Mathematics. - A Representation of a Complex of Biquadratic Twisted Curves of the First Kind on Point Space. By J. W. A. van Kol, (Communicated by Prof. Hendrik de Vries).

(Communicated at the meeting of September 29, 1928).
§ 1. The complex of the biquadratic twisted curves of the first kind k^{4} that pass through five given points A_{1}, \ldots, A_{5}, cut a given line a a_{1} twice and a given line a_{2} once, may be represented on the points of space in the following way. We choose a quadratic cone K^{2} and a line c. We suppose a projective correspondence to be established between the points K of a_{1} and the tangent planes x of K^{2} and another one between the points C of a_{2} and the planes γ through c. To a curve k^{4} that cuts a_{1} in K_{1} and K_{2}, and a_{2} in C, we associate the point of intersection of the planes $\varkappa_{1}, \varkappa_{2}$ and γ associated to K_{1}, K_{2} and C.
§ 2. The vertex T of K^{2} is a cardinal point; in T are represented the ∞^{2} curves k^{4} that pass through the point A of a_{2} which is associated to the plane cT.
c is a singular line; the ∞^{2} curves k^{4} that are represented on c, cut a_{1} in pairs of points of a quadratic involution I.

We have still to investigate whether it is possible that of a group of eight associated points five lie in A_{1}, \ldots, A_{5}, two on a_{1} and one on a_{2}; for the consequence would be the appearance of a cardinal point. This, however, is not the case. If in a group of eight associated points five lie in A_{1}, \ldots, A_{5} and two on a_{1}, the eighth lies on the twisted cubic that passes through A_{1}, \ldots, A_{5} and has a_{1} as chord. As a rule this curve does not cut a_{2}.
§3. There are ∞^{1} curves k^{4} that are singular for the representation, viz. the curves k^{4} that pass through A and cut a_{1} in a pair of points of I. They are represented on the rays of the pencil in the plane $c T$ that has T as centre and they lie on the quadratic surface through A, A_{1}, \ldots, A_{5} that contains a_{1}.
§ 4. Our complex contains the following systems of ∞^{1} degenerate curves k^{4} :

The twisted cubic through A_{1}, \ldots, A_{5} that has a_{1} as chord, is completed by its chords that cut a_{2}, to a system of degenerate curves k^{4} that is represented on a line through T.

Each of the five twisted cubics that pass through A_{1}, \ldots, A_{5} and cut a_{1} and a_{2}, is completed by its chords that cut a_{1}, to a system of degenerate curves k^{4} that is represented on a line cutting c and touching K^{2}.

The twisted cubics that pass through A_{1}, \ldots, A_{5} and cut a_{1}, are completed by their chords which cut a_{1} and a_{2}, to a system of degenerate curves k^{4} that is represented on a biquadratic curve c^{4} that passes through T and cuts c three times and which is, accordingly, of the second kind. We prove this by cutting c^{4} by a tangent plane x of K^{2}. The number of points of intersection outside T is equal to the number of curves of the system that pass through the point K of a_{1} that is associated to \varkappa. Now through K there passes one twisted cubic that passes at the same time through A_{1}, \ldots, A_{5} and is completed by its two chords that cut a_{1} and a_{2} to degenerate curves k^{4}. Further there is one twisted cubic that passes through A_{1}, \ldots, A_{5}, cuts a_{1} outside K, and has a ray of the plane pencil $\left(K, a_{2}\right)$ as chord. This is a consequence of the property that the twisted cubics which pass through five given points, produce a polar correspondence in an arbitrary plane, so that the three points of intersection of any of the curves with the plane form a polar triangle ${ }^{1}$). The aforesaid twisted cubic forms a degenerate curve k^{4} through K with the ray of the plane pencil (K, a_{2}) which it has as chord. Accordingly x cuts c^{4} outside T in three points. From the above mentioned property it also follows that c^{4} has a singular point in T and that a plane through c cuts c^{4} outside c in one point, so that c^{4} cuts c three times.

The twisted cubics that pass through A_{i}, \ldots, A_{m} and cut a a_{1} once and a_{2} twice, are completed by their chords through A_{n} to a system of degenerate curves k^{4} that is represented on a twisted cubic which passes through T and has c as chord. This is proved in a similar way as above.

A twisted cubic that passes through A_{i}, \ldots, A_{m} and cuts a_{1} twice, cuts a ray of the plane pencil $\left(A_{n}, a_{2}\right)$ only then twice when this ray lies with A_{i}, \ldots, A_{m} and a_{1} on one quadratic surface. If S_{1} and S_{2} are the points where the plane $A_{n} a_{2}$ is cut outside A_{n} by the twisted cubic that passes through A_{1}, \ldots, A_{5} and has a_{1} as chord, the quadratic surface through A_{i}, \ldots, A_{m} and a_{1} and $A_{n} S_{1}$ (resp. $A_{n} S_{2}$) contains ∞^{1} twisted cubics that pass through A_{i}, \ldots, A_{m} and cut a_{1} and $A_{n} S_{1}$ (resp. $A_{n} S_{2}$) twice and that are completed by $A_{n} S_{1}$ (resp. $A_{n} S_{2}$) to a system of degenerate curves k^{4} which is represented on a line cutting c.

The twisted cubics that pass through A_{i}, \ldots, A_{m}, cut a_{1} and a_{2}, and have a ray of the plane pencil $\left(A_{n}, a_{1}\right)$ as chord, are completed by these chords to a system of degenerate curves k^{4} that is represented on a curve of the order six that passes through T and cuts c five times.

The transversal through A_{n} of a_{1} and a_{2} is completed by the twisted

[^0]cubics that have this transversal as chord, pass through A_{i}, \ldots, A_{m} and cut a_{1} to a system of degenerate curves k^{4} that is represented on a line which cuts c and touches K^{2}.

The line $A_{i} A_{k}$ is completed by the twisted cubics that pass through A_{1}, A_{m}, A_{n}, cut $A_{i} A_{k}$ and a_{1} twice and a_{2} once, and which, accordingly, lie on the quadratic surface that passes through A_{l}, A_{m}, A_{n} and contains $A_{i} A_{k}$ and a_{1}, to two systems of degenerate curves k^{4} that are represented on two lines which cut c.

The conic that passes through A_{i}, A_{k}, A_{l} and cuts a_{1} and a_{2}, is completed by the conics that pass through A_{m}, A_{n} and cut the said conic twice and a_{1} once, to a system of degenerate curves k^{4} that is represented on a line which cuts c and touches K^{2}.

The conics that pass through A_{i}, A_{k}, A_{l} and cut a_{1}, are completed by the conics that pass through A_{m}, A_{n}, cut a_{1} and a_{2} and cut one of the aforesaid conics twice, to a system of degenerate curves k^{4} that is represented on a conic which passes through T, cuts c, and lies in a tangent plane of K^{2}.
§5. K^{2} is the image surface of the system of the curves k^{4} that touch a_{1}.
The curves k^{4} that pass through a given point P, lie on the quadratic surface ω^{2} that passes through A_{1}, \ldots, A_{5} and P and contains a_{1}. Let a_{2} cut ω^{2} in P_{1} and P_{2}. The curves k^{4} on ω^{2} that pass through P and P_{1} as well as those that pass through P and P_{2} cut a_{1} in pairs of points of a quadratic involution. Consequently the system of the curves k^{4} that pass through a given point P, is represented on two lines a_{P} and $a^{\prime}{ }_{P}$, that cut c .
a_{P} and a_{P}^{\prime} together cut K^{2} in four points; hence:
There are four curves k^{4} that pass through a sixth given point and touch a_{1}.

This number can also be deduced directly. For each of the above mentioned involutions on a_{1} has two double points.
§6. Let k_{b} be the image curve of the system Σ_{1} of the curves k^{4} that have a given chord b. By making use of the property that the biquadratic curves of the first kind that pass through six given points and cut a given line twice, lie on the quadratic surface that is defined by these elements, we find that through a given point of a_{1} or a_{2} there pass two resp. one curve of Σ_{1}. Hence a tangent plane K^{2} cuts k_{b} in all in three points. Accordingly k_{b} is a twisted cubic that passes through T and has c as chord.
k_{b} cuts K^{2} outside T in four points. Hence:
There are four curves k^{4} that touch a_{1} and cut a third given line twice.
§7. Let us call O_{l} the image surface of the system Σ_{2} of the curves k^{4} that cut a given line l. In order to determine the degree we cut O_{l} by a line that cuts c and touches K^{2}. The number of points of intersection outside c is equal to the number of curves of Σ_{2} that pass through a given point of a_{1} and a given point of a_{2}. This number is equal to two as the biquadratic curves of the first kind that pass through seven given points and cut a given line, form a biquadratic surface with double points in the given points ${ }^{1}$). From this property it also follows that c is a quadruple line of O_{l}. Consequently O_{l} is a surface of the sixth degree that has a double point in T and on which c is a quadruple line.

By investigating in how many points O_{l} is cut outside c and T by the pair of lines a_{P}, a_{P}^{\prime} and by k_{b}, we find the following numbers, of which the former also directly follows from a property indicated in §5:

There are four curves k^{4} that pass through a given point P and cut a given line l.

There are eight curves k^{4} that have a given chord b and cut a given line l.
§ 8. Two surfaces O_{l} and O_{m} cut each other along the line c, which must be counted sixteen times, and a curve $k_{l m}$ of the order twenty, which is obviously the image curve of the system of the curves k^{4} that cut two given lines l and $m . k_{l m}$ has a quadruple point in T and cuts c in sixteen points.

Intersection of $k_{l m}$ with K^{2} and O_{n} gives:
There are 32 curves k^{4} that touch a_{1} and cut two given lines l and m.
There are 48 curves k^{4} that cut three given lines l, m and n.
§ 9. The system Σ_{3} of the curves k^{4} that cut a_{2} twice and, accordingly, each have two image points on a line through T, is represented on a plane $a_{a_{2}}$ that passes through T. For the curves of Σ_{3} cut a_{1} in pairs of points of the quadratic involution on a_{1} produced by the pencil of quadratic surfaces that pass through A_{1}, \ldots, A_{5} and contain a_{2}.

If we cut $a_{a_{2}}$ by the pair of lines a_{p}, a_{P}^{\prime} and by k_{b}, we find the following numbers, of which the former is again an immediate consequence of a property indicated in §5:

There is one curve k^{4} that cuts a_{2} twice and passes through a given point P.

There is one curve k^{4} that cuts a_{2} as well as a given line b twice.
§ 10. The congruence of the biquadratic curves $k^{\prime 4}$ of the first kind that pass through seven given points A_{1}, \ldots, A_{7}, may be brought into a one-one-correspondence with the points of the plane $a \equiv A_{1} A_{2} A_{3}$ by
${ }^{1}$) Cf. Prof. Jan de Vries, Eine Kongruenz von Raumkurven vierter Ordnung, erster Art. Nieuw Archief v. Wisk. 15, 229.
associating to any curve $k^{\prime 4}$ its fourth point of intersection with α as image point. A_{1}, A_{2} and A_{3} are singular points. In A_{i} are represented the ∞^{1} curves $k^{\prime 4}$ that touch a in A_{i} and lie on the quadratic surface $\omega^{2}{ }_{i}$ that passes through A_{4}, \ldots, A_{7} and contains the lines $A_{i} A_{k}$ and $A_{i} A_{1}$.

A line a through A_{i} in α is the image of the system of the ∞^{1} curves $k^{\prime 4}$ that lie on the quadratic surface ω^{2} which passes through A_{4}, \ldots, A_{7} and contains the lines a and $A_{k} A_{l}$. ω^{2} as well as $\omega^{2}{ }_{i}$ contain two curves $k^{\prime 4}$ that cut a given line l. Hence the system of the curves $k^{\prime 4}$ that cut a given line l, is represented on a biquadratic curve k_{l} with double points in A_{1}, A_{2} and A_{3}, which is evidently the intersection of α and the surface formed by the curves $k^{\prime 4}$ that cut l. In this way we have proved the property applied in § 7.
ω^{2} as well as ω_{i}^{2} contain six curves $k^{\prime 4}$ that touch a given plane φ. Accordingly the system of the curves $k^{\prime 4}$ that touch a given plane φ, is represented on a curve k of the twelfth order with sextuple points in A_{1}, A_{2} and $A_{3} . k_{p}$ cuts k_{l} outside A_{1}, A_{2} and A_{3} in twelve points.

There are, therefore, twelve curves $k^{\prime 4}$ that cut a given line and touch a given plane.

The intersection of two curves k_{ψ} en k_{i} also gives:
There are 36 curves $k^{\prime 4}$ that touch two given planes.
§ 11. Through application of the above we can show in a simple way that the system of the curves k^{4} that touch a given plane φ, is represented on a surface O_{p} of the $18^{\text {th }}$ degree that has a sextuple point in T and on which c is a twelve-fold line.

Intersection of O_{p} with $\left(a_{p}, a_{p}^{\prime}\right), k_{b}$ and $k_{l m}$ gives the following numbers, of which the former again follows immediately from §5:

There are twelve curves k^{4} that pass through a given point P and touch a given plane φ.

There are 24 curves k^{4} that have a given chord b and touch a given plane φ.

There are 144 curves k^{4} that cut two given lines l and m and touch a given plane φ.
§ 12. We can also investigate the representations of different other systems of curves k^{4}, as e.g. the systems of the curves k^{4} that touch two given planes, that cut a given line and touch a given plane, and others.

The numbers that can be deduced from this and the numbers deduced above are the following ones:

$$
\begin{array}{r}
P^{7} v^{2}=4 P^{6} T v=4 P^{5} B^{3}=1 P^{5} B T v=4 P^{5} B v^{4}=48 \\
P^{7} v \varrho=12 P^{6} B^{2}=1 P^{5} B^{2} v^{2}=8 P^{5} T v^{3}=32 P^{5} B v^{3} \varrho=144 \\
P^{7} \varrho^{2}=36 P^{6} B v^{2}=4 P^{5} B^{2} v \varrho=24 P^{5} T v^{2} \varrho=96 P^{5} B v^{2} \varrho^{2}=432 \\
P^{6} B v \varrho=12 P^{5} B^{2} \varrho^{2}=72 P^{5} T v \varrho^{2}=288 P^{5} B v \varrho^{3}=1296
\end{array}
$$

Here P represents the condition that a biquadratic curve of the first kind pass through a given point, v that it cut a given line once, B that it cut a given line twice, T that it touch a given line and ϱ that it touch a given plane.
§ 13. The above enables us to indicate properties of surfaces formed by systems of ∞^{1} curves k^{4}, such as:

The curves k^{4} that have a given chord b, form a surface of the eighth degree with quadruple points in A_{1}, \ldots, A_{5}, on which a_{1} and b are double lines and a_{2} is a single line.

The curves k^{4} that cut two given lines l and m, form a surface of the degree 48 with 24 -fold points in A_{1}, \ldots, A_{5}, on which a_{1} is a 16 -fold line and a_{2}, l and m are 8 -fold lines. The multiplicity of a_{1} is equal to the number of curves k^{4} that pass through a given point of a_{1} and cut l and m. From the property indicated in $\oint 8$ that $k_{l m}$ cuts c in 16 points, it follows that this number is equal to 16 . Etc.

[^0]: ${ }^{1}$) Vg. R. Sturm, Die Lehre von den geometrischen Verwandtschaften, 4, 103.

