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4. Examination of the function gJ. - Flow between fixed parallel 
wa lis. 

The object of this second part is mainly to consider more in detail 
some of the suppositions made in Part I. especially as an examination of 
the properties that must be assigned to the function gJ led to results. 
which for one part seemed promising. but at the other side pointed to 
a formula for the distribution of the velocity U of the mean flow. 
rather differing from that which is found experimentaIly. 

The function gJk was deflned in equation (20); it depends only on the 
y~coordinate of the point k. By eliminating ik between (24) and (22) we 
get the integral equation for gJk : 

gJk = 2 C - R-I - 2 A I tk (~) e - "f I R-'zi (;-)- h ti (;) I. (25) 
S-

In studying this equation we have to demand in the flrst place that 
the summation extended over the ~~space shall be convergent. This 
makes it necessary th at the exponential function becomes zero. wh en 
the ts go to inflnity in any arbitrary direction. 2) The functions Zl(~) are 
essentially positive; the functions ti (~) may be negative as weIl as positive 
(comp. eq. 1 ta. 11 b); hen ce it is necessary that f3 shall be positive. and 
secondly that the form: 

(26) 

or written in fuIl: 

c 2 f/J 7 t~' -~ '+I-~;:;~'_I-~/-i)2 - gJ, (~I+I-~~:~ (~I+i-~I-i)~. (26a ) 

I) Part I has appeared in these Proceedings 32. p. 4 H. 1929. The reader is asked 
to correct an error of print in equation (24): the exponent of e must be read: 

2) Every term of the summation relates to one of the ceJls in which the who/e of the 
~-space was supposed to be divided. 
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(in which 9' is independent of the ts) shall be a positive definite qua~ 

dratic function of the N variables ~ I ' " ~N. Clearly this imposes a 
certain condition on the function II ! . If f.i . we assume that cp is positive. 
th en it will be seen that when (jJ should be negative for a certain 
direction of the ~-space. which of course is possible only for a direction 
giving positive values of tI in the greater part of the field . the right hand 
side of equation (25) would become negative infinite. and no solution 
could be obtained. If (p had too large negative values in some part of 
the field (it cannot be negative everywhere). th en difficulties of the same 
kind may arise for directions in the ~-space giving negative va lues of 
tI in that part of the field. 

Before investigating the condition satisfied by cr. ho wever. I should 
prefer first to deduce the corresponding formulae for the case of the 
flow between two fixed parallei walls. as this case affords a better 
possibility for a comparison with experimental results . 

In the case of the flow between fixed walls we shall denote the 
distance of the walls by h ; the mean velocity of the flow over a cross 
section of the channel by V o ; the pressure gradient (- dp/dx) by ] . 
and the frictional force per unit area of the walls by S. Then: 2 S = Jh. 
We again shall use nondimensional variables by dividing all lengths by 
h. all velocities by Voo ete.; further we put R = e Vo h/f.1- and C = 
Sie V0 2 = J hl2 1! V 0 2. The origin of the system of coordinates will be 
placed midway between the walls. so that the latter are situated resp. 
at y = - ~ and y = +~. The equation for the mean motion now 
becomes : I) 

1 dU -
- - - = - 2C y + uv 

R dy 
(27) 

(on account of the symmetry both dUldy and uv are zero in the axis 
of the channel). As U = 0 at both walls we have the relation : 

- dy y - - = dy U = 1 j. dU j' 
• dy .. 

(28) 

from which we deduce: 

C=6.rdYYI~ + 6R- I = 1J}dXdyy uv+6R-I (29) 

The limits of the integration with respect to y are - }. + {- (unless 
purposely specified otherwise) ; those with respect to x : Xo. Xo + L. 

The dissipation 'condition also in this case has the form given in 
equation (2) . Part I. Eliminating again dUldy and C. and using the 
abbreviations (3). we get: 

I) Comp. a lso : J. M . BU RG ERS, these Proceedings 2 1i . p . 601. 1923. The value of C 
in that paper. however. is twice the value taken here ; moreover the origin of the coor­
dinates had heen put in one of the walls . 
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j' , I2( j' , )2 
F -- . J dxdy( t )2 - T , .J dxdy y t + 

12 j' 1 " 
+ RJ dxdyyt + Rij] dxdyz = O 

t \0 (30) 

When now we introduce once more the system of representative 
points in the ;~space. we can express this condition in the following 
form. analogous to (13): 

c 2 F '::= ~; (..1' J' tk)2 _!? ~ (..1' I )' yk tk)2 + ~ 2' ..1' V yk tk + J 
k ; L k ; R k ; , (31) 

+ 12 ..1'..1')' Zk = 0 \ 
R • ; ) 

This formula enables us to calculate the variation of F produced by 
an arbitrary variation of one of the )··s. In order to make our formulae 
correspond as much as possible to those of § 3. we put: 

2~E2 yk .; f )' yk' tk' W) - 2 f' )' tk W) - 12 Yk R- I = 'I 'k (32) 

Then: 

c 2 IJF = 2 ' (R-2 Z k - q 'k tk) ')) ' = f-2 w,h 
k 

(33) 

when we use the same formula (26) as before. This again leads to (21) as 
the expression for the "most probable distribution". Hence the same 
condition has to be imposed on W. and consequentlyon fI '. as in the 
former case. 

From (32) the following expressions can be deduced for the new 
function lP: 

CP= 241dy Y t - 2 t - 12 Y R- I = - y (4 C - 12 R- I) - 2 t = I 

=R-I(2~~+12Y)~ 
At the wall y = - t. where t = O. the function 'I ' has the value: 

cp (- -~ ) = 2 C - 6 R- I . 

(34) 

(348
) 

at the other wall it has the opposite value. whereas in the axis of the 
channel : 

cp (0) = 0 . 
Finally: I) 

o 
, 1 -j dy y cp = -- R-I 
. 2 

-'I, 
'I, 

I) The corresponding relation in the forrner case is : (" dy = } R-I. 

Ó 



646 

It seems reasonable to suppose that in this case (as weIl as in the 
former one). rp is a monotonous function of y in either half of the 
channel breadth. This of the course implies the same character for the 
part of the frictional force due to the presence of the relative motion. 
i.e. for t = - uv. and for dUjdy. There has never been an indication 
to the contrary. and also from the theoretical point of view there seems 
to be no reason why it should be otherwise. unless it be supposed that 
types of relative motion with a very definite "wave pattern" over the 
breadth of the channel should be preponderant. This seems improbable. 
however. at least in the case of smooth walls. 

We now return to the condition to be fulfilled by if> and "re-translate" 
this condition into the language of the continuous field. by putting in (26): 

_ _ dtp dtp 
z = 1;2 = (,6 lI')2 t - - uv - dx dy . 

and substituting integration with respect to x and to y for the summa­
tion over the points of the lattice. In this way we get: 

if> - -jjdX dy ~ R-2 (,611')2 - rp (y) ~~ ~tp ~ > 0 . (35) 
• ( dx dy ~ 

for all possible functions 11'. satisfying the boundary conditions tp = ~; = 0 

at both walls. 
Now from investigations by LORENTZ and by ORR it can be deduced 

that there exist types of motion. wholly enc10sed within a strip of breadth 
D and satisfying the boundary conditions at the borders of the strip. 
for which : 

JdX dtp dtp for no value of y is negative 
dXdy 

;'(, A j'f' d d .ij dx dy (,6 tp)2 = D2 dx dy a: a; . 
(a) 

(b) 

where A is a certain coefficient. the lower limit of which is. according 
to ORR. 177. 1) We shall suppose that such a motion is present in the 
strip - t :::s; y :s; - t + D. where D < t; outside of this strip tp shall 
have the value zero. Then. if rpmin denotes the smallest value of rp 
occurring in this strip. we have : 

li (, àtp iJtp r( dtp àtp D21r' (, 2 J dx dy rp ox ày > rpmi'J,-, dx dy dx ày' or > rpmin A J dx dy (6 tp) • 

1) Comp. H. A. LORENTZ. Abhandl. üher theoretische Physik. l, p. 48; W. Me. F. ORR. 

Proc. Roy. Irish Acad. 27. p. 124-128. 1907. I must confess that I have controlled the 
formula (a) only for the case of the LORENTZ' vortex; if this formula should not apply 
to the function which according to ORR gives the lowest value for A. a somewhat higher 
value of A ought to he accepted in the following ca!culations. though probably still less 
than LORENTZ' value 288 for the elliptic vortex. 
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Substituting this into (35) we find: 

A 
rpmln < R2 D2 . 

On account of our supposition about the monotonous character of 
11'. the smallest value in such a strip is to be found at the border 
y = - t + D; hence. writing temporarily y' for t + y. we get: 

11' (y') < J?l~'2 . (36) 

As on the other hand the maximum value of qJ is given by (348
). we 

must conclude that 11' everywhere lies bel ow the curve given in the 
accompanying diagram fig. 1. Calling c5 the value of y' for which the 

2,e 

Fig. I. 

limiting value (36) becomes equal to 2 C. we easily deduce from fig. 1: 

Comparing this with (34<"). we obtain: 

1 
C > 8A 

Taking A = 177 (the lower limit given by ORR). we find : 

C >0.00070. 

(37) 

This result is interesting as it has been (and still is) a matter of 
discussion. whether in the case of absolutely smooth walls the resistance 
coefficient C = S/e V0

2 will decrease to zero for infinite values of the 
REYNOLDS' number or not. I) It is generally accepted that this coefficient 
is approximately independent of the form of the section of the channel. 
provided that the REYNOLDS' number is defined in all cases by means 

Ij Comp. L. Hopp. Zeitschr. f. angew. Math. u. Mech. 3. p. 329.1923 ; TH. v. KARMAN. 

Proc. Ist Intern. Congress for Appl. Mech .. Delft. 1924. p. 103; L. SCHILLER. Physik. 
Zeitschr. 26. p. 473. 592. 1925. 

42 
Proceedings Roya1 Acad. Amsterdam. Vol. XXXII. 1929. 
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of the so-called hydraulic radius, rH' which Ü5 equal to twice the area 
of the section,· divided by its perimeter. Now the lowest values for C 
that have been observed until now for a tube of circular section, seem 
to be : 1) 

by STANTON and PANNELL 0,0017 (2 e V o rH/ft = 440.000) 
JAKOB and ERK 0,00166 ( 460.000) 
BAZIN 0,0016 ( ca 1.000.000) 
MOORE 0,0014 ( ca 4.000.000) 
JOHNSTON 0,0010 ( ca 20.000.000) 

The measurements made by STANTON and PANNELL and those by 
JAKOB and ERK are considered to be the most accurate; their results 
can be represented by the formula : 

C = 0,00090 + 0,0763 (2 e Vo rH / ft)-O.35. 

The limiting value is of the same order of magnitude as that given 
by (37). It has to be reminded, however, that our method of estimating 
was still rather rough; a more precise method might raise the theoretical 
limit somewhat (unless it might prove that ORR' s number 177 is not 
applicabIe - comp. note 1) , p. 646, but then at least C > 0,00043). 

The inequality (36) can be used also to deduce an approximate formula 
for the distribution of the velocity of the mean motion over the breadth 
of the channel. Combining it with (34) we find: 

Hence in the central part of the channeI. where y' is not very small 
compared to unity, we may write approximately : 

dU . 
dy - -6y, 

from which we obtain : 

(38) 

This gives for the velocity in the axis 1,25 times the mean velocity. 
In reality it is much less, about 1,1 times the mean velocity. In the 
case of pure laminar motion we have: 

dU 
dy =-12y, 

3 U-- -6y2. -2 ' 

our value of dU/dy is just half of that existing in the laminar motion. 

1) T . E . STANTON and J. R. PANNELL, Phil. Trans. Roy. Soc. London A 214, p. 199, 
19li (comp. eH. H. LEES, Proc. Roy. Soc. London A 91, p. 46, 1915); M. JAKOB und 
S. ERK. Mitt. über Forschungsarbeiten herausgeg. v. V . D. I Heft 267, 192'1; H. BAZIN, 
Mém. Acad. d. Sciences (Sav. Etrangers) 32, NO. 6, p. 1. 1902. MOORE's and JOHNSTON'S 
values are taken from a diagram given by HOPF, I. c., curves 25, 26 of fig. 2. 
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The same relation is obtained in the case of the flow between two waIis. 
moving with respect to each other. and as far as I can see the case of 
the motion through a tube with circular section does not promise a 
different result. so that the discrepancy from the e :perimental data is 
even greater here. I) 

5. Review of the assumptions made in § 2: physical interpretation 
of the condition cp > O. 

In view of the discrepancy mentioned at the end of the foregoing §. 
it seems wor th while to consider again the principal suppositions that 
have been made. 

The basis of our assumptions was that. apart from the boundary con~ 
ditions and the equation of continuity. the dissipation condition is the 
only equation governing the turbulent motion. 

We have pictured in the ~-space the assembly of all possible fields. 
satisfying the boundary conditions and the equation of continuity. Every 
imaginable type of motion. LORENTZ's vortices. üRR's solutions. all kinds 
of solutions constructed by various authors have their representative 
points in this space. just as weil as wholly arbitrary fields . The various 
intensities of one and the same type of field are represented by points. 
lying at various distances on the same radius vector through the origin. 

Then we have sought for a principle for selecting a set of M points. 
satisfying (13) or in the other case considered (31). that might serve as 
an appropriate basis for calculating the necessary mean values. As th is 
principle we have chosen a probability hypothesis. and it is perhaps 
not superfluous to remember that we have not spoken about the proba~ 
bility of any special type of relative motion. or of a certain distribution 
of vortices. etc.; what we have counted was on the contrary the number 
of various sequences in which the set of M individual fields of flow 
could be arranged. It is only at the end of the calculations that we 
come to formula (21). which gives a measure for the statistica I frequency 
of any special field . 

This formula (21) possesses some properties which make it appear 
rather appropriate for the description of the turbulent motion. In the 
first place it contains no undetermined constants. As the exponent of e 
is aquadratic function of the variables ti ... tN (comp. formula 26a ). the 
integration with respect to any of the ts can be effected in an elementary 
way; the great number of the variables (which in the limit ought to 
be made infinite) makes this procedure impractical. however. especially 
on account of the appearance of the function lp. Though a method for 
solving th is difficulty has not yet been found. still we see from the 

integral equation either for t or for cp. that the mean amplitude of the 

I) The result for the tube with circular section is not obtained by means of the statistical 
method, as no generalisation for the three-dimensional case has been made. The deductions 
of § 5, however , can be extended to this case. 

42* 



650 

relative motion is wholly determined - a consequence of the circumstance 
that the dissipation condition in its forms (5 )or (30) is not homogeneous 
with respect to this amplitude. 

Formula (21) automatically yields the so~called "Iaminar layers" along 
the walls of the channel. In consequence of the boundary conditions àll 
types of motion that present appreciabie values of u and v in the neigh~ 
bourhood of the walls necessarily bring with them very great va lues of 
z; hence as cp cannot surpass the value 2 C. the term I R-2 Zk in the 

k 

exponent will become preponderant. making the value of 'JI for such 
fields become very smal!. 

Finally. assuming (provisionally) that cp is a monotonous function of y 
in every half of the channel breadth. which consequently always has 
the same sign as dU/dy, we deduce from the formula (21) th at every~ 
where those types of fields have the greatest chance of occurring. that 
give values for t = - uv of the same sign as dU/dy - just as it must 
be in order to account for the observed great value of the resistance. 
Hence the necessary "correlation" between u and v comes in automatically 
(through the intermediary of the dissipation condition). notwithstanding 
the fact that we have not made use of the otherwise very important 
theories about the origin of this correlation. as have been worked out 
by TAYLOR. PRANDTL and others. Their deductions. however. introduce 
the conception of a "mean free path" of the elements of the fluid. 
which in itself is an unknown quantity. 

The fact that the correlation in our results comes in automatically is 
due to the circumstance that the increase of the energy of the relative 
motion at any instant is mainly determined by the formula : 

E = jfdX dy ~ - uv : U - R-I (d . 
.. ? y ) 

(39) 

which is positive for fields having the right correlation (combined with 
not too great values for ( 2). whereas it is negative for fields with the 
wrong correlation. I) 

It is not. however. this expression which occurs in the exponent of 

I) The equation for E, when wrltten in full, contains besides those given in the text, 
a number of other terms, relating to the cross sections of the channel at Xc and Xc + L. 
which usually are considered as of no importance, and further the integral 

1('( ( d uv dv2
) J dx dy u dy + v dy . 

(comp. H. A. LORENTZ, l.c. p . 63) of which only the first term is important. This term 
changes of sign, when the direction of the relative motion is inverted over the whole 
field, which is not the case wlth the terms written in (39). Such an inversion of the relative 
motion has no inBuence on our formulae, which have been either of the 2nd or of the 
4th degree in u, v, ;. 
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formula (21), but the function q" or as we may write it for purpose of 
camparison, making use of (34): 

-Rq,-.frdXdY~-UV(2d:: +12Y)-R-IC2~. (40) 

We have demanded that - q, always should be negative; this of course 
may be very weil compatible with a positive value of (39). 

In this connection it is of importance to remark that the expression 
(40) has a meaning wholly apart from the introduction of the ~~space 
or of the probability hypo thesis. In order to show this, we start from 
the equation: 

E .fJdXdY~ - uv~~ - R-l C2 ~ • (41) 

which determines the rate of increase of the mean energy of the relative 
motion. In the normal turbulent state the mean energy of the relative 
motion has a constant value; so then E = 0 and (41) becomes identical 
with equation (2), Part I. 

Now the turbulent motion when viewed .. microscopically", i.e. at a 
series of instants with sufficiently small intervals between them, must be 
considered as a sequence of widely varying types of fields of flow, and 
the quantities uv, C2 are obtained as a mean over the values of uv, C2 

presented by every individual member of the sequence. The order of 
the various individual fields in the sequence is of no importance in our 
considerations; ft seems Iegitimate, however, to suppose that in a long 
interval of time, most types occur repeatedly, at least with a certain 
degree of approximation, and that a mean amplitude can be assigned 
to each of them (as in fact has been assumed in all our deductions 
and is expressed by formula (21)). Let us compare this normal state 
with one, in which the intensity of one of the members of the 
sequence has been changed, f.i. by first increasing it for a short 
interval of time and th en diminishing it, in such a way that the mean 
values of linear quantities are not altered, whereas those of quantities 
of the second degree are increased in a given constant proportion. 
We shall suppose moreover that this variation is executed every time 
this type of motion appears. Wh en the velocity components and 
the vorticity of this special type of flow are proportional resp. to 
u', v', C', then in the varied sequence the values of ;, -;;, 1 will again 
be zero, whereas the values of uv, C2, etc. in any point of the field 
will change with amounts proportional to the values of u' v', (2, etc. at 
that point. Hence we may write: 

d uv = u'v' da, d C2 = C'2 da. (42) 

wh ere da is a positive number, depending on the degree of the intensi~ 
6cation and the interval of time during which it is applied, but independent 
of x Bnd y and of the time. 
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The new system of values of uv, C2 will in general not be compatible 
with the original mean motion. With the aid of the equations of 
REYNOLDS and LORENTZ, however, we can calculate a new mean 
motion. assuming thereby that the total amount of fluid. crossing a 
section of the channel. remains constant. Then at the same time the 
REYNOLDS' number retains its value. 

When the new mean motion has been found. we can determine the 
value of E for the va ried system. We s~all write bH for it. corresponding 
to ~a . If now it should appear that bE/?Jft > O. then th is would mean 
that in our varied sequence - with one member intensified - the mean 
energy of the relative motion tends to increase. Of course we cannot 
determine in which way the increase of mean energy is distributed over 
the various members of the sequence. and so we cannot prove rigorously 
that our system in th is case is unstable. Still it would seem natural to 
accept as a criterion for the stabIe character of norm al turbulent motion 
that the intensification of any individual member of the sequence should 
bring about a decrease of the mean energy. and that on the contrary 
the weakenin~ of any member should cause an increase of mean 
energy. 

We may regard th is matter fro~ another side. It is always possible 
to find types of flow for which (jE/l>u < 0; hence if there were other 
types with oE!{)a > o. we might construct sequences in which definite 
members we re intensined in a given proportion to each other. but in 
an arbitrary degree (whereas no member was weakened). that would 
satisfy the condition E = O. This should mean that the dissipation con~ 
dition would not put a limit to the mean energy of the relative motion. 
as it could be increased indennitely. if only a certain proportion was 
observed. In view of our starting point which accepted the dissipation 
condition as the only condition governing the turbulent motion. this 
would seem to be rather improbable. 

Hence we might suppose that for all types of motion present (or 
imaginable) in the sequence the condition : 

?JE -- < 0 
tI{1 

(43) 

ought to be fulfilled. 
There are various ways of calculating the quantity oE/on. In the 

following lines we shall start from the equation of energy for the whole 
motion. instead of using (41); this has no influence on the result. as the 
energy of the mean motion is independent of the time (in consequence 
of its definition as a mean with respect to time); so nor this energy 
itself. neither its variation does. appear in E. which measures the rate 
of change of the energy. 

As the variation ti uv given by (42) will be a function of x as weil 
as of y. we may no longer suppose that the mean motion. determined 
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by the varied sequence. is everywhere parallel to the axis of x. Hence 
we have to start from the general equations: 

u a u + v au = _ oP + R-I I::, U _ ~ u2 - ~ uv J 
ox oy ox ox oy r 

'0 v 0 V op a - 0 2 ~. 
U - +V-=-- +R-II::, V--uv- - v 

ox oy oy ox oy 

(H) 

whereas the energy equation becomes: 

- f J' i' ~(O v 0 U)2 - ~ E_ (PU)!dy- (PU)IJdy-R-I JdXdy~ OX -ay +,2 ~(45) 

Here V denotes the y~component of the mean motion. P the mean 
pressure at any point. The first and the second integrals in the ex~ 
pres sion for Erepresent the work done by the mean pressures in the 
sections I (at xo) and 11 (at Xo + L); the third term is the totalloss of 
energy. due to the internal friction. The equation for E is not strictly 
true as some terms have been neglected which partly measure the work 
done at the sections I. 11 by the varying pressures. etc. of the relative 
motion. and partly the kinetic energy which is transported across these 
sections. We may discard these terms. however. as the amount contri~ 
buted by them remains nearly constant when L is increased without 
limit. If equation (45) had been divided by L. then these terms would 
become of the order L -I. 

In the norm al state we have oU/ox=O, V o. ou2/ox=O. ouv/ox=O; 
further: P=Constant - Jx- v2

• where J is the pressure gradient. 
Now we apply our variation. th en r5u 2 = u'2da, etc. Wh en we consider 

a field of motion resembling those described by ORR. which are stretched 
out over indefinite lengths and are more or less periodic with respect 

to x. we see that integrals of the type j~u2 dx are to be considered as 

quantities of the order of L. in view of which various other quantities 
may be neglected. In the case of a field vanishing beyond a certain 
distance (like LORENTZ' vortex) the quantities that are neglected auto~ 
matically become zero. when the sections I. 11 are put away far enough. 

Having regard to the relations which are fulfilled in the normal state. 
and observing that dU and d V must obey the equation of continuity. 
we obtain: 

u ~ dU + dU dV _]?-I I::, (dU) + ~ dP = _ da (ou
/2 + OUIV

I
) (46a ) 

OX dy OX OX oy 

_ R-I 6. (d V) + ~ dP = _ da (OUlVi + OV
/2

) (46b) 
oy ox oy 

end further: 
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dE JdY (UbP + PbU), - JdY (UdP + PbU)" - ~ 

- R-~[fdx dy ~ 2 ~~ (aày /JU - a~-c ~ V) + C'2 /Ja ~ ~ 
(i7) 

The latter equation can be simplified by making use of the condition 

that J Udy must remain constant and by neglecting terms which do not 

become of the order of L; in this way we get : 

dE .fdyU(/JPI-~P,,)-R-~Ddxdy ~2 ~~ aày dU + ,'2 da ~ (i8) 

Now from equation (i68
). by integrating it with respect to x and 

again neglecting terms which do not become of the order of L. we 
deduce: 

dPr - dPlI = - R - I dx -- ~U + ~(l dx--f' à2 f au'v' 
• ày2 • ay . (i9) 

As equation (46b) shows that à/JPjay does not become of the order 
of L . we may to the order of approximation accepted. consider 
dPr - dPu as independent of y. Then the 6rst term of the expression (i8) 
becomes simply dPr - dPlI . 

By multiplying equation (i9) by (ï - 6 y2) and integrating it over the 
breadth of the channel (applying partial integration). we obtain: 

dPr - IJPlI= 12 d~[fdXdy Y u'v' • (a) 

On the other hand the 6rst term of the second member of the expression 
(48) may be transformed (again making use of partial integrations and 
of (i9)) as follows: 

J' dU à {r'{, dU 
- R-j dx dy 2 dy ày dU = - 2 (IJPr - IJP/I) - 2 da J dx dy dy u'v' (b) 

Hence 6nally we obtain : 

!; JJdXdy~- u'v' (2 ~~ + 12 Y) - R-I (2 ~ .. . (50) 

in which the same expression appears as in (iO). 
So the condition for the positive de6nite character of the function fP 

appears to be identical with the condition (i3). 
The above calculations can be extended also to the case of the flow 

through a ::ylindrical pipe with an arbitrary form of section. wh ere the 
relative motion is three-dimensional. 

6. Concluding remarks. 
As has been meotioned at the end of § -4 the observed distribution 
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of the velocity of the mean motion does not correspond to that given 
by equation (38). The value of dU/dg appears to be much smaller. even 
so much th at the condition ~E/~a seems not to be fulfilled for some 
types of relative motion. possessing values of u' v' of the opposite sign 
of that which corresponds to the usual correlation. So we have to 
suppose th at an abnormally frequent occurrence of such types of motion 
is prevented by some other cause. which is not revealed in our deductions. 

Wh en we come back once more to our starting point: that the 
dissipation condition in the case of the turbulent motion of a viscous 
fIuid plays the same role as the condition of constant energy in the 
case of a conservative system. it is necessary to point out one great 
difference between the two conditions. The condition of constant energy 
in a conservative system is an exact and an absolute one. which is valid 
at e"very moment. The dissipation condition. on the other hand. is not 
a condition governing the instantaneous state of the turbulent motion ; 
it expresses a relation which is fulfilled approximatively when we consider 
the history of our system. during a great interval of time. This becomes 
especially clear in view of the deductions concerning the quantity bl!!;/~a. 
wh ere we considered a variation of the system. which could establish 
itself only in a very long time. The dissipation condition seems to be 
too "elastic" to make feel its infIuence immediately when any deviation 
from the "normal state" occurs. 

There is no doubt. of course. that the dissipation condition has to be 
fulfilled. The question is. however. which is the variational equation that 
governs the exponent of the distribution function ? 

Wh en it could be supposed that the expression (39) for the increase 
of the instantaneous energy exerted some infIuence on the statistical 
distribution. and that the exponent occurring in (21) consisted of a linear 
combination of both (39) and (40). in such a way that we could write 
for the function cp in (21). (35) etc.: 

'=R_I(2+;'dU+~) 
9- 1 + À dg 1 + À • 

th en a distribution of the velocity might be obtained. corresponding 
somewhat better with that observed experimentally. So À=3 would give: 
U - 1.1 - 1.2 g2; the lower limit for C then becomes: I/SA = 0.0011. 

I have not succeeded in finding an equation which seems to lead to 
such a formula. There is. however. another way which promises some 
help: in order to define the mean motion we may make use of mean 
values with respect to x in stead of mean values with respect to time. 
In this way the difficulties mentioned are obviated to some extent. and 
a form of the dissipation condition is obtained. which leads to a varia~ 

tional equation. differing from the one used until now. In Part 111 of 
this paper we hope come back to this point. I) 

I) This remark has been added in the proof. 
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In all calculations we have adhered to the condition that the total 
flow over a sec ti on of the channel remains absolutely constant. This 
seems to be necessary. as on account of the equation of continuity the 
total flow must be the same for all sections. so that a change at one 
section would necessarily bring with it a change over the whole leng th 
of the channel. which can be taken arbitrarily great. Only when elastic 
phenomena are taken into account. this condition might be violated. 

7. Appendix to § 2. Part I. 
In § 2 for the case of an ideal (frictionless) fluid. moving uninfluenced 

by exterior forces. a demonstration was sketched of the th eo rem : 

(16) 

It is possible to give a proof jlf this theorem. starting from equation 
(18). as it becomes af ter the substitution of (17). etc.: 

d'l' j('(, " , 'l3'l'd6.'l' d'l'd6.'l'1 at = J dx dy G (x. y; x . y) dy' dX' - dx' ---ay' I (18*) 

but without translating this equation into discontinuous terms. I) However. 
as has been mentioned already. it is necessary th en to specify the area 
over which the stream function IJl has to be increased. We will do this 
by accepting the following formula Eor /J 'l': 

15 'l' = a e- ' !(x' -x), + (11' - ,,)'1. 

in which x is supposed ,to be 50 great that X-I!, is very small with regard 
to distances over which 'l' changes appreciably. and also with regard 
to the distance of the point x, y from the nearest wall. We now define 
/J~k (if k is the index number of the point x. y) by: 

d~k J[dx' dy' d'l'=llax- I
. 

In equation (18*) we write: 

G = - 211lig V(x'- x)2 + (y' - y)2 + G* (x. y; x'. y'). 

Then by direct calculation we get: 

1 fd 'd 'I V(' )2 (' )2.l ~ d 'l' d 6. 'l' d'l' d 6. 'l' ~ _ 
- 21l X Y g x - x + y - y . u ( dy' ~ - dx' Tg' ~ - o. 

I) In th is formula. as weil as In those which follow. the operator .1 relates to the 
variables x'. g' . 
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Using partial integrations we obtain on the other hand: 

JJdX' dy' G* t5l· .. , = 

=-Jjdx' dy'~ a~'( G*a!,gJ)+ ... ~t5gJ= 

= _ ~ ~(G*à6, gJ)+~ ~(G*agJ)_~/(G* à~ IJ')_ 
~ ày' ox' ax' ay' ax ay' 

- a~' 6, ( G* ~:') ~ b~k 

if " is sufficfently great. 

;c'=" 
y'=J/ 

When we perform the differentiations. and remember that 6, G* = O. 
then we may transform this expression and obtain: 

in which formula af ter the execution of the differentiations we have to 
put x'=x. y'=y. 

In the case of a straight channel we have: 

( 
a2G* ) 

àx' ay' =0. (
a2G* _ a2G*) 
ax'2 ay'2 is independent of x. 

Hence: 

x'=;c 
y/=y 

x'=x 
y'=1/ 

Ir a~k - _ } (a2G* _ a2G2) àgJl Xn+
L 

dx dg (ft - 2 dg ax'2 ay'2 ay . 
• ~k ~ 

",'=x 
y'=y 

Here the integral is not strictly zero. but is reduced to integrals over 
the boundaries of the field at Xo and at Xo + L. 

When the channel is closed. these terms may cancel. In any case 
this can be proved for the space between two concentric cylinders. By 
introducing polar coordinates y is transformed into an expression of 
the form: 

wh ere f is some function of r only. As gJ is an univalued function. the 
integral of this expression over the whole field is zero. 




