a λ^6 . On l there rest four ϱ^3 of the system O^4 ; hence Λ has a $\lambda^6 (S^4 S_1^2 S_2^2 S_{12} S_{22})$ as image.

Two curves λ^6 have ten points R in common; consequently the curves that rest on l, form a Λ^{10} . On this b_1 , b_2 are quadruple, c_1 , c_2 , t, t^* double, a_1 , a_2 triple; besides Λ^{10} contains the lines a'_{22} , a''_{12} , a'_{21} , a''_{11} , three lines t_1 , three lines t_2 and 20 conics. Finally by noticing the points of intersection with an arbitrary ϱ^3 of Γ , we find that A_1 and A_2 are quintuple points.

Two surfaces Λ^{10} have ten curves ϱ^3 in common besides the lines b, c, a, a', a'', t, t^{*}.