Mathematics. — Bestimmung einer Körperbasis für die rationalen Invarianten einer quaternären in α und β alternierenden Grösse $c_{\alpha\beta}^{\gamma}$. 1) Von D. VAN DANTZIG. (Communicated by Prof. R. Weitzenböck).

(Communicated at the meeting of April 27, 1929).

1. Die quaternäre alternierende Grösse $c_{\dot{\alpha}\dot{\beta}}{}^{\gamma}=-\,c_{\dot{\beta}\dot{\alpha}}{}^{\gamma}$ mit unbestimmten Bestimmungszahlen legt die folgenden Grössen fest :

erstens den kovarianten Vektor

zweitens den kovarianten Tensor vom Rang 4

$$h_{\alpha\beta} = h_{\beta\alpha} = c_{\alpha\lambda}^{...\mu} c_{\beta\mu}^{...\lambda}, \ldots \ldots (2)$$

drittens die kontravariante Tensordichte vom Rang 4 und vom Gewicht 1

$$g^{\alpha\beta} = g^{\beta\alpha} = 3! c_{[12}^{\alpha} c_{34]}^{\alpha\beta}, \dots (3)$$

Daraus entstehen:

erstens die Affinordichte vom Rang 4, Gewicht 1 und Grad 4 (in den $c_{\alpha\beta}^{\cdot,\gamma}$)

$$\mathfrak{M}_{\alpha}^{\cdot,\beta} = h_{\alpha\lambda} \mathfrak{g}^{\lambda,\beta}, \ldots \ldots \ldots \ldots (4)$$

zweitens die kovarianten Vektordichten

$$\stackrel{r}{e_{\alpha}} = \begin{cases}
c_{\alpha}, & r = 1, \\
\mathfrak{M}_{\alpha}^{\lambda} \stackrel{r-1}{e_{\lambda}}, & r = 2, 3, 4,
\end{cases}$$
(5)

wo e_{α} (i, j, ... = 1, 2, 3, 4) das Gewicht i-1 und den Grad 4i-3 hat, und drittens die Unterdeterminanten dritten Grades e^{α} der Determinante \mathfrak{D} der e_{α} :

$$\sum_{i} e_{\alpha}^{i} e^{\beta} = \mathfrak{D} A_{\alpha}^{\beta} = \begin{cases} \mathfrak{D}, & \alpha = \beta, \\ 0, & \alpha \neq \beta, \end{cases} e_{\lambda}^{i} e_{\lambda}^{\beta} = \mathfrak{D} \delta_{j}^{i} = \begin{cases} \mathfrak{D}, & i = j \\ 0, & i \neq j \end{cases} . . . (6)$$

 \mathfrak{D} ist eine relative Invariante vom Rang 4, Gewicht 7 und Grad 28; \mathfrak{e}^{α} ist eine kontravariante Vektordichte vom Gewicht 8—i und vom Grad 31—4i.

¹⁾ Veranlassung zu dieser Note gab eine Bemerkung von R. WEITZENBÖCK: Differentialinvarianten in der EINSTEINschen Theorie des Fernparallelismus, Berliner Sitzungsberichte (1928), S. 471.

Setzt man jetzt

so ist $\overset{k}{\overset{c}{\overset{c}{\circ}}}$ eine relative Invariante vom Gewicht 15-(i+j-k) und vom Grad 60-4 (i+j-k). Weil, wie wir sogleich beweisen werden, bei unbestimmten Bestimmungszahlen $\mathfrak{D}\neq 0$ ist, wird

$$c_{\alpha\beta}^{ij} = \frac{\sum_{\alpha}^{k} c_{\alpha}^{ij} c_{\beta}^{ij} e^{\gamma}}{\mathfrak{D}^{3}} \dots \dots \dots \dots (8)$$

Hieraus ergibt sich sofort, dass die 25 Invarianten $\overset{k}{c}$ und \mathfrak{D} die gesuchte Körperbasis bilden. 1) 2) Denn eine beliebige rationale Invariante der $c_{\alpha\beta}^{\gamma}$ lässt sich, mit Koeffizienten, die von den $\overset{k}{c}$ und \mathfrak{D} abhängen, als eine rationale Invariante der $\overset{i}{e_{\alpha}}$ und $\overset{e}{e_{\alpha}}$ ausdrücken; eine solche gibt es aber nicht ausser $\overset{a}{\mathfrak{D}}$.

2. Um zu beweisen, dass für unbestimmte Bestimmungszahlen $\mathfrak{D} \neq 0$ ist, genügt es, eine Spezialisierung nach bestimmten Bestimmungszahlen anzugeben, für die $\mathfrak{D} \neq 0$ ist. Dazu bezeichne \bar{i} bzw. \bar{i} den i-ten kontravarianten bzw. kovarianten Massvektor in einem beliebigen Koordinatensystem (also e^{α} bzw. e_{α}), $i\bar{j}$, $i\bar{j}$, $i\bar{j}$ und $i\bar{j}$ das allgemeine Produkt von zwei solchen Vektoren (e^{α} e^{β} , usw.); Zahlen ohne Querstrich sind gewöhnliche Zahlenfaktoren. Setzt man dann für

¹⁾ Praktisch leistet sie wenig, weil $\mathfrak D$ in den einfachsten Fällen verschwindet. Z.B. verschwindet im gruppentheoretischen Fall, wo $c_{[\alpha\beta}^{\ \ \dot{\beta}}$ $c_{\gamma\dot{\gamma}}^{\ \dot{\gamma}}$ $c_{\gamma\dot{\gamma}}^{\ \dot{\beta}}=0$ ist, $\mathfrak g^{\alpha\beta}$ c_{β} , folglich auch $\mathfrak e_{\alpha}$ und $\mathfrak D$.

²) Eine (ganze rationale) Basis für diejenigen ganzen rationalen Invarianten der quaternären alternierenden Grösse $c^{\alpha/3}_{\ \gamma}$, deren Grade $\lessapprox 8$ sind, ist von I. C. CHOUFOER aufgestellt worden (Het punt-lijn-connex in de driedimensionale ruimte, Diss., Amsterdam, 1927). Die hier aufgestellte Körperbasis aller rationalen Invarianten enthält solche bis zum 64-ten Grade.

³) Die c sind bis auf geeignete Potenzen von $\mathfrak D$ die Bestimmungszahlen von $c_{\alpha\beta}^{i\dot{\beta}}$ bzgl. eines invariant definierten Koordinatensystems, dessen Massvektoren bis auf geeignete Potenzen von $\mathfrak D$ die e_{α}^{i} und e^{α} sind. Vgl. auch G. F. C. GRISS, Differentialinvarianten von Systemen von Vektoren, Diss. Amsterdam (1925), S. 32.

c
$$_{\alpha,\beta}^{-\gamma}$$
 $(\underline{1}\,\underline{3}-\underline{3}\,\underline{1})\,\bar{1}+(\underline{2}\,\underline{4}-\underline{4}\,\underline{2})\,\bar{2}+(\underline{4}\,\underline{1}-\underline{1}\,\underline{4})\,(\bar{3}+\bar{4})+(\underline{2}\,\underline{3}-\underline{3}\,\underline{2})\,(\bar{3}-\bar{4})$, so wird

$$h_{\alpha,\beta} \qquad \underline{1}\,\underline{1}+(\underline{1}\,\underline{2}+\underline{2}\,\underline{1})+\underline{2}\,\underline{2}+(\underline{1}\,\underline{4}+\underline{4}\,\underline{1})+(\underline{2}\,\underline{3}+\underline{3}\,\underline{2})+\underline{3}\,\underline{3}+\underline{4}\,\underline{4},$$

$$g^{\alpha,\beta} \qquad -(\bar{1}\,\bar{2}+\,\bar{2}\,\bar{1})-\underline{2}\,\bar{3}\,\bar{3}-\underline{2}\,\bar{4}\,\bar{4},$$

$$\mathfrak{M}_{\alpha}^{-\beta} \qquad -(\underline{1}+\underline{2}+\underline{3})\,\bar{1}-(\underline{1}+\underline{2}+\underline{4})\,\bar{2}-\underline{2}\,(\underline{2}+\underline{3})\,\bar{3}-\underline{2}\,(\underline{1}+\underline{4})\,\bar{4},$$

$$e_{\alpha} \qquad \qquad -\underline{1}+\,\underline{2}-\,\underline{3}-\,\underline{4},$$

$$e_{\alpha} \qquad \qquad 2\underline{1}+\,\underline{2}\,\underline{2}+\,\underline{3}\,\underline{3}+\,\underline{4},$$

$$e_{\alpha} \qquad \qquad -6\,\underline{1}-10\,\underline{2}-\,8\,\underline{3}-\,4\,\underline{4},$$

$$24\,\underline{1}+32\,\underline{2}+22\,\underline{3}+18\,\underline{4},$$
und
$$\mathfrak{D}=64\neq 0.$$

3. Substitution von (8) in (1) und (5) ergibt 4 Relationen ersten und 12 Relationen vierten Grades in den $\overset{k}{\text{c}}$ zwischen diesen Invarianten und \mathfrak{D} . Dies stimmt überein mit der zu erwartenden Anzahl von 24-16=8 absoluten, also 9 relativen algebraisch unabhängigen Invarianten. Die Relationen lauten: