Mathematics. - The Representations of a Linear Ray Complex on Point-Space that Associate Quadratic Surfaces to the Bilinear Congruences of the Complex. By G. Schaake. (Communicated by Prof. Hendrik de Vries.)

(Communicated at the meeting of March 31, 1928).
§ 1. Through the well known representation of the lines l of space on the points P of a quadratic variety V_{4} in R_{5}, to a linear complex C a quadratic variety V_{3} lying in a four-dimensional space R_{4} is associated. A representation of the lines l of C on the points L of space associates a point L of R_{3} to any point P of V_{3} and inversely.

Through the one-one correspondence (P, L) the spacial sections Φ of V_{3}, on which the bilinear congruences of C are represented, are transformed into surfaces Ω of point-space. These ∞^{4} surfaces Ω form a linear system Σ. Indeed, four points of V_{3} define a spacial section Φ so that four points L of space define one surface Ω.

To the surfaces Φ of V_{3} lying in the spaces of a pencil with baseplane β, there correspond the surfaces Ω of a pencil in Σ. The base curve of this pencil consists of the curve associated to the intersection βV_{3}, i.e. of the image of a quadratic scroll of C, and of one or more possible base curves of Σ.

If to any space R_{3} of R_{4} we associate the surface Ω of Σ that cor responds to the intersection Φ of R_{3} and V_{3}, we get a collinear correspondence between the spaces R_{3} of R_{4} and the surfaces Ω of Σ.

Consequently to the spaces R_{3} through a line r of R_{4} there correspond the surfaces of a net of Σ. Besides the fixed base curves and base points of Σ the surfaces of this net have two variable points in common, the images of the points of intersection of r and V_{3}.

To the spaces R_{3} through a point P of V_{3} there are associated the surfaces Ω of a linear complex in Σ. Besides the base curves and base points of Σ these surfaces have the point L in common that corresponds to P.

In order to find representations of a linear complex C on threedimensional point-space, we must, therefore, in the first place determine linear systems of ∞^{4} surfaces with such base curves and base points that three arbitrary surfaces of the system have two more points in common.

We shall now start from such a system Σ and we suppose a collinear correspondence to exist between the surfaces Ω of Σ and the spaces R_{3} of R_{4}. A point L of space carries ∞^{3} surfaces Ω, which form a
linear complex. To these surfaces Ω there correspond the spaces R_{3} of R_{4} through a point P of R_{4}. If we associate this point P to L, the points P form a three dimensional quadratic variety V_{3} in R_{4}. For the image points L of the points P of the intersection Φ of a space R_{3} and V_{3} form the surface Ω associated to R_{3}. Further the surfaces Ω corresponding to the spaces R_{3} through a line τ, have two points outside the base curves and base points of Σ in common, so that the surfaces Φ in the said spaces R_{3} have two points in common. Accordingly a line r of R_{4} cuts V_{3} in two points.

Now if the lines l of a linear complex C can be represented on the points P of V_{3}, by representing each line l on the point L that is associated to the point P corresponding to l, we find a representation of the lines l of C on the points L of space.

We can find systems Σ by the aid of the remark that the surfaces of such a system that contain a point of Σ outside the base curves and base points, form a homaloid complex. Inversely from a homaloid complex which contains one or more isolated base points, we can deduce a system Σ by omitting one of these base points.
§ 2. We find three systems Σ of quadratic surfaces, which, perhaps, can lead to a representation of a linear complex on point-space. They consist of:

1. the quadratic surfaces through a conic k^{2};
2. the quadratic surfaces through a line q and two points O_{1} and O_{2};
3. the quadratic surfaces through three given points O, O_{1} and O_{2} that touch a plane ω at O^{1}).
§3. We shall first choose for Σ the system of the ∞^{4} quadratic surfaces that contain a given conic k^{2}, and we shall suppose a collinear correspondence to exist between the surfaces Ω of Σ and the spaces R_{3} of R_{4}. In this way we get a one-one correspondence between the points L of space and the points P of a quadratic variety V_{3} in R_{4}.

The plane α of k^{2} forms a surface Ω with any plane of space. The ∞^{3} surfaces Ω that consist of α and an arbitrary plane of space, form a linear complex belonging to Σ, the surfaces of which have all points of α in common. To these surfaces correspond the spaces R_{3} through a point A of V_{3}. This point is a cardinal point for our representation; the associated points L form the plane a.

To the spaces R_{3} through a line a containing A there correspond the surfaces Ω consisting of α and the planes of a sheaf. The vertex of this sheaf is the point L corresponding to the point of intersection of a and V_{3} different from A. Hence A is a single point of V_{3}.

[^0]Any point L of k^{2} is singular for our representation as any spacial section Φ must contain a point associated to L. Any space R_{3} contains one point of the locus of the points that are associated to L; hence the points corresponding to L form a line k. This line passes through A, because L belongs to α.

The intersection of two surfaces Ω to which two spacial sections Φ are associated, i.e. a conic ω^{2} that cuts k^{2} twice, is the representation of a plane section φ^{2} of V_{3}. As a conic ω^{2} has two points in common with k^{2}, a plane of R_{4} cuts the locus of the points P that correspond to the points L of k^{2}, twice. Accordingly the locus of the lines k of V_{3} through A is a quadratic surface; it is the quadratic cone x along which the space of contact to V_{3} at A cuts this variety.

Let us consider a line r through a point P of \varkappa. The intersections of V_{3} and the planes through P are represented on conics ω^{2} through the point of k^{2} that corresponds to P. All the surfaces Ω corresponding to the spaces R_{3} through P touch, therefore, a fixed tangent plane of x at L and form a complex. A point outside the tangent plane defines a net of the complex of which the surfaces are associated to the spaces R_{3} through a line r that contains P. As the net has one isolated base point, the line r has one point in common with V_{3} outside P. Any point P of x is, accordingly, a single point of V_{3}.

A point P of V_{3} outside x is always a single point, as the point L corresponding to P together with a point L^{\prime} for which $L L^{\prime \prime}$ does not cut k^{2}, defines a net of surfaces Ω with two isolated base points so that through P we can always draw a line that cuts V_{3} outside P.

Accordingly we have here a general quadratic variety V_{3}, which may always be considered as the image of a general linear complex C.

We have already seen that a quadratic surface Φ and a conic φ^{2} of V_{3} are resp. represented on a quadratic surface Ω through k^{2} and a conic ω^{2} that cuts k^{2} twice.

A plane γ of space which forms a surface Ω with α, is the image of a quadratic surface of V_{3} containing A. Inversely from a surface Ω associated to such a surface the plane α splits off so that there remains a plane γ as image plane.

A line c of space being the intersection of two planes γ is the image of a conic φ_{2} of V_{3} trough A. Inversely such a conic being the intersection of two surfaces Φ through A is represented on a line c.

A line f of V_{3} that has one point in common with a surface Φ containing A, is represented on a line of space. As f cuts one of the generatrices of \varkappa, the image line has one point in common with k^{2}. Inversely a line cutting k^{2} cuts a surface Φ in one point that is not singular for the representation so that this line is the image of a line of V_{3}.

For the representation of the lines l of C on the points L of space we now find the following properties. C contains one cardinal line a,
to which all points of the plane α are associated. There is a conic k^{2} of singular image points. To a point of k^{2} there correspond the lines l of a plane pencil of C containing a. The lines l corresponding to the points of k^{2}, form the special bilinear congruence of the lines of C that cut a.

A plane pencil of C is represented on a line that cuts k^{2}, a scroll of C on a conic that cuts k^{2} twice. To a bilinear congruence of C there corresponds a quadratic surface Ω through k^{2}, which becomes a cone when the congruence is special.

A line of point-space is the image of a scroll of C containing a, a plane of the point-space the image of a bilinear congruence of C containing a.

In this way we have arrived at the representation of Nöther-Klein of the rays of a linear complex on the points of space.
§4. Let us now choose for Σ the system of the quadratic surfaces that contain a line q and two points O_{1} and O_{2}. We get again a oneone correspondence between the points L of space and the points P of a quadratic variety V_{3} in R_{4} by the aid of a collinear correspondence between the surfaces Ω of Σ and the spaces R_{3} of R_{4}. The surfaces of Σ that contain the line $\mathrm{O}_{1} \mathrm{O}_{2}$, form a linear complex. The point T of R_{4} associated to this complex is a singular point of the said correspondence on V_{3} to which the whole line $O_{1} O_{2}$ is associated. To the spaces R_{3} through a line r containing T there correspond the surfaces Ω of a net of Σ. All these surfaces contain the lines q and $\mathrm{O}_{1} \mathrm{O}_{2}$ and accordingly besides the base elements of Σ they have only points of $O_{1} O_{2}$ in common, so that the line r in consideration cuts the variety V_{3} in T only. The point T is, therefore, a double point of V_{3}.

A line o_{1} through O_{1} which cuts q and, therefore, lies in the plane $O_{1} q \equiv \omega_{1}$, has two fixed points in common with all quadratic surfaces. Ω. Hence there are ∞^{3} surfaces Ω that contain a line o_{1}. They form a linear complex belonging to Σ. The corresponding P of R_{4} is a singular point on V_{3} of the correspondence to which the line o_{1} is associated. The points P corresponding to the lines o_{1} form a line s_{1} of V_{3}, as any surface Ω contains one line o_{1} and consequently any spacial section of V_{3} one of the said points P.

In the same way it appears that there is a second singular line s_{2} on V_{3}. To a point of s_{2} there corresponds a line o_{2} in the plane $O_{2} q \equiv \omega_{2}$, passing through O_{2}.

Consequently the double point T of V_{3} and the points of two crossing lines s_{1} and s_{2} are singular for our representation. To a point of s_{1} or of s_{2} there correspond resp. a line of $\left(\mathrm{O}_{1}, \omega_{1}\right)$ or of $\left(\mathrm{O}_{2}, \omega_{2}\right)$ and inversely.

A plane section φ^{2} of V_{3} is represented on the cubic section ω^{3} different from q of two surfaces Ω. The ∞^{6} curves ω^{3} are the twisted cubics through O_{1} and O_{2} that cut the line q twice.

The point O_{1} is a cardinal point of our correspondence; the points P corresponding to this point form a plane σ_{1} as any plane section φ that is represented on a curve ω^{3} through O_{1}, contains one point P corresponding to O_{1}. This plane σ_{1} passes through T because O_{1} belongs to $O_{1} O_{2}$ and through s_{1} as the images of the lines o trough O_{1} must belong to the plane corresponding to O_{1}.

In the same way it appears that the point O_{2} is a cardinal point for our correspondence, to which the plane $T s_{2} \equiv \sigma_{2}$ is associated.

Also the points of the lines q are singular for the correspondence (L, P). As any surface Ω passes through the line q, any spacial section Φ of V_{3} contains one of the points P that are associated to a definite point L of q, so that to such a point L a line t is associated. The lines t associated to the points of q, form a quadratic scroll τ^{2}. For a curve ω^{3} cuts the line q twice, so that a plane section φ^{2} of V_{3} cuts two lines t.

Any line t has one point in common with the line s_{1}, viz. the image of the line o_{1} that passes through the point L corresponding to t. We see, therefore, that the line s_{1} and also the line s_{2} belong to the scroll σ^{2} connected with τ^{2}. The quadratic surface Φ_{1} containing τ^{2} is the intersection of V_{3} and the space $\left(s_{1}, s_{2}\right)$.

The surfaces Ω corresponding to the spaces R_{3} through a point P of Φ_{1} form the complex of the surfaces of Σ that touch a plane λ through q at the point L that corresponds to the line t through P. If for λ we choose a definite plane through q and if we make L describe the line q, P describes a line of the scroll σ^{2} connected with τ^{2}. For any surface Ω touches the plane λ at one point L of q and accordingly any spacial section Φ cuts the locus of the points P once.

In point-space we have two cardinal points O_{1} and O_{2} to which the planes $T s_{1} \equiv \sigma_{1}$ and $T s_{2} \equiv \sigma_{2}$ are associated. The points of the line q are singular. To a point L of q there corresponds a line t. The lines t form the intersection Φ_{1} of V_{3} and the space ($s_{1} s_{2}$).

Among the surfaces Ω there are ∞^{2} surfaces that are degenerate in a plane λ through q and a plane μ through $O_{1} O_{2}$. To the surfaces Ω that contain a fixed plane μ there correspond the spaces R_{3} of a pencil of which the axial plane τ is the locus of the points of V_{3} that are associated to the points of μ so that r belongs entirely to V_{3}. The plane τ passes through T and the line t of τ^{2} that is associated to the point of intersection of μ and q.

In the same way it appears that to a plane λ there corresponds a plane σ of V_{3}. This plane σ also passes through T because λ generally cuts the line $\mathrm{O}_{1} \mathrm{O}_{2}$ in a point that is not singular for the representation, and passes through the line s that corresponds to the plane λ in the way indicated above. Among the planes σ are the planes σ_{1} and σ_{2} that correspond resp. to the planes $q_{1} O_{1}$ and $q_{2} O_{2}$.

The variety V_{3} is formed by the lines p that project the image surface
Φ_{1} out of T. Such a line p that is the intersection of a plane τ and a plane σ, is represented on the line of intersection b of a plane μ and a plane λ, i.e. a generatrix of the bilinear congruence B of the lines that cut q and $O_{1} O_{2}$. Inversely a line of B as the intersection of a plane λ and a plane μ is the image of the line of intersection of a plane σ and a plane τ, hence of a line p of V_{3} through T. The points of intersection of b with $\mathrm{O}_{1} \mathrm{O}_{2}$ and q are resp. associated to the point T on p and the point of intersection of p and Φ_{1}.

On the hypercone V_{3} a special linear complex C with axis a can always be represented. For the representation (l, L) of the lines l of C on the points L of space that arise through combination of the correspondence (l, P) between C and V_{3} and the correspondence (P, L), we find the following properties if we suppose the sheaves of rays and the fields of rays of C to be represented resp. on the planes σ and on the planes r of V_{3}.

In C among the lines that are singular for the representation we find in the first place the axis a that is represented on the points of $O_{1} O_{2}$. Further there are two plane pencils $\left(F_{1}, \varphi_{1}\right)$ and $\left(F_{2}, \varphi_{2}\right)$ of singular lines l of C that together with a define sheaves of rays of C and of which the vertices F_{1} and F_{2} are, accordingly, points of $a ; \varphi_{1}$ and φ_{2} are arbitrary planes passing resp. through F_{1} and F_{2}.

A line l of $\left(F_{1}, \varphi_{1}\right)$ or (F_{2}, φ_{2}) is represented resp. on a generatrix of the plane pencil $\left(\mathrm{O}_{1}, \omega_{1}\right)$ or $\left(\mathrm{O}_{2}, \omega_{2}\right)$. To the rays l of $\left(F_{1}, \varphi_{1}\right)$ and $\left(F_{2}, \varphi_{2}\right)$ there correspond resp. the points L of the planes ω_{1} and ω_{2}.

In the space of the points L there lie two cardinal points, viz. O_{1} and O_{2}. The lines l of C that are associated to O_{1} and O_{2} resp. form the sheaves of rays F_{1} and F_{2}, i.e. the sheaves that are defined by a and the plane pencil $\left(F_{1}, \varphi_{1}\right)$ and by a and the plane pencil (F_{2}, φ_{2}).

Also the points of $q \equiv \omega_{1} \omega_{2}$ are singular to which belong the rays of the bilinear congruence that has a and $\varphi_{1} \varphi_{2} \equiv f$ as directrices. To a point of q are associated the rays of a plane pencil of this congruence that defines a field of rays together with a, i.e. the rays of a plane pencil with vertex on f in a plane through a.

The quadratic scrolls of C, that are those which have a as directrix, to which the conics of V_{3} are associated, are represented on the twisted cubics ω^{3} through O_{1} and O_{2} that cut q twice.

Among the ∞^{6} curves ω^{3} there are ∞^{5} which are degenerate in a conic ω^{2} through O_{1} and O_{2} and a line ω that cuts ω^{2} and q in different points. These composite curves ω^{3} correspond to the intersections of V_{3} and the tangent planes of this variety so that to ω^{2} as well as to ω a plane pencil in C is associated. As ω^{2} lies in a plane through $\mathrm{O}_{1} \mathrm{O}_{2}$, to which there corresponds a plane τ of V_{3}, this conic is the image of a pencil w, in a plane through a and the line ω that lies in a plane through q, represents a plane pencil w^{\prime} with vertex on a. A conic ω^{2} and a line ω that cut each other, are the images of two plane pencils
w and w^{\prime} that have a line in common so that the plane of w passes through the vertex of w^{\prime}.

A plane pencil of C in a plane through a is represented on a conic ω^{2} through O_{1} and O_{2} cutting q, a plane pencil of C with vertex on a on a line ω cutting q.

To a plane pencil containing a there corresponds a line b of the bilinear congruence B that has q and $O_{1} O_{2}$ as directrices. Such a line forms a conic ω^{2} together with $\mathrm{O}_{1} \mathrm{O}_{2}$.

If the vertex of w lies in φ_{1} a generatrix of $\left(O_{1}, \omega_{1}\right)$ splits off from ω^{2} and, accordingly, there remains a line through O_{2}. In the same way it appears that a plane pencil ω with vertex in φ_{2} is represented on a line through O_{1}.

A sheaf of C with vertex on a is represented on a plane λ through q, a field of rays of C, of which, accordingly, the plane passes through a, on a plane μ through $O_{1} O_{2}$. The image points L of the rays l of a bilinear congruence of C, of which, accordingly, one of the directrices coincides with a, form a quadratic surface Ω through O_{1}, O_{2} and q.

If the directrix different from a lies in φ_{1}, the plane ω_{1} splits off from Ω and, accordingly, there remains a plane through O_{2}. In the same way it appears that a bilinear congruence of C with directrix in φ_{2} is represented on a plane through O_{1}.

A line g of points L is the image of a quadratic scroll γ of C. For g has two points in common with a surface Ω and, accordingly, γ contains two generatrices that cut an arbitrary straight line. As g cuts one generatrix of each of the plane pencils $\left(O_{1}, \omega_{1}\right)$ and $\left(O_{2}, \omega_{2}\right), \gamma$ has a generatrix in common with each of the plane pencils $\left(F_{1}, \varphi_{1}\right)$ and $\left(F_{2}, \varphi_{2}\right)$.

When g cuts the line $\mathrm{O}_{1} \mathrm{O}_{2} g$ lies in a plane μ. In this case g is the image of the system of the tangents to a conic that touches a and the planes φ_{1} and φ_{2}.

A plane α of point-space is the image of a congruence $A(2,1)$ of C, because a conic ω^{2} has two points in common with α and a line ω one point. The plane α cuts all generatrices of the plane pencils $\left(O_{1}, \omega_{1}\right)$ and $\left(O_{2}, \omega_{2}\right)$ and also the line $O_{1} O_{2}$. Consequently $A(2,1)$ contains the plane pencils $\left(F_{1}, \varphi_{1}\right)$ and (F_{2}, φ_{2}) and also the line a. The congruence consists of the lines that cut a and touch a cone that has a as tangent and the planes φ_{1} and φ_{2} as tangent planes so that the vertex of the cone lies on the line $\varphi_{1} \varphi_{2}$.

Let us now in point-space choose a curve k of the order n that has an o_{1}-fold point in O_{1}, an o_{2}-fold point in O_{2} and that cuts the line $q k$ times. Such a curve cuts a surface Ω, the planes ω_{1} and ω_{2} and a plane λ resp. in $2 n-\mathrm{o}_{1}-\mathrm{o}_{2}-k, n-\mathrm{o}_{1}-k, n-\mathrm{o}_{2}-k$ and $n-k$ points that are not singular for the representation. Hence this curve is the image of a scroll of the degree $2 n-o_{1}-o_{2}-k$ that contains resp. $n-o_{1}-k$ and $n-\mathrm{O}_{2}-k$ generatrices of $\left(F_{1}, \varphi_{1}\right)$ and $\left(F_{2}, \varphi_{2}\right)$ and has a as $(n-k)$-fold
directrix. If the curve has p more points in common with $O_{1} O_{2}$, the line a is besides a p-fold torsal line of the corresponding scroll.

We find the image curve of a scroll of C of the degree v that has resp. ω_{1} and ω_{2} generatrices in common with $\left(F_{1}, \varphi_{1}\right)$ and (F_{2}, φ_{2}) and of which a is a x-fold directrix by solving the quantities n, o_{1}, o_{2} and k out of the equations

$$
\begin{aligned}
2 n-o_{1}-o_{2}-k & =v \\
n-o_{1}-k=\omega_{1} & =\omega_{2} \\
n-o_{2}-k & =x .
\end{aligned}
$$

We find that the image curve is of the order $\nu+\varkappa-\omega_{1}-\omega_{2}$, has resp. a $\left(x-\omega_{1}\right)$ - and a $\left(x-\omega_{2}\right)$-fold point in O_{1} and O_{2} and cuts $q v-\omega_{1}-\omega_{2}$ times.

For an arbitrary cone of C of the degree n we have $\nu=n$ and $x=\omega_{1}=\omega_{2}=0$. Hence such a cone is represented on a curve of the order n that cuts $q n$ times. It lies in a plane through q, as all generatrices of the cone pass through the same point of a.

To a curve of the $n^{\text {th }}$-class lying in a plane through a there corresponds a curve of the order $2 n$ in a plane through $O_{1} O_{2}$ with n-fold points in O_{1}, O_{2} and on q.

We shall further consider a surface of the degree m that has a v_{1}-fold point in O_{1} and a v_{2}-fold point in O_{2} and of which q is an r-fold line. Such a surface has resp. $2 m-v_{1}-v_{2}-r, m-r, m-v_{1}-r$ and $m-v_{2}-r$ points that are not singular for the representation in common with a conic ω^{2}, a line ω, a generatrix of $\left(O_{1}, \omega_{1}\right)$ and a generatrix of $\left(O_{2}, \omega_{2}\right)$. Hence the said surface is the image of a congruence ($2 m-v_{1}-v_{2}-r, m-r$) of which the rays of $\left(F_{1}, \varphi_{1}\right)$ and (F_{2}, φ_{2}) are resp. ($m-v_{1}-r$) and ($m-v_{2}-r$) -fold lines.

As the surface cuts $O_{1} O_{2}$ in $m-v_{1}-v_{2}$ points outside O_{1} and O_{2}, a is an ($m-v_{1}-v_{2}$)-fold line of the congruence.

The image surface of a congruence (μ, ϱ) that has the rays of $\left(F_{1}, \varphi_{1}\right)$ and $\left(F_{2}, \varphi_{2}\right)$ resp. as φ_{1} - and φ_{2}-fold lines, is of the degree $\mu+\varrho-\varphi_{1}-\varphi_{2}$; it has a $\left(\varrho-\varphi_{1}\right)$-fold point in O_{1}, a $\left(\varrho-\varphi_{2}\right)$-fold point in O_{2}, and q is a ($\mu-\varphi_{1}-\varphi_{2}$)-fold line of the image surface.

We get a representation of the kind that has been investigated, in the following way. We choose two points O_{1} and O_{2} on the axis a of C. Further we consider two planes φ_{1} and φ_{2} that are cut by $O_{1} O_{2}$ resp. in the points F_{1} and F_{2}.

A line l of C that cuts φ_{1} and φ_{2} resp. in S_{1} and S_{2}, is represented in the point of intersection L of the lines $O_{1} S_{2}$ and $O_{2} S_{1}$.

This representation has been treated by me in the "Nieuw Archief voor Wiskunde", $2^{\text {de }}$ reeks, deel XIV, p. 330.

If we suppose that to the sheaves and fields of rays of C there correspond resp. the planes τ and the planes σ, we get a representation
that arises from the one we have investigated if in stead of C we choose the reciprocal figure.
§ 5. Finally we choose for Σ the ∞^{4}-system of the quadratic surfaces Ω that pass through three given points O, O_{1} and O_{2} and touch a given plane ω at O. We shall first investigate the one-one correspondence between the points P of space and the points L of a quadratic variety V_{3} in R_{4} which we get by the aid of a collinear correspondence between the surfaces Ω of Σ and the spaces R_{3} of R_{4}.

The plane $\mathrm{OO}_{1} \mathrm{O}_{2}$ contains a pencil of conics σ^{2} that pass through O_{1} and O_{2} and touch the plane ω at O. Each of these conics has four fixed points in common with the surfaces Ω so that the surfaces Ω containing a conic σ^{2} form a linear complex. To this a point S_{2} of V_{3} is associated, which is, accordingly, singular for our correspondence. The locus of the points S_{2} is a line s_{2} of V_{3}, as any surface Ω contains one conic σ^{2} and, therefore, in any spacial section Φ of V_{3} there lies one point S_{2}.

To a plane a of V_{3} there corresponds a biquadratic surface ψ^{4} of V_{3}. For to a plane section φ^{2} of V_{3} an intersection k^{4} of two surfaces Ω is associated, which cuts α in four points so that a conic φ^{2} has four points in common with the surface corresponding to α.

Because any conic σ^{2} cuts a plane α twice, all surfaces ψ^{4} have the line s_{2} as double line.

A generatrix o of the plane pencil (O, ω) touches all surfaces Ω at O . The surfaces Ω through o form, therefore, a linear complex. Hence to a line o there corresponds a point S_{1} of V_{3} that is singular for the correspondence (l, P). As any surface Ω contains two lines o, any spacial section of V_{3} has two points in common with the locus of the points S_{1}. Accordingly the points S_{1} form a conic $s_{1}{ }^{2}$. All surfaces ψ^{4} pass through $s_{1}{ }^{2}$.

The generatrix of (O, ω) in the plane $O O_{1} O_{2}$ forms a conic σ^{2} together with $\mathrm{O}_{1} \mathrm{O}_{2}$. To the linear complex of the surfaces Ω that contain this conic σ^{2}, there corresponds a point P which lies on s_{2} as well as on $s_{1}{ }^{2}$. Hence we see that s_{2} and $s_{1}{ }^{2}$ have one point S_{1} in common.

The singular points of the correspondence (P, L) on V_{3} form a line s_{2} and a conic $s_{1}{ }^{2}$ that have a point S in common. To a point of s_{2} there corresponds a conic σ^{2} in the plane $\mathrm{OO}_{1} \mathrm{O}_{2}$, to a point of $s_{1}{ }^{2}$ there corresponds a generatrix of the plane pencil (O, ω).

The linear complex of the surfaces Ω through the conic σ^{2} consisting of the lines $O O_{1}$ and OO_{2}, is formed by the quadratic cones with vertex in O that have $O O_{1}$ and OO_{2} as generatrices. To this complex a point T of s_{2} is associated. The surfaces Ω corresponding to the spaces R_{3} that contain a line through T, form a net of cones with vertices in O that have the generatrices $O O_{1}$ and $O O_{2}$ in common. As this net does not generally contain any base points outside $O O_{1}$ and $O O_{2}$, an
arbitrary line through T has no point in common with V_{3} besides T. Accordingly the variety V_{3} is a hypercone with vertex T.

When the cones of the said net have a line different from $O O_{1}$ and OO_{2} in common, the corresponding line through T lies entirely on V_{3}. Also the inverse holds good. Hence a line of V_{3} through T is represented on a line through O and inversely.

The cones Ω are the images of the quadratic cones in which the threedimensional spaces through T cut V_{3}. Among the ∞^{3} cones Ω there are ∞^{2} degenerations, each of which is formed by a plane through $O O_{1}$ and a plane through OO_{2}. They correspond to the intersections of V_{3} and the tangent spaces of this hypercone. The planes through $O O_{1}$ are associated to the planes σ of one of the systems of planes, the planes through OO_{2} correspond to the planes τ of the other system of V_{3}.

A line s of V_{3} in a plane σ is the intersection of this plane and a spacial section Φ of V_{3}. Consequently to such a line s there corresponds the intersection of a plane through $O O_{1}$ and a surface Ω, i.e. a conic s^{2} through O and O_{1} that touches ω at O. In the same way it is evident that to a line t of V_{3} in a plane τ a conic t^{2} is associated that passes through O and O_{2} and touches ω at O.

As any base curve k^{4} of a pencil of the complex Σ passes through O_{1}, any plane section φ^{2} of V_{3} contains one point corresponding to O_{1}. Accordingly O_{1} is a cardinal point for our representation and the points corresponding to O_{1} form a plane of V_{3}. This plane passes through s_{2} because all conics σ^{2} contain the point O. It is the plane r through s_{2}, for it has no point different from T in common with an arbitrary plane τ that is represented on a plane through OO_{2}. We shall call the plane of V_{3} corresponding to $O_{1} \tau_{1}$.

In the same way it appears that O_{2} is a cardinal point for the correspondence (P, L) and that to this point the plane σ_{1}, the plane σ through s_{2}, is associated.

Any curve k^{4} has a double point in O, because the surfaces Ω touch each other at O. Hence two of the points corresponding to O lie in an arbitrafy plane section φ_{2} of V_{3}. The point O is, therefore, a cardinal point and the points corresponding to O form a quadratic surface. As the conics σ^{2} and the lines o all pass through O, the quadratic surface associated to O must contain the conic $s_{1}{ }^{2}$ and the line s_{2}. It is, therefore, the intersection of V_{3} and the space through $s_{1}{ }^{2}$ and s_{2}, that is a quadratic cone x with vertex T.

Consequently the space of the points L contains three cardinal points, viz. O, O_{1} and O_{2}. The points of V_{3} corresponding to O, O_{1} and O_{2} form resp. the quadratic cone $\%$ that projects $s_{1}{ }^{2}$ out of T, the plane τ_{1} passing through s_{2} and the plane σ_{1} containing s_{2}.

An arbitrary special linear complex C with axis a can always be represented on the hypercone V_{3}. We shall suppose that this representation associates the planes σ to the sheaves of C and the planes τ of V_{3}
to the fields of C. In this case we find the following properties of the representation (l, L) that arises through combination of the correspondences (l, P) and (P, L).

The linear complex C contains a plane pencil (A, a) of singular lines l one of which is a. The image points of an arbitrary generatrix of (A, α) form a conic σ^{2} in the plane $O_{1} O_{2}$ that passes through O, O_{1} and O_{2} and touches ω at O. Accordingly to the lines of (A, α) there correspond the conics of a pencil Σ. The image points of the lines of (A, α) form the plane $\mathrm{OO}_{1} \mathrm{O}_{2}$. The conic σ^{2} corresponding to a is formed by the lines $O O_{1}$ and OO_{2}. Let the conic σ^{2} that is formed by the line $O_{1} O_{2}$ and the generatrix in $O_{1} O_{2}$ of the plane pencil (O, ω), be associated to the line c.

Further C contains a scroll σ^{2} of singular rays that have the line c in common with (A, α). The image points of a generatrix of ϱ^{2} form a ray of (O, ω). To the lines of ϱ^{2} the points of the plane ω are associated.

In the space of the image points L we have three cardinal points, viz. O, O_{1} and O_{2}. The lines l associated to O form the special bilinear congruence K with directrix a consisting of the generatrices of the plane pencils each of which is defined by a and a generatrix of ϱ^{2}. To O_{1} there correspond the rays of the plane α, to O_{2} the rays of the sheaf A.

A plane pencil w_{1} of C with vertex on a is represented on a conic s^{2} through O and O_{1} that touches ω at O, a plane pencil w_{2} of C in a plane trough a on a conic t^{2} through O and O_{2} that touches ω at O. To a plane pencil w containing a a line through O is associated. Such a line forms a conic s^{2} with $O O_{1}$, a conic t^{2} with $O O_{2}$.

If we have a plane pencil w_{1} of C containing a line of ϱ^{2} of which the plane is a plane of contact that does not pass through a of the quadratic surface defined by ϱ^{2}, a generatrix of (O, ω) splits off from the image conic s^{2}; such a plane pencil is, therefore, represented on a line through O_{1}. In the same way it appears that a plane pencil w_{2} of C of which the vertex lies on the quadratic surface defined by ϱ^{2} but not on a, is represented on a line through O_{2}.

To a sheaf of rays of C, the vertex of which, accordingly, lies on a, there corresponds a plane through $O O_{1}$, to a field of rays of C, the plane of which, accordingly, passes through a, there corresponds a plane through OO_{2}. A bilinear congruence of C is represented on a quadratic surface Ω through O, O_{1} and O_{2} that touches ω at O. In particular the ∞^{3} special bilinear congruences with vertex a are represented on the quadratic cones that contain $O O_{1}$ and OO_{2}. If the rays of (A, a) belong to such a special linear congruence the plane $\mathrm{OO}_{1} \mathrm{O}_{2}$ splits off from the image cone and there remains a plane through O.

To a bilinear congruence of C that contains the scroll ϱ^{2} and of which, accordingly, the directrix different from a belongs to the scroll connected with ϱ^{2}, the same as a, there corresponds a plane through $O_{1} O_{2}$, as in this case the plane ω has split off from the image surface Ω.

A line g of points L has two points in common with a surface Ω, and cuts one conic σ^{2} and one generatrix of (O, ω). A line g is, therefore, the image of a quadratic scroll γ^{2} of C that has one generatrix in common with the plane pencil (A, α) and also with ϱ^{2}.

To a line g which cuts $O_{1} O_{2}$ there corresponds a scroll γ^{2} through c that has one more generatrix in common with ϱ^{2}. The scrolls γ^{2} that touch ϱ^{2} along c, are represented on the lines through the point of intersection of $\mathrm{O}_{1} \mathrm{O}_{2}$ and ω.

If we have a line g that cuts $O O_{1}$, this lies in a plane through $O O_{1}$, so that all the generatrices of γ^{2} belong to a sheaf C. In this case the common line of γ^{2} and (A, α) coincides with a. A line cutting $O O_{1}$ is, therefore, the image of a cone containing a that touches α and contains the generatrix of ϱ^{2} passing through its vertex. In the same way we see that a line g cutting OO_{2} is the image of the system of tangents to a conic touching a at A that touches the generatrix of ϱ^{2} lying in its plane.

A plane α of the points of space cuts a conic t^{2}, a conic s^{2} and a conic σ^{2} twice and a line of (O, ω) once. Such a plane is, therefore, the image of a congruence $\Gamma(2,2)$ that has the lines of (A, α) as double lines and contains the generatrices of ϱ^{2}.

If the plane passes through O_{1}, the field of rays α splits off from Γ and there remains, therefore, a congruence $(2,1)$ containing the generatrices of (A, α) and the lines of ϱ^{2}. This congruence consists of the lines that cut a which touch an enveloping cone with vertex in α of the quadratic surface defined by ϱ^{2}, with the exception of the lines of α. In the same way it appears that a plane through O_{2} is the image of the congruence (1,2) of the lines that cut a and a conic through A of the quadratic surface defined by ϱ^{2} in different points.

We shall now consider a curve k^{n} of the order n that has resp. an $\mathrm{o}^{-}, \mathrm{o}_{1-}$ and o_{2}-fold point in $\mathrm{O}, \mathrm{O}_{1}$ and O_{2}. Let us suppose that r of the o branches through O of k^{n} touch ω at this point. The chosen curve cuts a surface Ω in $2 n-o-o_{1}-o_{2}-r$ and a plane through $O O_{1}$ in $n-o-o_{1}$ points that are not singular for the representation and it cuts $n-o-o_{1}-o_{2}$ conics σ^{2} and $n-o-r$ lines of (O, ω) outside the base points of Σ.

Consequently the curve k^{n} is the image of a scroll λ belonging to C of the degree $2 n-0-o_{1}-o_{2}-r$ that has a as $\left(n-o-o_{1}\right)$-fold directrix and has resp. $n-o-o_{1}-o_{2}$ and $n-o-r$ generatrices in the plane pencil (A, α) and the scroll ϱ^{2}. As a plane through OO_{2} cuts the curve in $n-o-o_{2}$ points that are not singular for the representation, the scroll λ has $n-o-o_{2}$ lines different from a in common with a field of rays containing a. Now such a field of rays contains in all $n-o_{2}-r$ generatrices of λ. The line a is, therefore, an ($o-r$)-fold torsal generatrix of λ. The cuspidal points together with the planes of contact at the corresponding torsal lines define plane pencils that are
represented on the tangents of k^{n} at O to the $o-r$ branches that do not touch ω. The r generatrices of (O, ω) that touch k^{n}, correspond to lines of ϱ^{2}, which, together with a, define plane pencils in each of which there lies a line of λ.

If k^{n} cuts the line $O O_{1}$ in one more point, a is a torsal generatrix of λ with α as corresponding torsal plane. For the cuspidal point corresponds to the plane through $O O_{1}$ that touches k^{n} at the point of intersection, and the torsal plane to the plane through OO_{2} and the point of intersection, i.e. the plane $\mathrm{OO}_{1} \mathrm{O}_{2}$. If k^{n} has one more point in common with the line OO_{2}, we find that a is a torsal generatrix of λ with A as corresponding cuspidal point. If k^{n} touches the plane $O O_{1} O_{2}$ at O, a is a torsal generatrix of λ with A as corresponding cuspidal point and α as corresponding cuspidal plane.

Let us now investigate the image curve of a scroll of C of the degree ν that has a as α_{1}-fold directrix and as α_{2}-fold torsal generatrix, and that has resp. ω and ϱ generatrices in the plane pencil (A, α) and the scroll ϱ^{2}.

We find that such a scroll is represented on a curve of the order $2 v-\varrho-2 \omega-\alpha_{2}$, that has a $(\nu-\varrho-\omega)$-fold point in O, a $(\nu-\omega-$ $\left.\alpha_{1}-\alpha_{2}\right)$-fold point in O_{1}, an $\left(\alpha_{1}-\omega\right)$-fold point in O_{2} and $v-\varrho-\omega-\alpha_{2}$ branches through O that touch ω at that point. This result only holds good when the α_{2} cuspidal points and torsal planes corresponding to a are different resp. from A and α. If this is not the case the peculiarities of the image curve can be easily indicated by the aid of what has been found in the preceding paragraph.

If as a special case we choose a cone C of the $n^{\text {th }}$-degree, we have $\nu=n$ and $\alpha_{1}=\alpha_{2}=\omega=\varrho=0$. Such a cone is, accordingly, represented on a curve of the order $2 n$ lying in a plane through $O O_{1}$ that has n-fold points in O and O_{1}. This curve touches itself at O as the n branches through this point all touch ω.

For a curve of the class n lying in a plane through a we have $v=\alpha_{1}=n$ and $\alpha_{2}=\varrho=\omega=0$. The system of tangents to such a curve is accordingly represented on a curve of the order $2 n$ in a plane through OO_{2} that has n-fold points in O and O_{2} and of which the n branches through O_{2} touch ω.

A surface of the degree m that has a p-fold point in O and q leaves touching ω at O, and for which O_{1} and O_{2} are resp. p_{1}-fold and $p_{2}-$ fold points, has resp. $2 m-p-p_{2}-q, 2 m-p-p_{1}-q, 2 m-p-p_{1}-p_{2}-q$, $m-p-q$ and $m-p$ points that are not singular for the representation, in common with a conic t^{2}, a conic s^{2}, a conic σ^{2}, a line of (O, ω) and a line passing through O. Such a surface is, therefore, the image of a congruence ($2 m-p-p_{2}-q, 2 m-p-p_{1}-q$), for which the lines of (A, α) and of ϱ^{2} are resp. $\left(2 m-p-p_{1}-p_{2}-q\right)$ - and ($\left.m-p-q\right)$-fold lines and of which a plane pencil through a contains $m-p$ lines different from a.

If inversely we have a congruence $\left(\mu_{1}, \mu_{2}\right)$ for which the lines of (A, α) are x-fold lines and the lines of $\varrho^{2} \varrho$-fold lines, and that has π lines different from a in common with a plane pencil containing a, we find that this congruence is represented on a surface of the degree $\mu_{1}+\mu_{2}-x-\varrho$ that has a $\left(\mu_{1}+\mu_{2}-x-\varrho-\pi\right)$-fold point in $O, \pi-\varrho$ leaves touching ω at O and resp. a ($\mu_{1}-x$) and a ($\mu_{2}-x$)-fold point in O_{1} and O_{2}.

[^0]: $\left.{ }^{1}\right)$ Cf. Sturm, Geometrische Verwandtschaften, IV, § 134.

