Physics. — The ZEEMAN-effect of the spectrum of ionized Argon (Ar II). By C. J. BAKKER, T. L. DE BRUIN and P. ZEEMAN.

(Communicated at the meeting of June 30, 1928.)

1. Introduction.

The ZEEMAN-effect of the spectrum of ionized Argon (Ar II) has been investigated for checking the analysis of this spectrum given by one of us (DE BRUIN) ¹). The research ²) was especially important because one can expect in this spectrum according to theoretical considerations deviations from the normal g-values of LANDÉ. The theory of BOHR gives that the atomic core of Ar II contains four 3p-electrons. According to the conception of LANDÉ this should give rise to anomalous g-values. Certain groups of g-values must give, on account of theoretical considerations of PAULI, LANDÉ and HEISENBERG constant "g-sums", which can be calculated beforehand.

2. Experimental part.

The grating mounting.

We made use of the stigmatic grating mounting of the laboratory. The light from the source, whose image is focussed on the slit, falls upon a concave mirror, which sends a parallel beam of light to the grating ³). We could photograph at once a region of 15 cm at both sides of the normal of the grating. The investigation was made in the second order and there the dispersion is about 2.4 Å/mm, so we could photograph with one focussing of the camera a region of 300×2.4 Å = 720 Å; thus we had to focuss four times for investigating the spectral region between 2700 and 5300 Å.

The 5 inch grating used has 14438 lines to the inch (originally the width of the grating is 6 inches, but one inch gives disturbances and was therefore covered during the exposures). For resolving very narrow magnetic separations it is necessary that the temperature of the grating remains constant to at least $0^{\circ}.05$ during a whole exposure. Especially for this

Zeitschr. f. Phys., 48, 62, 1928.

¹⁾ DE BRUIN: These Proceedings 31, N⁰. 6, 593, 1928 and 31, N⁰. 7, 771, 1928.

²) The ZEEMAN-effect is not very much investigated. Some lines in the visible part of the spectrum has been investigated by LÜTTIG (Dissertatie Halle a. S. 1911; Ann. der Phys. **38**, 69, (1912).

³) RUNGE und PASCHEN, Wied. Ann., **61**, 641, 1897, P. ZEEMAN used this mounting since 1900 for many investigations.

MEGGERS and KEIVIN BURNS, Sc. Pap. Bur. of Stand. Nº. 441, (vol. 18), 1922.

purpose an automatical regulation of the temperature is made in the large room of the laboratory where the grating is mounted 1). This regulation enables us to keep the temperature of the grating constant to 0°.01 during the exposure.

The magnetic field.

The magnet is a large WEISS-electromagnet, with water cooled copper coils, made by the engine factory "Oerlikon" (Zürich). It is operated on a current of 100 Ampères. The field is then with the used distance of the endplanes of the poles about 41000 Gauss. The cooling is very effective and makes that the temperature of the magnet does not change observably; in this way satisfactory constancy of the field is obtained.

The light source.

We made use of a gasdischarge without Geissler tube, that passes parallel to the field. The Argon gas is therefore led into a copper "BACKbox"²) enclosing the magnetic poles and provided with quartz windows. The gas discharge passes between 2 circular platin discs, just covering the pole tips of the magnet (5 mm in diameter). The platin discs are insulated from the pole pieces by using thin pieces of mica. Platin discs and mica are attached to conical plugs, to our purpose made of ebonite and ground to fit into openings into the box. Without the magnetic field the discharge spreads through the whole of vacuum space, with magnetic field and well choosen gas pressure (in the case of Argon between 2 and 3 cm) the discharge contracts to the central part of the field and comes to high brilliancy there. We used un uncondensed high potential alternating current furnished by a large transformer that operated indefinitely on $\frac{1}{2}$ K.W., while the current in the secundary was 25 m.A.

The times of exposure varied between 4 and 6 hours.

Intensity measurement of the field.

The intensity of the magnetic field can be measured by means of the exactly known ZEEMAN-effect of spectral lines, that may not show dissymmetries in their magnetic separations. In connexion with the spectral region that was investigated, we used the ZEEMAN-effect of the well known Zn-triplet 4811, 4722 and 4680 or of the Ag grounddoublet 3883 and 3281.

When none of these lines fell in the spectral region we investigated, we could satisfactory make use of the accurately known and measured ZEEMAN-effect of Ar II lines, because the regions we investigated always covered each other over some distance.

¹) We refer to: GEHRCKE: Handb. der Physik. Optik, Band II, zweite Hälfte, erster Teil. P. ZEEMAN und T. L. DE BRUIN: Magnetische Zerlegung der Spektrallinien, p. 605.

²) Struktur der Materie I: E. BACK und A. LANDE: ZEEMAN-effekt und Multiplettstruktur der Spektrallinien.

	λ	Termcombination	ZEEMAN-effect
Zn. {	4810.534 4722.163 4680.140	${}^{3}P_{2} - {}^{3}S_{1}$ ${}^{3}P_{1} - {}^{3}S_{1}$ ${}^{3}P_{0} - {}^{3}S_{1}$	(0.00)(0.50)1.001.502.00(0.50)1.502.00(0.00)2.00
Ag {	3382.89 3280.67	${}^{2}S_{1} = {}^{2}P_{1}$ ${}^{2}S_{1} = {}^{2}P_{2}$	(0.67) 1.33 (0.33) 1.00 1.67

2	NT 1	1		Second and a second second	1	
3.	Ivormal	and	anomal	ous	g-value	es.

According to the theory of LANDÉ¹) the ZEEMAN-effect of a classified spectralline, arising from the combination between two energy levels (terms) can be calculated. An external magnetic field splits up a term with the inner quantumnumber j in 2j + 1 sublevels with the magnetic quantumnumbers m = j, $j - 1, \ldots - j$. The energy alteration of the term, $\triangle E = h . \triangle \nu$, is given bij the expression: $\triangle \nu = m. g. o. \left(o = \frac{e}{m} \cdot \frac{H}{4\pi c}\right)$ means the normal resolution g is LANDÉ's splitting factor, which can be calculated directly by means of the quantumnumbers of a term namely;

$$g = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)},$$

in which j = inner quantum number, s = rotational quantum number, l = azimuthal quantum number.

EXAMPLE: A II. λ 3729,300 = 4 s ${}^{4}P_{3}$ - 4 p ${}^{4}S_{2}$.²)

4 s ⁴P₃: $j = \frac{5}{2}$, $s = \frac{3}{2}$, l = 1, g = 1,60; 2j + 1 = 6 magnetic levels with $m = \frac{5}{2}$, $\frac{3}{2}$, $\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{3}{2}$, $-\frac{5}{2}$.

4p ⁴S₂: j = 3/2, s = 3/2, l = 0, g = 2,00; 2j + 1 = 4 magnetic levels with m = 3/2, 1/2, -1/2, -3/2.

The levels with $\triangle m = 0$ and ± 1 combine ($\triangle m = 0$, π -component, $\triangle m = \pm 1$, σ -component).

¹) Struktur der Materie I; E. BACK und A. LANDÉ: ZEEMAN-effekt und Multiplettstruktur der Spektrallinien.

²) The inner quantum number *j* is for typographical simplicity replaced by the whole number : $j + \frac{1}{2}$.

Thus the calculated energy alterations are:

$$4 s {}^{4}P_{3} := -4,00 - 2,40 - 0,80 0,80 2,40 4,00$$

 $4 p {}^{4}S_{2} : - 3,00 - 1,00 1,00 3,00$

-2.20 - 1.80 - 1.40 - 1.00 - (0.60) - (0.20) (0.20) (0.60) 1.001.40, 1.80 2.20

or :

 \pm (0,20) (0,60) 1,00 1,40 1,80 2,20.

Observed is:

 \pm (0,20) (0,60) 1,00 1,40 1,80 2,20.

It appears however that in many cases the ZEEMAN-effect calculated in this way does not agree with the experiments. One supposes, that when the g-formula holds, the coupling of the quantum numbers is the normal one, (RUSSELL-SAUNDERS coupling) symbolically given by

 $\{[(s_1 s_2 \ldots) (l_1 l_2 \ldots)] H\} = (sl) H = jH.$

Other kinds of coupling give rise to anomalous g = values¹). EXAMPLE: Multiplet 2.

A II. $\lambda 4657,889 = 4s^2P_2 - 4p^2P_1$. According to LANDE's formula the normal g-values are $g^2P_2 = 1,33$ and $g^2P_1 = 0,67$ and the ZEEMAN-effect calculated with these g-values is

1,67 1,00 (**0,33**) (**0,33**) 1,00 **1,67**.

Observed however is:

1,50⁵ 1,14⁵ (**0,16**⁵) (**0,16**⁵) 1,21 **1,51**,

From this are now calculated the *g*-values $g_1 = g 4s {}^2P_2$ and $g_2 = g 4p {}^2P_1$ as follows:

$$4s^{2}P_{2}: -\frac{3}{2}g_{1} - \frac{1}{2}g_{1} + \frac{1}{2}g_{1} + \frac{3}{2}g_{1}$$

$$4p^{2}P_{1}: -\frac{1}{2}g_{2} + \frac{1}{2}g_{2}$$

- combine

combine

$$\pm$$
 (¹/₂ ($\mathbf{g}_1 - \mathbf{g}_2$)) ¹/₂ ($g_1 + g_2$) ³/₂ $\mathbf{g}_1 - \frac{1}{2} \mathbf{g}_2$

This gives:

$$^{1}/_{2}(g_{1}-g_{2})=0.16^{5}$$
 and $^{3}/_{2}g_{1}-^{1}/_{2}g_{2}=1.50^{5}$

thus:

$$g_1 = 1,33$$
 and $g_2 = 0,99$.

Hence we see that $g 4p {}^{2}P_{1}$ is an anomalous one.

¹) S. GOUDSMIT und G. E. UHLENBECK : Zeitschr. f. Phys. 35, 618, 1926.

S. GOUDSMIT und E. BACK: Zeitschr. f. Phys. 40, 530. 1927.

The observed ZEEMAN-effect of the line λ 4764,848 = 4 s ${}^{2}P_{1}$ - 4 p ${}^{2}P_{2}$ is:

1,51 0,92 (**0,28**) (**0,28**) 0,99 **1,54**.

The g-values are here calculated in the same way to:

 $g 4s {}^{2}P_{1} = 0.67$ and $g 4p {}^{2}P_{2} = 1.23$.

According to the g-formula one should expect 0,67 and 1,33. We now can predict with the found g-values the deviating ZEEMAN-

effects of both the other lines of the multiplet. We expect e.g. with the given g-values that the line $\lambda 4545,040 = 4 s^2 P_2 - 4 p^2 P_2$ shows the ZEEMAN-effect

$$\pm (0,05) (0,15) 1,18 1,28 1,38.$$

Observed is

 \pm (0,16) 1,28.

When the coupling is the normal one, that means when we may use the g-formula, of LANDÉ one should expect that the ZEEMAN-effect of this line would show a sharp triplet (0,00) 1,33.

The deviating g-values in the following tables ¹) are calculated in the same way as in this example.

4. The ZEEMAN-effect of the Ar II lines.

	4s	4P1	515.70	4P2	844.40	4P3
5.	4P1	3. 4972.16 20106.4	515.85	6. 4847.783 20622.25		_
	357.30					
	4P ₂	5. 5062.019 19749.47	515.60	5. 4933.226 20265.07	844. 42	7. 4735.855 21109.49
	307.78					
	4P3	_		6. 5009.246 19957.53	844.03	9. 4805.993 20801.56
6.	4D1	8. 4379.657 22826.44	515.7 2	5. 4282.894 23342.16		_
	260.31					
	4D2	7. 4430.185 22566.11	515.7 4	7. 4331.194 23081.85	84 4.3 6	3. 4178.344 23926.21
	494.4 0					÷
	4D3	_		9. 4425.995 22587.23	844.38	6. 4266.524 23431.71
	439.40					
	4D4			_		10. 4348.062 22992.30
4.	4S2	6. 3928.599 25447.20	515.68	9. 3850.565 25962.88	844.21	10. 3729.300 26807.09

MULTIPLETS 5, 6 and 4.

1) See for the numbers of the multiplets the figure of the energy levels.

		Termcomb.			ę]x	g	ly	arks
	λ	x—y		ZEEMAN-effect	theor.	obs.	theor.	obs.	Remi
5.	506 2 .019	4s 4P ₁ — 4p 4P ₂	L ¹) obs.	(0.47) 1.27 2.20	2.67		1.73		1)
	5009.246	4s 4P ₂ — 4p 4P ₃	L obs.	(0.07) (0.20) 1.40 1.53 1.67 1.80	1.73	8	1.60		2)
	4972.16	4s ⁴ P ₁ — 4p ⁴ P ₁	L obs.	(0.00) 2.67	2.67		2.67		3)
	4933.226	4s 4P ₂ — 4p 4P ₂	L obs.	(0 .00) 1.73 (0.00) 1.73	1.73	1.73	1.73	1.73	4)
	4847.783	4s ⁴ P ₂ — 4p ⁴ P ₁	L obs.	(0.47) 1.27 2.20 (0.46) 1.27	1.73	1.73	2.67	2.67	5)
	4805.993	4s 4P ₃ — 4p 4P ₃	L obs.	(0.00) 1.60 (0.00) 1.60	1.60	1.60	1.60	1.60	6)
	4735.885	4s 4P ₃ — 4p 4P ₂	L obs.	(0.07) (0.20) 1.40 1.53 1.67 1.80 (0.00) 1.48	1.60	1.60	1.73	1.73	7)
6.	4430.185	4s ⁴ P ₁ — 4p ⁴ D ₂	L obs.	0.47 (0.73) 1.93 0.46 (0.74) 1.93	2.67	2.67	1.20	1.20	8)
	4425.995	4s 4P ₂ -4p 4D ₃	L obs. calc.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.73	1.73	1.37	1.33	9)
	4379.675	$4s \ ^{4}P_{1} - 4p \ ^{4}D_{1}$	L obs.	(1.33) 1.33 (1.33) 1.33	2.67	2.67	0.00	0.00	10)
	4348.062	4s 4P3-4p 4D4	L obs.	(0.09) (0.26) (0.43) 1.00 1.17 1.34 1.51 1.69 1.86 (0.00) 1.09	1.60	1.60	1.43	1.43	11)
	4331.194	4s ⁴ P ₂ —4p ⁴ D ₂	L obs.	(0.27) (0.80) 0.93 1.47 2.00 (0.28) 0.83 1.47 2.00	1.73	1.73	1.20	1.20	12)
	4282.894	$4s \ ^{4}P_{2} - 4p \ ^{4}D_{1}$	L obs.	(0.87) 0.87 2.60 (0.86) 0.86 2.58	1.73	1.73	0.00	0.00	13)
	4266.524	4s 4P ₃ —4p 4D ₃	L obs. calc.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.60	1.60	1.37	1.33	1 4)
4.	3928.599	4s ⁴ P ₁ - 4p ⁴ S ₂	L obs.	(0.33) 1.66 2.33 (0.33) 1.66 2.32	2.67	2.67	2.00	2.00	15)
	3850.565	4s 4P ₂ - 4p 4S ₂	L obs.	$\begin{array}{c} (0.13) & (0.40) & 1.60 & 1.87 & 2.13 \\ & (0.38^5) \end{array}$	1.73	1.73	2.00	2.00	16)
	3729.300	4s 4P3 — 4p 4S2	L obs.	(0.20) (0.60) 1.00 1.40 1.80 2.20 (0.20) (0.60) 1.00 1.40 1.80 2.20	1.60	1.60	2.00	2.00	17
	-	1) $L = ZEEMA$	N-effe	ct calculated with LANDE's g-formula.	2				

obs. = observed ZEEMAN-effect.

 $\label{eq:calc} calc. = Z {\tt EEMAN} \text{-effect calculated with anomalous g-values}.$

- $^{1)}$) These 3 lines 5062.019, 5009.246 and 4972.16 fall in a region, that is not yet
- 2) investigated. The qualitative results of LüTTIG agree with the classification.
 3)
- 4) Sharp triplet.
- 5) Weak quartet.
- 6) Sharp triplet.
- 7) Diffuse triplet.
- 8) Sharp sextet. See photogram 8.
- 9) Component 0.67 enlarged. See photogram 16.
- 10) Sharp doublet. See photogram 10.
- 11) "Pseudotriplet" Central component enlarged; in both the other large components decrease of intensity to the outside. See photogram 12.
- 12) Partial coincidence with 4332.035 $(3d \ ^4D_2 4p \ ^4P_1)$.
- 13) Weak, but sharp quartet.
- 14) Outside components diffuse.
- 15) Sharp sextet. See photogram 15.
- 16) This line falls in the CN band 3883, therefore the components could not be measured exactly.
- 17) Completely resolved in 12 components. See photogram 9.

-			
4p 4s	² P ₂	1014.74	2P ₁
3. ² D ₃	8. 4879.824 20486.83		_
663.02			
² D ₂	6. 4726.847 21149.85	1014.71	6. 4965.059 20135.14
2. ² P ₁	6. 4657.889 21462.96	1014.86	3. 4889.06 20448.1
5 32 .90			
² P ₂	7. 4545.040 21995.86	1014.60	5. 4764.848 20981.18
1. ² S ₁	5. 4375.942 22845.82	1014.74	6. 4579.347 21831.08

MULTIPLETS 3, 2, 1.

	λ	Termcomb. x-y		ZEEMAN-effect			theor.	obs.	theor.	obs.	Remarks			
3.	4965.059	4s ² P ₁ — 4p ² D ₂	L obs. calc.	(0.07) (0.00) (0.11 ⁵)	0.73 0.78 ⁵	0.87 1.02 1.01 ⁵				0.67	0.67	0.80	0.90	1)
	4879.824	4s ² P ₂ — 4p ² D ₃	L obs. calc.	(0.07) (0.00) (0.05)	(0.20) (0.13 ⁵)	1.00 1. 1.10 ⁵	1.13 14 1.19 ⁵	1.27 1.28 ⁵	1.40 1.37 ⁵	1.33	1.33	1. 2 0	1.24	2)
	4726.847	4s ² P ₂ — 4p ² D ₂	L obs. calc.	(0.27) (0.24) (0.22)	0.53 (0.65) (0.65)	(0.80) 0.69	1.07 1.12 1.12	1.60 1.54 1.54		1.33	1.33	0.80	0.90	3)
2.	4889.06	4s ² P ₁ — 4p ² P ₁	L obs. calc.	(0.00) (0.17) (0.16)	0.67 0.83 0.83					0.67	0.67	0.67	0.99	4)
	4764.848	4s ² P ₁ — 4p ² P ₂	L obs. calc.	1.67 1.51 1.51	1.00 0.92 0.95	(0.33) (0.28) (0.28)	(0.33) (0.28) (0.28)	1.00 0.99 0.95	1.67 1.5 4 1.51	0.67	0.67	1.33	1.23	5)
	4657.889	4s ² P ₂ — 4p ² P ₁	L obs. calc.	1.67 1.50 ⁵ 1.50	1.00 1.14 ⁵ 1.16	(0.33) (0.16 ⁵) (0.17)	(0.33) (0.16 ⁵) (0.17)	1.00 1.21 1.16	1.67 1.51 1.50	1.33	1.33	0.67	0.99	6)
	4545.040	4s ² P ₂ — 4p ² P ₂	L obs. calc.	(0.00) (0.05)	1.33 (0.16) (0.15)	1.18	1.28 1.28	1.38		1.33	1.33	1.33	1.23	7)
1.	4579.347	4s ² P ₁ - 4p ² S ₁	L obs. calc.	(0.67) (0.50 ⁵) (0.50 ⁵)	1.33 1,17 1.17 ⁵					0.67	0.67	2.00	1.68	8)
	4375.942	4s ² P ₂ — 4p ² S ₁	L obs. calc.	1.67 1.51 1.51	1.00 1.15 1.15	(0.33) (0.17) (0.17)	(0.33) (0.17) (0.17)	1.00 1.12 1.15	1.67 1.51 1.51	1.33	1.33	2.00	1.68	9)

- 1) Weak triplet. Central component enlarged.
- 2) Diffuse triplet.
- 3) Sharp octet. See photogram 2.
- 4) Weak quartet.
- 5) Sharp sextet. See photogram 1.
- 6) Sharp sextet. See photogram 3. (The slight deviations of these values from those given in the original dutch paper are due to recent measurements on the photogram.)
- 7) See photogram 6.
- 8) See photogram 5.
- 9) Component 1.51 weak.

	5s 1p	4P1	7 2 9.50	4P2	627.90	4P3
11.	4P1	1. 3669.550 27243.56	729.87	4. 3770.569 26513.69		_
	357.30					
	4P2	4. 3622.204 27599.69	7 2 8.96	3. 3720.467 26870.73	627.99	5. 3809.499 26242.74
	307.78					
	4P3	_		3. 3678.328 27178.5 4	627.84	6. 3765.313 26550.70
12.	4D1	6. <u>4076.704</u> 24522.72	730.96	3. 4201.946 23791.76		
	260.31					
	4D2	5. 4033.872 24783.10	729.04	6. 4156.135 24054.06	627.66	3. 4267.49 23426.4
	494.40					
	4D3	_		4. 4072.429 24548.48	627.91	4. 4179.329 23920.57
	439.40					
	4D4	_		-		10. 4103.957 24359.88
10.	4S2	1. 4564.50 21902.1	729.0	3. 4721.66 21173.1	628.1	2. 4866.00 20545.0

MULTIPLETS 11, 12 and 10,

	λ	Termcomb. x — y	ZEEMAN-effect	theor.	obs.	theor.	obs.	Remarks
12.	4156.135	4p 4D2 - 5s 4P2	L (0.27) (0.80) 0.93 1.47 2.00 obs. (0.63) calc. (0.21 ⁵) (0.64) 0.98 ⁵ 1.41 ⁵ 1.84	1.20	1.20	1.73	1.63	1)
	4076.704	4p 4D1 — 5s 4P1	L (1.33) 1.33 obs. (1.24^5) 1.245 calc. (1.26^5) 1.265	0. 0 0	0.00	2.67	2.53	2)
	4033.872	4p 4D2 — 5s 4P1	L 0.47 (0.73) 1.93 obs. 0.61 calc. 0.53^5 (0.66^5) 1.86 ⁵	1. 2 0	1.20	2.67	2.53	3)

7	'n	2
1	У	υ

		Termcomb.		g	x	g !	1	arks
	λ	x - y	ZEEMAN-effect	theor.	obs.	theor.	obs.	Rema
11.	3809.499	4p 4P2 — 5s 4P3	L (0.07) (0.20) 1.40 1.53 1.67 1.80 (0.00) 1.47	1.73	1.73	1.60	1.60	4)
	3770.569	4p 4P1 — 5s 4P2	L (0.47) 1.27 2.20 obs. (0.51^5) 1.09 calc. (0.51^5) 1.11 2.14 ⁵	2.67	2.67	1.73	1.63	5)
	3765.313	4p 4P3 — 5s 4P3	L (0.00) 1.60 obs. (0.00) 1.60	1.60	1.60	1.60	1.60	6)
	3720.467	4p 4P2 — 5s 4P2	L (0.00) 1.73 obs. 0.16^5 1.70 calc. (0.05) (0.15^5) 1.58 1.68 1.78^5	1.73	1.73	1.73	1.63	7)
	3678.328	4p 4P3 — 5s 4P2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.60	1.60	1.73	1.63	8)
	3622.204	4p 4P2 — 5s 4P1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.73	1.73	2.67	2.53	9)

1) Diffuse, weak doublet.

2) Coincidence with 4077.057 ($4p \, {}^{2}D_{2}$ — $5s \, {}^{2}P_{1}$). Only one component can be measured in regard to the Fe-line 4076.642, therefore the measurement is not very exact.

4) "Pseudotriplet", diffuse. 3) Diffuse doublet.

- 5) Sharp quartet, component 0.51 exactly measurable. 7) Weak, very diffuse quartet.
- 6) Sharp triplet.
- 8) "Pseudotriplet", diffuse.
- 9) Very weak quartet.

	5s 4p	² P ₂	824.00	² P ₁
9.	2D3	10. 4103.957 24359.88		_
	663.02			
	2D2	5. 4218.683 23697.43	823.16	2. 4077.057 24520.59
8.	2p ₁	4. 4275.167 23384.36	823.9	1. 4129.67 24208.2
	53 2 .90			
	² P ₂	2. 4375.031 22850.68	824.32	6. 4222 .679 23675.00
7.	2S1	(4 543.68) (2 2002.44)	824.00	8. 4379.657 22826.44

MULTIPLETS 9, 8 and 7.

		Termcomb.					<i>a</i>			9	'x	9	'y	arks
	^	x-y			Z	EEMAN-	enect		7	theor.	obs.	theor.	obs.	Rem
9.	4218.683	4p 2D ₂ - 5s 2P ₂	L obs.	(0.27)	0.53	(0.80) (0.79)	1.07	1.60		0.80	0.90	1.33	1.43	1)
		 In the second bullet 	calc.	(0.265)	0.635	(0.795)	1.165	1.695		And				
	4103 057	4n 2Da 5a 2Da	L	(0.07)	(0.20)	1.00	1.13	1.27	1. 4 0	1 20	1 24	1 22	1 43	2)
	1105.957	+p +D3 - 5s +P2	calc.	(0.00) (0.09 ⁵)	(0.285)	0.97	1.145	1.335	1.52 ⁵	1.20	1.27	1.55	1.15	2)
	4077 057	4 - 2D - 5 - 2D	L	(0.07)	0.73	0.87				0 80	0 00	0 67	0.91	2)
	1077.057	ip -D ₂ = 5s -r [calc	(0.00) (0.04 ⁵)	0.855	0.94 0.94 ⁵				0.80	0.90	0.07	0.01	J)
8.			L	(0.33)	1.00	1.67								
	4275.167	4p ² P ₁ — 5s ² P ₂	obs. calc.	(0.22) (0.22)	1.21	1.64 ⁵ 1.65				0.67	0.99	1.33	1.43	4)
	4 222.679	4p ² P ₂ — 5s ² P ₁	L obs. calc.	(0 33) (0.21) (0.21)	1.00 1.03 1.02	1.67 1.45 1.41 ⁵				1.33	1.23	0.67	0.81	5)
							52/A							
7.	4379 657	4n 2S1 _ 5s 2D1	L	(0.67)	1.33					2 00	1 68	0 67	0 81	6)
	.5. 7.057	-1p -01 — 55 -11	calc.	(0.435)	1.245					2.00	1.00	0.07	0.01	0)

- 1) Diffuse doublet, decrease of intensity clearly to the inside.
- 2) Coincidence with 4103.957 (4p ${}^{4}D_{4}$ —5s ${}^{4}P_{3}$). "Pseudotriplet".
- 3) Partial coincidence with 4076.704 $(4p \ ^4D_1 5s \ ^4P_1)$.
- Sharp quartet. (The slight deviations of these values from those given in the original dutch paper are due to recent measurements on the photogram.)
- 5) Sharp sextet.
- 6) Coincidence with the strong doublet 4379.657 ($4s \, ^4P_1 4p \, ^4D_1$). We measured a distance 1.65, which perhaps can agree with the distance from -0.43^5 to $+1.24^5 = 1.68$ of the calculated ZEEMAN-effect. See photogram 10.

MULTIPLETS	41,	42	and	4 0.
------------	-----	----	-----	-------------

40.
×D4
_
_
4400.986 2715.81
2

		4p	3d	⁴D	1	107.0	0 ⁴ D ₂	149.53	⁴ D ₃	153.9	0	4D4		
	42.	4]	Dı	3. 3 89 2569	01.400 0.44) 107.0	4. 3875.256 5 25797.49		_					
		260	.31											
		4]	D2	3.393 2543	1.232 0.14	106.8	4. 3914.781 7 25537.01	149.61	3. 3891.978 25686.62					
		494	. 40				4 2002 046		5 3069 346		4	2044	250	
			3	_			25042.75	149.57	25192.32	53.8	4 2	25346	16	
		439 4]	.47 D4				_		4. 4038.816 24752.76	53.9	8 . 5 2	4013. 24906.	85 2 71	
				(255	1 1 0)		1 2517 020		1 2400 (65	C arried				
	40.	1	52	(355) (2831	1.18) 1.05)	106.60	1. 3517.929 6 2 8417.71	148.31	28566.02			-		
	Termcomb							gx	ç	ly	rks			
	λ			х—у			ZEEMAN-effect					heor.	obs.	Rema
41.	4431.	002	3d 4	⁴ D ₃ —4p 4P ₃	L obs. calc.	(0.11) ((0.11) (0.34) (0.57) 1.03 (0.53) (0.33) (0.55) 1.05	1.26 1. 1.27 1.	49 1.71 1.94 49 1.71 1.93	1	.37 1.3	8 1.60	1.60	1)
	44 00.	986	3d ·	4D4—4p 4P3	L obs.	(0.09) ((0.00)	0.26) (0.43) 1.00	1.17 1. 1.08	34 1.51 1.69 1.	86 1	.43 1.4	31.60	1.60	2)
	4400.	101	3d ·	⁴D2—4p 4P2	L obs.	(0.27) ((0.80) 0.93 1.47 0.83 1.49	2.00		1	.20 1.2	01.73	1.73	3)
	4371.	334	3d	4D3—4p 4P2	L obs. calc.	(0.18) ((0.18) ((0.18) ((0.54) 0.83 1.19 (0.55) 0.86 (0.57) 0.85 1.20	1.55 1.9 1.56 1.9	1	1	.37 1.3	8 1.73	1.73	4)
	4352.	198	3d	4D1-4p 4P1	L obs.	(1.33) 1 (1.32) 1	1.33 1.32			0	.00 0.0	02.67	2.67	5)
	4332.	.035	3d -	⁴ D ₂ —4p ⁴ P ₁	L obs.	0.47 (0 0.47	. 73) 1.93			1	.20 1.2	02.67	2.67	6)
42.	4013.	852	3d 4	¹ D ₄ —4p ⁴ D ₄	L obs.	(0.00) 1 (0.00) 1	1.43 1.44		-	1	.43 1.4	3 1.43	1.43	7)
	3968.	346	3d 4	¹ D ₃ —4p ⁴ D ₃	L obs. calc.	(0.00) 1 (0.00) (0.02 ⁵) ((0.07 ⁵) (0.12 ⁵) 1.12	⁵ 1.25 ⁵ 1	1.36 .30 ⁵ 1.35 ⁵ 1.40 ⁵ 1.4	155	. 37 1.3	8 1.37	1.33	8)
	3944.3	259	3d 4	⁴ D ₄ —4p ⁴ D ₃	L obs. calc.	(0.02) (0 1.4 (0.04 ⁵) (0	0.09) (0.14) 1.29 1 7 (0.00) 0.14 ⁵) (0.24 ⁵) 1.18 ⁴	.34 1.40 1.57 5 1.285 1.	1.46 1.51 1.57 37 ⁵ 1.47 ⁵ 1.57 ⁵ 1.6	7 ⁵	.43 1.4	3 1.37	1.33	9)

MULTIPLETS 41, 42 and 40 (Continued).

- 1) Partial coincidence with 4331.194 ($(s \, ^4P_2 4p \, ^4D_1)$). The 0.53 components are weak. With the micro-projection apparatus 2 very weak components can yet be observed outside the 0.53 components.
- "Pseudotriplet". Central component enlarged, in both the other large components decrease of intensity clearly to the outside.
- 3) Weak, partial coincidence with 4400.986 $(3d \, {}^4D_4 4p \, {}^4P_3)$.
- 4) Partial coincidence with 4370.785.
- 5) Sharp doublet. See photogram 11.
- 6) Partial coincidence with 4331.194 (4s ${}^{4}P_{2}$ —4p ${}^{4}D_{1}$), therefore not exactly measurable.
- 7) Sharp triplet.
- 8) All components diffuse.
- 9) Very asymmetric triplet, diffuse.

The following lines, combinations with the higher 4*d*-terms, generally are weak lines of the spectrum. Therefore the separations of these lines are not resolved so finely, that all *g*-values of these levels could be calculated.

_	λ	Termcomb. $x-y$		ZEEMAN-effect	Remarks
24.	3826.826	4p 4D3 — 4d 4D3	L. obs.	(0.00) 1.37 (0.00) 1.44	1)
	3780.868	4p 4D4 - 4d 4D4	L. obs.	(0.00) 1.43 (0.00) 1.41	
	3763.565	4p 4D4 — 4d 4D3	L. obs.	(0.02) (0.09) (0.14) 1.29 1.34 1.40 1.46 1.51 1.57 (0.00) 1.51	2)
23.	3535.364	4p 4P1 — 4d 4D2	L. obs.	0.47 (0.73) 1.93 0.60	3)
	3514.426	4p 4P2 - 4d 4D3	L. obs.	(0.18) (0.54) 0.83 1.19 1.55 1.91	4)
	3509.811	4p 4P1 - 4d 4D1	L. obs.	(1.33) 1.33 1.32 ⁵	5)
	3491.573	4p 4P3 — 4d 4D4	L. obs.	(0.09) (0.26) (0.43) 1.00 1.17 1.34 1.51 1.69 1.86 (0.00) 1.09	6)
	3491.290	4p 4P2 - 4d 4D2	L. obs.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7)
	3476.776	4p 4P3 — 4d 4D3	L. obs.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8)
	3466.3 ₈₃	$4p \ ^{4}P_{2} - 4d \ ^{4}D_{1}$	L. obs.	(0.87) 0.87 2.60 2.33 (0.74) (0.74) 2.43	9)

MULTIPLETS 23, 24, 30, 18 and 16.

-	-	
7	O	14
1	7	

MULTIPLETS 23, 24, 30, 18 and 16 (Continued).

	λ	Termcomb. x—y		ZEEMAN-effect	Remarks
30.	3588.483	4p 4D4 — 4d 4F5	L. obs.	(0.05) (0.14) (0.24) (0.33) 1.00 1.10 1.19 1.29 1.38 1.48 (0.00) 1.14 [1.57 1.67	10)
	3582.397	4p 4D2 — 4d 4F3	L. obs.	(0.09) (0.26) 0.77 0.94 1.11 1.29 0.86 (0.00) 0.98	11)
	3581.652	4p 4D1 — 4d 4F2	L. obs. calc.	(0.20) 0.20 0.60 (0.31 ⁵) 0.31 ⁵ 0.93 (0.31) 0.31 0.93	12)
	3576.658	4p 4D3 — 4d 4F4	L. obs.	(0.07) (0.20) (0.33) 0.90 1.04 1.17 1.30 1.44 1.57 (0.00) 1.10	13)
	3548.530	4p 4D2 — 4d 4F2	L. obs. calc.	0.00 (0.40) (1.20) 0.80 1.60 0.88 (0.29) 0.33 (0.87) 0.91 1.49	14)
	3520.041	4p 4D3 — 4d 4F3	L. obs.	(0.17) (0.51) 0.51 (0.86) 0.86 1.20 1.54 1.89 0.77	15)
18.	3565.071	4p 4D1 — 4d 4P2	L. obs. calc.	(0.87) 0.87 2.60 (0.75 ⁵) 0.75 ⁵ 2.26 ⁵ (0.75 ⁵) 0.75 ⁵ 2.26 ⁵	16)
16.	3979. 3 91	4p 4S2 — 4d 4P1	L. obs. calc,	(0.33) 1.66 2.33 (0.31) 1.69 2.29 (0.31) 1.69 2.31	17)
	3932.567	4p 4S2 — 4d 4P2	L. obs. calc.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18)

- 1) Diffuse triplet.
- 2) Diffuse triplet.
- 3) Diffuse doublet.
- 4) Completely diffuse.
- 5) Diffuse doublet.
- 6) "Pseudotriplet". Central component enlarged; in both the other large components decrease of intensity clearly to the outside. Partial coincidence with 3491.290 $(4p \ 4P_2 4d \ 4D_2)$.
- 7) Partial coincidence with 3491.573 $(4p \ ^4P_3 4d \ ^4D_4)$.
- 8) Asymmetric quartet.
- 9) Asymmetric quartet, coincidence with 3466.383 $(4p \ ^4D_4 4d \ ^4F_3)$.
- 10) "Pseudotriplet". Central component enlarged ; in both the other large components decrease of intensity clearly to the outside.
- 11) Diffuse, asymmetric triplet.
- 12) Sharp quartet. Calculation with $g4p \ ^4D_1 = 0$ and $g4d \ ^4F_2 = 0.62$.
- "Pseudotriplet". Central component enlarged; in both the other large components decrease of intensity clearly to the outside.
- 14) Diffuse doublet. Calculation with $g_{4p} {}^{4}D_{2} = 1.20$ and $g_{4d} {}^{4}F_{2} = 0.62$.
- 15) Diffuse doublet.
- 16) Sharp quartet. Calculation with $g4p \ ^4D_1 = 0$ and $g4d \ ^4P_2 = 1.51$.
- 17) Sharp sextet. Calculation with $g4p \ ^4S_2 = 2.00$ and $g4d \ ^4P_1 = 2.62$.
- 18) Octet. Calculation with $g4p \, {}^{4}S_{2} = 2.00$ and $g4d \, {}^{4}P_{2} = 1.51$. See photogram 14.

7	n	F
1	У	Э

MULTIPLETS 21, 27, 13 and 14.

	λ.	Termcomb.	ZEEMAN-effect	Remarks
21.	3946.140	4p 2D2 - 4d 2D3	L (0.20) (0.60) 0.60 1.00 1.40 1.80 obs. 1.17 (0.00) 1.09	1)
	3925.753	4p 2D2 — 4d 2D2	L (0.00) 0.80 obs. (0.00) 0.86	2)
27.	3559.545	4p 2D3 - 4d 2F4	L (0.03) (0.09) (0.14) 1.00 1.06 1.11 1.17 1.23 1.29 (0.00) 1.04^5	3)
	3545.642	4p 2D2 - 4d 2F3	L (0.03) (0.09) 0.77 0.83 0.89 0.94 (0.00) 0.94	4)
13.	3388.566	4p 2S ₁ — 4d 2P ₂	L (0.33) 1.00 1.67 obs. (0.19^5) 1.10 — calc. (0.19^5) 1.09 ⁵ 1.48 ⁵	5)
14.	3307.228	4p ² P ₁ — 4d ² P ₁	L (0.00) 0.67 obs. (0.12) 0.82	6)
	3293.628	4p ² P ₂ — 4d ² P ₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7)

- 1) Asymmetric triplet. Possible coincidence, therefore not exactly measurable.
- 2) Sharp triplet.
- 3) Strong, diffuse triplet.
- 4) Strong triplet. Coincidence with 3545.855 therefore not exactly measurable.
- 5) Calculation with $g4p \, {}^{2}S_{1} = 1.68$ and $g4d \, {}^{2}P_{2} = 1.29$.
- 6) Rather sharp quartet.
- 7) Calculation with $g4p \, {}^{2}P_{2} = 1.23$ and $g4d \, {}^{2}P_{2} = 1.29$.

INTERCOMBINATIONS.

λ.	Termcomb.		ZEEMAN-effect									
4228.150	4s 4P2 — 4p 2D3	L obs. calc.	(0.27) 0.40 (0.25 ⁵) (0.25) 0.50	(0.80) (0.74)	0.93 0.99	1.47 1. 4 9	2.00 1.98	1)				
4201.946	4s 4P1 — 4p 2D2	L obs. calc.	0.13 (0.93 0.00 (0.88 0.02 (0.88) 1.73)) 1.78				2)				
397 4 .496	4s 4P2 — 4p 2P2	L obs. calc.	(0.20) (0.60 (0.73 (0.25 ⁵) (0.75) 1.13) ⁵) 0.97 ⁵	1.54 1.48 ⁵	1.93 1.98 ⁵		3)				
3650.991	4p 4P1 — 5s 2P2	L obs. calc.	(0.67) 0.67 0.77 (0.61 ⁵) 0.81	2.00 5 2.045				4)				

- 1) Both components of the doublet enlarged, and decrease of intensity clearly to the outside. Calculation with $g4s \, {}^{4}P_{2} = 2.67$ and $g4p \, {}^{2}D_{3} = 1.24$.
- 2) Weak triplet. Calculation with $g_{4s} {}^{4}P_{1} = 2.67$ and $g_{4p} {}^{2}D_{2} = 0.90$.
- 3) Coincidence with 3974.496 (4 p^2P_1 —4 d^2D_2). Calculation with $g4s^4P_2 = 1.73$ and $g4p^2P_2 = 1.23$.
- 4) Very weak doublet. Calculation with $g4p \ ^4P_1 = 2.67$ and $g5s \ ^2P_2 = 1.43$.

λ		ZEEMAN-effect	Remarks	a	2	ZEEMAN-effect	Remarks
4609.634	obs.	(0.00) 1.06	1)	4042.889	obs.	(0.00) 0.80	15)
4598.86	obs.	0.775	2)	3994.885	obs.	(0.61) 1.37	16)
4589. <i>9</i> 01	obs	(0.00) 0.90	3)	3803.231	obs.	(0.00) 1.17	17)
4481.833	obs.	(0.00) 1.19	4)	3766.136	obs.	(0.00) 1.32	18)
4474.998	obs.	(0.00) 0.84	5)	3753.572	obs.	(0.30) 0.945	19)
4448.953	obs.	1.05 (0.00) 1.32	6)	3724.547	obs.	0.825	20)
4439.369	obs.	(0.00) 0.83	7)	3718.253	obs.	(0.00) 0.91	21)
4433.867	obș.	(0.00) 1.06	8)	3660.485	obs.	1.29 (0.00) 1.21	22)
4385.07	obs.	(0.38) 0.87	9)	3639.872	obs.	(0.00) 1.05	
4370.758	obs.	(0.00) 0.80		3561.063	obs.	(0.00) 1.04	23)
4367.782	obs.	(0.54) 1.49	10)	3545.855	obs.	(0.00) 0.97	24)
4277.558	obs.	(0.00) 1.09	11)	3478.260	obs.	(0.00) 1.71	
4237.235	obs.	1.535 (0.775) (0.775) 1.60	12)	3376.468	obs.	(0.00) 1.12	
4131.763	obs.	(0.00) 0.77	13)	3350.972	obs.	(0.00) 0.80	
4072.009	obs.	(0.00) 1.18					
405 2.9 61	obs.	(0.33) 1.00 1.67	14)				
			1				1

UNCLASSIFIED LINES.

- 1) Sharp triplet. See photogram 4.
- 2) Diffuse doublet.
- 3) Rather sharp triplet.
- 4) Sharp triplet.
- 5) Sharp triplet.
- 6) Asymmetric triplet. See photogram 7.
- 7) Sharp triplet.
- 8) Rather diffuse triplet.
- 9) Rather sharp quartet Calculation with g=2 (j=1) and g=1.25 (j=2) gives (0.37^5) 0.87^5 . Perhaps combination with ${}^{2}S_{1}$.

- 10) Calculation with g = 2 (j = 1) and g = 0.94 (j = 1) gives (0.53) 1.47.
- 11) Diffuse strong triplet.
- 12) Diffuse quartet.
- 13) Diffuse triplet.
- 14) Calculation with $g^2S_1 = 2.00$ and $g^2P_2 = 1.33$ gives (0.33) 1.00 1.67 sharp sextet. Perhaps terms of the configuration upon basicterm ¹D or ¹S. See photogram 13.
- 15) Sharp triplet.
- 16) Sharp quartet. Calculation with $g^2S_1 = 2.00$ and $g^2P_1 = 0.76$ gives (0.62) 1.38. Perhaps terms of the configuration upon basicterm ¹D or ¹S.
- 17) Rather sharp triplet.
- 18) Coincidence with 3765.313 $(4p \ ^4P_3 5s \ ^4P_3)$.
- 19) Quartet. Calculation with g = 0.65 (j = 1) and g = 1.25 (j = 1) gives (0.30) 0.95.
- 20) Diffuse doublet.
- 21) Strong, rather sharp triplet.
- 22) Diffuse asymmetric triplet.
- 23) Strong triplet.
- 24) Strong triplet. Coincidence with 3545.642.

5. g-sums.

In § 3 we showed that anomalous g-values can occur. According to theoretical considerations of HEISENBERG 1), PAULI 2) and LANDÉ 3) one expects however, although the g-values of the individual terms deviate, that the g-sum of certain term groups will remain constant. The experimental data are not yet extensive; we refer to the notes of BACK 4), GREEN and LORING 5), SHENSTONE 6). From the terms which arise from the coupling of one electron, one must join to groups the terms with equal j, then the sum of the g-values of the terms of such a group is constant and can be calculated beforehand. This sum is equal to the sum of LANDE's g-values for these terms.

In the following tables the theoretical g-values (g_L) and the observed g-values (g_{obs}) are given for the terms arising from the coupling of a 4s, 4p and 5s electron. The last column shows the g-sums obtained from LANDÉ's values and the observed g-sums.

In the case of the 3d-terms the g-sum rule cannot be checked because all terms are not yet found.

The terms of the 4s-electron all have normal g-values and the g-sum rule is of course fulfilled.

Among the 13 terms arising from the coupling of the 4p-electron there are 8 quartet terms of which 7 have normal g-values, while the 5 doublet

¹) HEISENBERG, Zeitschr. f. Phys., 8, 273, 1922.

²) PAULI, Zeitschr. f. Phys., 16, 155, 1923.

³⁾ LANDÉ, Zeitschr. f. Phys., 19, 112, 1923; Ann. der. Phys., 76, 273, 1925.

⁴⁾ BACK, Ann. der Phys., 76, 317, 1925.

⁵⁾ GREEN and LORING, Phys. Rev., 30, 574, 1927.

⁶⁾ SHENSTONE, Phys. Rev., 30, 255, 1927.

		4P3	4P2	4P1	2P2	2P1	
j = 1	gL Gobs.			2.67 2.67		0.67 0.67	$\Sigma g_L = 3.34$ $\Sigma g_{obs.} = 3.34$
j = 2	gL Gobs.		1.73 1.73		1.33 1.33		$\Sigma g_L = 3.06$ $\Sigma g_{obs.} = 3.06$
j = 3	gL Gobs.	1.60 1.60					$\Sigma g_L = 1.60$ $\Sigma g_{obs.} = 1.60$
		T	ERMS O	F THE	5s-ELEC	TRON	
-		4P3	4P2	4P1	:P2	2P1	
j = 1	GL Gobs.			2.67 2.53		0.67 0.81	$\Sigma g_L = 3.34$ $\Sigma g_{obs.} = 3.34$
j = 2	gL gobs.		1.73 1.63		1.33 1.43		$\Sigma g_L = 3.06$ $\Sigma g_{obs.} = 3.06$
j = 3	gL Gobs.	1.60 1.60		5			$\Sigma g_L = 1.60$ $\Sigma g_{obs.} = 1.60$

TERMS OF THE 4s-ELECTRON.

TERMS OF THE 4P-ELECTRON.

		4P3	4P ₂	4P1	⁴D₄	⁴D₃	4D ₂	⁴D ₁	⁴ S ₂	² D ₃	² D ₂	² P ₁	2P ₂	² S ₁	
j = 1	GL Gobs.			2.67 2.67				0.00 0.00				0.67 0.99		2.00 1.68	$\Sigma g_L = 5.34$ $\Sigma g_{obs.} = 5.34$
j = 2	GL Gobs.		1.73 1.73				1.20 1.20		2.00 2.00		0.80 0.90		1.33 1.23		$\Sigma g_L = 7.06$ $\Sigma g_{obs.} = 7.06$
j = 3	gL Gobs.	1.60 1.60	3			1.37 1.33				1.20 1.24					$\Sigma g_L = 4.17$ $\Sigma g_{obs.} = 4.17$
j = 4	gL gob∎.				1.43 1.43										$\Sigma g_L = 1.43$ $\Sigma g_{obs.} = 1.43$

C. J. BAKKER, T. L. DE BRUIN AND P. ZEEMAN: THE ZEEMAN-EFFECT OF THE SPECTRUM OF IONIZED ARGON (AR II).

Proceedings Royal Acad. Amsterdam Vol. XXXI.

terms all have anomalous g-values. The agreement of the g-sums is excellent.

The terms of the 5*s*-electron all have anomalous g-values in contradiction with the 4*s*-electron (thus Preston's rule does not hold here).

Some terms of the 4*d*-electron are uncertain, thus it is impossible to check the *g*-sum rule in this case. The ${}^{4}F_{5}$ -term is the only term with j=5. According to the *g*-sum rule this term must have a normal *g*-value, which has been found.

The asymmetries of the ZEEMAN-pattern seem to be stronger when anomalous g-values appear. (See table.)

6. Summary.

The ZEEMAN-effect of 110 Ar II lines has been investigated. The analysis of the spectrum given by one of us (DE BR.) has been checked by the ZEEMAN-effect. The ZEEMAN-effect shows the existence of normal and anomalous couplings in the Ar II spectrum; the coupling is anomalous in the higher energy levels. The g-sum rule has been checked for several term groups.

Laboratory "Physica" of the University of Amsterdam.

June 1928.

The photograms are made with a photometer (made by the firm of ZEISS), provided with photo-electric cell and electrometer.

Photograms.

4764.848	4s ² P ₁ —4p ² P ₂		9.	3729.300	4s ⁴ P ₃ —4p ⁴ S ₂
4726.846	4s ² P ₂ —4p ² D ₂		10.	4379.675	4s ⁴ P ₁ —4p ⁴ D ₁
4657.889	4s ² P ₂ —4p ² P ₁		11.	4352.198	$3d {}^{4}D_{1} - 4p {}^{4}P_{1}$
4609.634			12.	4348.062	4s ⁴ P ₃ —4p ⁴ D ₄
4579.347	4s ² P ₁ —4p ² S ₁		13.	4052.961	
4545.040	4s ² P ₂ —4p ² P ₂		14.	3932.567	4p 4S2-4d 4P2
4448.953			15.	3928.599	4s ⁴ P ₁ —4p ⁴ S ₂
4430.185	4s ⁴ P ₁ —4p ⁴ D ₂		16.	4425.995	4s ⁴ P ₂ —4p ⁴ D ₃
	4764.848 4726.846 4657.889 4609.634 4579.347 4545.040 4448.953 4430.185	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$