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The construction of Projective Geometry from a system ofaxioms is 
generally concluded by the introduction of coordinates. af ter which it 
appears that the defined geometry is identical with an analytica I geometry, 
a geometry of coordinates. 

Since the investigations of vaN STAUDT different methods for this have 
been indicated. They come to this that the points. for the moment those of 
a straight line. are brought into a one-one correspondence with the numbers 
of a system of numbers in which operations exist that satisfy special 
conditions. 

The properties of this system of numbers depend on the phase to which 
we suppose projective geometry to have been developed. 

If we have introduced a complete system ofaxioms. such as are necessary 
for the construction of the "ordinary" projective geometry. the system of 
numbers will have all the properties of the system of the real numbers or 
of that of the real and the complex numbers. 

For the geometry in the wider sense which we get through only 
postulating axioms of Verknüp[ung but which for the rest is completely 
developed in the sense that the [undamental theorem holds good - the 
projective correspondence of two lines to each other is defined by thrce 
conjugated pairs of points - the corresponding system of numbers wiH 
lack all properties of order and continuity the same as the defined geometry. 
The operations addition and multiplication will satisfy the usual require­
ments. The system of nu mb ers need not be identical with th at of the real 
numbers but it can coi:t;lcide e.g. with the set of the rational or the algebraic 
numbers. or it can consist of a finite number of numbers. 

The modern works on projective geometry 1) often follow th is method 
and define the notion of coordinates before axioms of order or continuity 
have been introduced. In this paper too this point of view is taken. 

The ways in which coordinates are introduced. are different. VaN 
STAUDT develops an algebra of Wür[e; SCHUR calculates with prospecti­
vities, VEBLEN and YaUNG give a more direct algebra of points. 

In .what follows a method of introducing coordinates is sketched that 
rests on operations which are defined for the points of aconic. Accordingly 

1) See e.g. O. VEBLEN and T. W. YOUNG. Projective Geometry. Volume I (1910). 
p. lil sqq. 
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it supposes the definition and the most important properties of the conies to 
be given - in so far as they follow from the assumed axioms, hence with 
the exclusion of those of order or continuity. Por the proofs of these 
properties we can best refer to VEBLEN and YOUNG 1) as there 
only use is made of the axioms of "alignment" and "extension" and of the 
fundamental theorem. Of the theorems that are necessary for what follows, 
we mention especially the theorem of PASCAL and the theorems on projec­
tivities on conics. 

The method indicated here gives ijn application of the former theorem 
and has, perhaps, the advantage of a certain graphicalness. Before 
developing it we shall first point out a disadvantage. It is entirelydependent 
on the fundamental theorem as the theory of the conies rests on this. 

By other methods we also arrive at the notion of coordinates when we 
omit the fundamental theorem (or the validity of the theorem of PAPPUS, 
which amounts to the same). In this case the system of numbers only lacks 
the commutativity of multiplication. (Non~Pascal geometry.) Such an 
extension, an introduction of coordinates in a still earlier phase of the 
axiomatic development, is therefore excluded here. 

We choose a conic K. Por the points of K we shall define a few operations. 

We choose two different points on K that we call resp. 00 and 0 and at 00 

we draw the tangent S to K . By the sum a + b of two points a and b of K 
we understand the point K that we get by the following construction. Join 
a b, cut the join by S and join the point of intersection to O. We call 
the second point of intersection of K and this join a + b (Pig. 1). 

If by the join of a point of K and itself we understand the tangent, the 
operation is possible and one~valued for all pairs of points of K ex cept for 

the pair that consists of two points coinciding in 00. 

The addition is commutative: a + b = b + a. 
This is at once evident from the construction. 
The addition is associative: (a + b) + c=a + (b + cl. 
Proof. Cf. Pig. 2, where a, b, c, (a + b) and (b + c) are indicated. We 

must prove that the joins of (a + b) and c and of a and (b + c) cut each 
other on S. 

With a view to this consider the hexagon a - b - c - (a + b) -0 -
(b + cl. The side a , b cuts the side (a + b), 0 on S; in the same way 
b, c and 0, (b + c) cut each other on S. According to the theorem of 
PASCAL also the other two opposite sides of the hexagon cut each other on S. 

The addition has further the properties 

a+O=O+a=a 

a + 00 = 00 + a = 00 (a * (0). 

The operation is unambiguously reversible; there is always one point x 

for which a + x = b, provided a and b do not coincide in 00. We indieate 

1) VEBLEN and YOUNG, l.c. p. 109 sqq. 
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this element by x = b - a and in this way we have defined .. subtraction". 
As a special case to any point there corresponds an opposite. 

Fig. 1. 

Fig. 2. 

Joins of opposite points all pass through the point of intersection (A) of 
the tangents at 00 and 0 (Fig. 3). 

We shall now give a definition of the product of two points of K. With 
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a view to this we choose another point 1 on K different from 00 and 0 and 
we j oin 0 and 00 (p). 

The construction is about the same as that for addition. Join a b. cut th is 
line and p. join the point of intersection to 1 ; the second point of inter­
section of this line and K is the product ab (Fig. 4) . 

The multiplication is possible and one-valued for all pairs of points with 
the exception of the pair O. 00 . 

Fig. 3. 

Fig . i. 

The multiplication is commutative as appears again directly from the 
construction : ab = ba. 

It is also associative: (a b) c = a (b c) . The proof is given just as for 
the addition by the aid of the theorem of PASCAL. The hexagon to be 
considered is here 

a- b-c-a b-l-b c. 
and p is the line of PASCAL. 

70* 
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The multiplication has besides the following properties : 

a . 00 = 00 • a = 00 (a t:- 0) 

a. 0 = 0 . a = 0 (a t:- (0) 

a . 1 = 1 . a = a . 

The multiplication is unambiguously reversible. If at:- 0 and at:- 00, 

there is always one point x so that . 

for which we write x = ~. 
a 

ax=b, 

In this way the operation "division" is defined. The construction for the 
division is indicated in Fig. 5. In order to divide b by a we cut the line b, 1 
by pand join the point of intersection to a. 

F 

Fig. 5. 

This construct ion can also be performed when a coincides with 0 or 00 . 

If the operation of division is extended in this way we have evidently : 

a a 0 00 - = 00 (a t:- 0) and - = 0 (a -=f (0) . The expressions - and - remain 
o 00 0 00 

indefinite. Ta any point there corresponds one inverse point. JOins of 
inverse points all pass through the point of intersection (B) of pand the 
tangent at 1. Further the point - 1, the opposite of 1, is important. By the 
aid of the theory of poles of the conics it appears that the tangent at - 1 
passes through Band that. accordingly, - 1 is its own inverse. Besides it 
appears that the rays from 1 to 00 , 0 , 1 and - 1 lie harmonieally 50 that 
the points 00, 0, 1 and - 1 farm a harmonica I point quadruplet on K. 

It appears accordingly that the associativity of the operations of addition 
and multiplication defined by us are closely connected with the theorem of 
PASCAL for aconie. It deserves attention that for the rest this theorem does 
not play any special part in the construction of projective geometry. Wherc 
in axiomaties of projective geometry the theorem of PASCAL is mentioned, 
the special theorem of PASCAL is always meant (for a degenerate conie). 
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which, in order to distinguish it from the general theorem, might more 
appropriately be indicated by the theorem of PAPPUS. This latter is very 
important as has already been pointed out: it is closely connected with the 
commutativity of multiplication in the system of numbers of the coordinates. 

When a is a fixed point ( -:;é (0), the correspondence of the points x' to 
the points x defined by the equation 

x'=x+a 

is a projectivity on the conic. This follows immediately from the construction 
for the addition, from the definition of projectivity and from the theorem 
that the points of a conic are projected out of two of them in projective 
pencils of rays. The points x are projected out of a on 5 and back again 
out of 0 on K. 

This projectivity has two double points coinciding in 00 . Inversely it 
follows from the fundamental theorem that a projectivity which has two 
double points coinciding in 00, and where the point 0 is projected in the 
point a, is identical with the projectivity th at is fixed through x' = x + a. 

If now we suppose the two projective point ranges x and x', in which 
0, X, 00 2 are resp. associated to a, x + a, 00 2, both to be projected out of 
a point c of K on pand back again out of 1 on K, there again appear two 
projective point ranges where (see Fig. 6), in connection with the definition 

Fig. 6. 

for multiplication, to 0, cx, 00 2 th ere correspond resp. Cl!, C (x + I!), 00 2 so 
that, seen the rem ark just made, the equation 

C (x + a) = ex + ca 
holds good. 

In other words the defined addition and multiplication have the 
distributive property 1). 

In this way the fundamental properties of our operations have been 

I) 1 owe this simple proof to Prof. VAN DER WOUDE. 
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proved. These operations with points of aconic. accordingly. satisfy thc 
rules th at are valid e.g. for the rea I numbers. But then our aim - the 
introduction of coordinates - is reached. 

For if I is a straight line. its points can always be projectively associated 
to those of K. Three arbitrary points A. B. E of I may be associated to 00, 

o and 1 of K. 
If in the projectivity defined in this way the point P of I corresponds to 

the point p of K. p is called "the coordinate of P in the system of 
coordinates A , B, E." 

We have already seen that through x' = x + a a projectivity is defined. 
The same holds good for x' = a x (a =f 0) (projection out of a on p 

and back again out of 1 on K), and for x' =l (involutory collineation with 
x 

B as pole) . 
Consequently also 

x' ax + b ~ + be - ad 
ex + d e e (ex + d) 

(be- ad=f 0) 

defines a projective correspondence between the points of I. Inversely any 
projectivity on I may be expressed by a broken linear function of thc 
coordinates. For if through such a projectivity the points with coordinates 
a, band care associated to A, B, E, hence to those with coordinates 00,0, 

and 1, according to the fundamental theorem it is identical with the 
projectivity that is defined by the equation 

, (e - a) (x - b) 
x = (e - b) (x - ar 

By the anharmonic ratio of four points (A, B. C, D) of I we shall 
:mderstand the coordinate of D in the system of coordinates A, B, C. From 
the fundamental theorem it follows that the equality of anharmon:ic ratios 
is the necessary and sufficient condition for the projectivity of point 
quadruplets. It is at the same time obvious that the anharmonic ratio of 
four points with coordinates Xl' x2' x3' x4 is equal to 

(X3- XI) (X4- X2) 
(X3 - X2) (X4 - XI)' 

The anharmonic ratio of four harmonical points is equal to - 1 according 
to an above rem ark. 

Now the further development of coordinate geometry proceeds in the 
same way as in the other methods. By the coordinates of a point P in a 
plane relative to the fundamental system A, B, C, E we understand the 
coordinates of the projections Pl and P2 (Fig. 7) in resp. the systems of 
coordinates A CEl and B C E2, where El and E2 are the projections of 
the unit point. 
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The proof of the theorem that a straight line of the plane is represented 
by a linear equation and its inverse, the introduction of homogeneous 

Fig. 7. 

coordinates, the extension to space - it is not necessary to enter into it here. 
We shall make an exception for the derivation of the equation of a conie 

in connection with the fact that this curve has played such a prominent 
part in our introduction of coordinates. Let K be the con ie relative to whieh 
our operations have been defined (any other conie may be projectively 
associated to K). Choose the points 00, A and 0 as fundamental points of 
the ternary system of coordinates and the point 1 of K as unit point (Fig. 8). 
We shall determine the coordinates of a point P of the conie and we 
indieate th is point by t when we consider it as a number out of the system 

~ ____ ~=-~~ ______________________ -=~~A 

Fig. 8. 
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of numbers identical with the points of K. If we choose 0 , oo:is X-axis, 0 , 

A as Y-axis, the x of P is accordingly the coordinate of PIon p in the 
system 00, 0 , El' To obtain this we must associate p to K so that ° and 00 

correspond to themselves and El to 1. We arrive at this correspondence 
through projection of the points of p on K out of the point - 1. PI is then 
projected in Q, whieh point is, accordingly, id~ntieal with the x-coordinate 
in question. As, however, the line A P cuts the conie besides in - t, we 
have - 1 . x = t . - t . 

x=t2 • 

The Y-coordinate of P is the coordinate of P2 relative to A , 0, E 2 • The 
Y-axis must, tberefore, be projectively associated to K so that ° corresponds 
to itself, A to 00 and E 2 to 1. We can obtain this by projecting out of 00 

Then to P2 Pis associated, in other words y = t. 
Hence: on a suitably chosen system of coordinates any conie can be 

represented by the parameter equations 

x=t2 y = t , 

or by the equation y2 = x. Consequently on an arbitrary system of 
coordinates a conie is represented by aquadratic equation. 

We make a few more remarks on the operations defined on the conie K . 
Por addition as weIl as for multiplication the points a and b subject to the 
operation had to be joined and the point of intersection of their join and a 
straight line (s, resp. p) had to be determined after which there followed 
projection out of a centre on K (0, resp. 1) . For the addition the straight 
line was a tangent (00), for the multiplieation a chord (00, 0). Between 
the operations there exists this relation that the fixed chord of the latter 
operation joins the point of contact of the tangent and the fixed centre 
both used in the former operation. (Of this special position of the two 
figures that define the operations, the distributive property is a 
consequence) . If we choose an arbitrary chord p , q (where p = q is not 
excluded) and an arbitrary centre m, we can evidently relative to these data 
likewise define an operation between two points of K that is also com­
mutative and associative (Fig. 9). 

However it is easily seen that this can be derived from addition and 
multiplieation (resp. the inverse operations). For if we represent the result 

of the operation applied to a and b by a-[b, if a is considered fixed and b 
variabie, the correspondence 

bi =;-n; 
is projective wh ere pand q are invariant and m is transformed into a. But 
this transformation is obtained by the equation 

aTb = ab (p + q) - 8 b m + p q m - p q (8 + b) • 
ab - (a + b) m + (p + q) m - p q 
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where a, bare interchangeable with p, q, as might be expected. The special 
cases addition and multiplication appear when p = q = 00 , m = 0, 

Fig . 9. 

resp. p= 00, q=o, m=l. 
If we suppose p = q = 0 , m = 00 , we find the operation 

- - ab 
a I b=-- --­

a+b 
1 1 1 

or a-I b =.;;+t' 
hence the "harmonie addition". It uses the tangent at 0 and as centre the 
point 00. Consequently this operation is not only commutative and 
associative, but also distributive with the multiplieation. 

In the equation derived for a lb we can also consider p, q, a and b as 
fixed and consider the equation as one that associates a new point to m by 
joining m to a fixed point, the intersection of p, q and a, b. 

In this case the transformation gets the form 

, (pq - ab) x + ab (p + q) - pq (a + b) x = -=---':--:---'-:"~-'--,------'-'--~,.------"-'------':-"--'--
I (p + q) - (a + b) I x + ab - pq 

It is obviously the general involutory projectivity between the points of 
the conie. The general projectivity arises by means of a curve of the second 
class that touches K twiee. 




