Mathematics. - Skew Correlation between Three and More Variables, I. By Prof. M. J. van Uven. (Communicated by Prof. A. A. Nijland).
(Communicated at the meeting of May 25, 1929).

I. Skew Correlation between three variables.

In order to furnish a model for the treatment of skew correlation between an arbitrary number (n) of variables, we shall first establish the method of treating the case of three variables. We continue the method we followed formerly in treating the case of two variables, exposed in the paper "Over het bewerken van scheeve correlatie" ("On Treating Skew Correlation") '), recently completed by the paper: "Scheeve Correlatie tusschen twee veranderlijken" ("Skew Correlation between Two Variables") ${ }^{2}$).

These papers (the former being distributed over three articles) will be designated by the abbreviations S. C. I, a, b, c, S. C. II.

The three variables may be called x_{1}, x_{2}, x_{3}. For the variable $x_{a}(a=1,2,3) v_{a}$ values, $\left.\xi_{a}(1), \xi_{a}(2), \ldots \xi_{a}\left(k_{a}\right), \ldots \xi_{a}\left(v_{a}\right)^{3}\right)$, are recorded. As a rule the interval between two class-centres is constant: $\xi_{\mathrm{a}}\left(k_{\mathrm{a}}\right)$ -$-\xi_{a}\left(k_{a}-1\right)=c_{a}(a=1,2,3)$.

The frequency of the set $\xi_{1}\left(k_{1}\right), \xi_{2}\left(k_{2}\right), \xi_{3}\left(k_{3}\right)$ may be denoted by $Y\left(k_{1}, k_{2}, k_{3}\right)$. For the total number N of the observed sets $\xi_{1}, \xi_{2}, \xi_{3}$ we have

$$
N=\sum_{i_{1}=1}^{y_{1}} \sum_{i_{3}=1}^{y_{2}} \sum_{i_{3}=1}^{y_{3}} Y\left(i_{1}, i_{2}, i_{3}\right) \cdot . \quad . \quad . \quad . \quad . \quad 1
$$

Thus the relative frequency (a posteriori probability) of the set $\xi_{1}\left(k_{1}\right), \xi_{2}\left(k_{2}\right), \xi_{3}\left(k_{3}\right)$ is

$$
\begin{equation*}
y\left(k_{1}, k_{2}, k_{3}\right)=\frac{Y\left(k_{1}, k_{2}, k_{3}\right)}{N} \tag{2}
\end{equation*}
$$

What is properly meant by recording $\xi_{a}\left(k_{a}\right)$ for x_{a}, is that x_{a} is

[^0]found between $\xi_{a}\left(k_{a}\right)-\frac{c_{a}}{2}$ and $\xi_{a}\left(k_{a}\right)+\frac{c_{a}}{2}$. Putting
$$
\xi_{a}\left(k_{a}\right)+\frac{c_{a}}{2}=x_{a}\left(k_{a}\right) \quad, \quad(a=1,2,3) \quad . \quad . \quad .3
$$
so that $x_{a}\left(k_{a}\right)$ indicates the upper limit of the class k_{a}, we may describe the three-dimensional frequency distribution by the statement:
For $Y\left(k_{1}, k_{2}, k_{3}\right)$ sets x_{1}, x_{2}, x_{3} is found: $x_{a}\left(k_{a}-1\right)<x_{a}<x_{a}\left(k_{a}\right), a=1,2,3$. \mathbf{A}
If the correlation between x_{1}, x_{2}, x_{3} is itself linear, then the probability of the set $\xi_{1}, \xi_{2}, \xi_{3}$ is expressed by an infinitesimal probability formula, which we may construct as follows:

We compute the mean ξ_{a} of all observed values ξ_{a}, and the deviations $u_{a}=\xi_{a}-\bar{\xi}_{\mathrm{a}}$ from that mean.

Then the probability that such a set of deviations is found between u_{1}, u_{2}, u_{3} and $u_{1}+d u_{1}, u_{2}+d u_{2}, u_{3}+d u_{3}$ has theoretically the infinitesimal value:

$$
d W=C e^{-f} d u_{1} \cdot d u_{2} \cdot d u_{3}
$$

Here the symbol f represents a positive-definite homogeneous quadratic form in the u_{a} :

$$
\begin{array}{r}
f \equiv h_{1}^{2} u_{1}^{2}+2 \lambda_{12} h_{1} h_{2} u_{1} u_{2}+2 \lambda_{13} h_{1} h_{3} u_{1} u_{3}+h_{2}^{2} u_{2}^{2}+2 \lambda_{23} h_{2} h_{3} u_{2} u_{3}+ \\
+h_{3}^{2} u_{3}^{2} \equiv \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \lambda_{\alpha \beta} h_{\alpha} h_{\beta} u_{\alpha} u_{\beta},
\end{array}
$$

where

$$
\lambda_{\alpha \alpha}=1 \quad, \quad \lambda_{\alpha, 3}=\lambda_{\beta \alpha} \quad, \quad \lambda_{\alpha, 3}^{2}<1
$$

Putting

$$
\left|\lambda_{\alpha_{1}}\right|=\left|\begin{array}{lllll}
\lambda_{11} & , & \lambda_{12} & , & \lambda_{13} \\
\lambda_{21} & , & \lambda_{22} & , & \lambda_{23} \\
\lambda_{31} & , & \lambda_{32} & , & \lambda_{33}
\end{array}\right|=\left|\begin{array}{ccccc}
1 & , & \lambda_{12} & , & \lambda_{31} \\
\lambda_{12} & , & 1 & , & \lambda_{23} \\
\lambda_{31} & , & \lambda_{23} & , & 1
\end{array}\right|=\Lambda
$$

we find for the constant factor C :

$$
C=\frac{h_{1} h_{2} h_{3} V \bar{\Lambda}}{V \pi^{3}}
$$

Before analysing this three-dimensional probability formula, we shall introduce the unimodular variables t_{1}, t_{2}, t_{3} by the relations:

$$
t_{\mathrm{a}}=h_{\mathrm{a}} u_{\mathrm{a}} \quad, \quad(a=1,2,3)
$$

Hence the infinitesimal probability formula is expressed in these unimodular variables as follows:

$$
\begin{equation*}
d W=\frac{V \bar{\Lambda}}{\sqrt{\pi^{3}}} e^{-f} d t_{1} \cdot d t_{2} \cdot d t_{3} \tag{4}
\end{equation*}
$$

where

$$
f \equiv t_{1}^{2}+2 \lambda_{12} t_{1} t_{2}+2 \lambda_{31} t_{1} t_{3}+t_{2}^{2}+2 \lambda_{23} t_{2} t_{3}+t_{3}^{2} \equiv \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \lambda_{\alpha \beta} t_{\alpha} t_{\beta}, \quad 5
$$

with

$$
\begin{equation*}
\lambda_{\alpha \alpha}=1 \quad, \quad \lambda_{\alpha, \beta}=\lambda_{\beta \alpha} \quad, \quad \lambda_{\alpha, \beta}^{2}<1 \quad, \quad \Lambda=\left|\lambda_{\alpha, \beta}\right| \tag{6}
\end{equation*}
$$

For the study of the probability formula 4 we shall provisionally suppose t_{1}, t_{2}, t_{3} to be the original variables.

Putting

$$
\begin{equation*}
\lambda_{23}=\cos \varphi_{1} \quad, \quad \lambda_{31}=\cos \varphi_{2} \quad, \quad \lambda_{12}=\cos \varphi_{3}, \tag{7}
\end{equation*}
$$

we may illustrate the form f geometrically by considering a skew system of (rectilinear) coordinates t_{1}, t_{2}, t_{3}, whereby the axes t_{2} and t_{3} include the angle p_{1}, the axes t_{3} and t_{1} the angle φ_{2}, the axes t_{1} and t_{2} the angle φ_{3} (fig. 1). The axes $O Q_{1}\left(=t_{1}\right), O Q_{2}\left(=t_{2}\right), O Q_{3}\left(=t_{3}\right)$ may (eventually prolonged) cut the sphere of radius unity with centre O ("unity-sphere") at the points $\Phi_{1}, \Phi_{2}, \Phi_{3}$.

fig. 2
Then on this unity-sphere we have a triangle $\Phi_{1} \Phi_{2} \Phi_{3}[(\Phi)]$ the sides of which are $\varphi_{1}, \varphi_{2}, \varphi_{3}$. In our sketches we have taken all three sides $\varphi_{1}, \varphi_{2}, \varphi_{3}$ obtuse (fig. 2).
P being a point with the (skew) coordinates t_{1}, t_{2}, t_{3}, the square of the radius vector $O P=r$, carrying from the origin O to that point, amounts to

$$
\begin{equation*}
O P^{2}=r^{2}=f \tag{8}
\end{equation*}
$$

In order to integrate easily the probability differential, we shall write the quadratic form f as a sum of three squares. The geometrical meaning of this is, that we decompose $O P=r$ along three rectangular axes.

So we shall decompose $O P$
1^{1}. along $O \Phi_{3}$,
2^{0}. along $O \Psi_{2 ; 1}{ }^{1}$) within the plane $\Phi_{2} O \Phi_{3}$ perpendicular to $O \Phi_{3}, O \Psi_{2 ; 1}$ being directed to that side of $O \Phi_{3}$ where $O \Phi_{2}$ lies,
3°. along $O \Omega_{1}$ perpendicular to the plane $\Phi_{2} O \Phi_{3}$, directed to the same side as $O \Phi_{1}$.

Now we find for the component Z_{3} along $O \Phi_{3}$:
$Z_{3}=$ proj. $O P$ on $O \Phi_{3}=$ (proj. $O Q_{1}+$ proj. $Q_{1} Q_{3}^{\prime}+$ proj. $Q_{3}^{\prime} P$) on $O \Phi_{3}=$
$=t_{1} \cos \varphi_{2}+t_{2} \cos \varphi_{1}+t_{3}$.
To compute the second component $\left(\zeta_{2 ; 1}\right)$, we drop the perpendicular $P H$ from P on $\Phi_{2} O \Phi_{3}$ and (within the plane $Q_{2} Q_{1}^{\prime} P Q_{3}^{\prime}$) the perpendicular $P G$ on $Q_{2} Q_{1}^{\prime}$; then $\angle H G P$ is the solid angle between the planes $\Phi_{2} O \Phi_{3}$ and $Q_{2} Q_{1}^{\prime} P Q_{3}^{\prime}$, hence the supplement of the solid angle at the edge $O \Phi_{3}$, thus the supplement of the angle Φ_{3} of the spherical triangle (Φ), whence $G H=G P \cdot \cos \left(\pi-\Phi_{3}\right)=-G P \cdot \cos \Phi_{3}$.

Further we have $G P=Q_{1}^{\prime} P \cdot \sin G Q_{1}^{\prime} P=Q_{1}^{\prime} P \cdot \sin \left(\pi-\varphi_{2}\right)=Q_{1}^{\prime} P \cdot \sin \varphi_{2}$.
So we find for the projection $G H$ of $Q_{1}^{\prime} P$ on $\overrightarrow{\Psi_{2 ; 1} O}: G H=$ $=-Q_{1}^{\prime} P \cdot \sin \varphi_{2} \cos \Phi_{3}=-t_{1} \sin \varphi_{2} \cos \Phi_{3} ;$ therefore the projection $G H(=-H G)$ of $Q_{1}^{\prime} P$ on $\overrightarrow{O \Psi_{2 ; 1}}$ is $:+t_{1} \sin \varphi_{2} \cos \Phi_{3}$.

Hence the component $\zeta_{2 ; 1}$ of $O P$ along $O \Psi_{2 ; 1}$ amounts to:

$$
\begin{aligned}
\zeta_{2: 1} & \left.=\text { proj. } O P \text { on } O \Psi_{2: 1}=\text { (proj. } O Q_{1}^{\prime}+\text { proj. } Q_{1}^{\prime} P\right) \text { on } O \Psi_{2: 1}= \\
& =O F+t_{1} \sin \varphi_{2} \cos \Phi_{3}=t_{2} \cos \left(\varphi_{1}-\frac{\pi}{2}\right)+t_{1} \sin \varphi_{2} \cos \Phi_{3}
\end{aligned}
$$

or

$$
\zeta_{2: 1}=t_{1} \sin \varphi_{2} \cos \Phi_{3}+t_{2} \sin \varphi_{1} .
$$

Finally we obtain for the component z_{1} along $O \Omega_{1}$:

$$
z_{1}=\text { proj. } O P \text { on } O \Omega_{1}=H P=G P \sin \left(\pi-\Phi_{3}\right)=t_{1} \sin \varphi_{2} \sin \Phi_{3}
$$

So we have:

$$
\left.\begin{array}{l}
z_{1}=\sin \varphi_{2} \sin \Phi_{3} \cdot t_{1}, \\
\zeta_{2: 1}=\sin \varphi_{2} \cos \Phi_{3} \cdot t_{1}+\sin \varphi_{1} \cdot t_{2}, \\
Z_{3}=\cos \varphi_{2} \cdot t_{1}+\cos \varphi_{1} \cdot t_{2}+t_{3} .
\end{array}\right\} \cdot . \quad . \quad 9\left\{_{\left(\begin{array}{l}
(\mathbf{1}) \\
(\mathbf{3} ; \mathbf{1})
\end{array}\right.}^{(\mathbf{2 1})}\right.
$$

In fig. $1 Z_{3}, \zeta_{2 ; 1}, z_{1}$ are represented by $O I, I H, H P$ respectively.
The perpendicular $\mathrm{O} \Omega_{1}$ on $\Phi_{2} O \Phi_{3}$ meets the unity-sphere at either of the poles Ω_{1} of $\Phi_{2} \Phi_{3}$, and particularly at that pole, which lies with Φ_{1} on the same side of $\Phi_{2} \Phi_{3}$.

Constructing in a similar way the pole Ω_{2} of $\Phi_{3} \Phi_{1}$ and the pole Ω_{3} of $\Phi_{1} \Phi_{2}$, the points $\Omega_{1}, \Omega_{2}, \Omega_{3}$ form the opposite triangle of that triangle which is usually called the polar triangle of $\Phi_{1} \Phi_{2} \Phi_{3}$. Nevertheless we shall further on denote that very triangle $\Omega_{1} \Omega_{2} \Omega_{3}$ by "the polar triangle of $\Phi_{1} \Phi_{2} \Phi_{3}{ }^{\prime \prime}$

[^1]Expressing the angles of the spherical triangle (Φ) in the sides ω_{a} of its polar triangle (Ω) by means of $\Phi_{a}=\pi-\omega_{a}(a=1,2,3)$, we obtain :

$$
\left.\begin{array}{l}
z_{1}=\sin \varphi_{2} \sin \omega_{3} \cdot t_{1}, \\
\zeta_{2: 1}=-\sin \varphi_{2} \cos \omega_{3} \cdot t_{1}+\sin \varphi_{1} \cdot t_{2}, \\
Z_{3}=\cos \varphi_{2} \cdot t_{1}+\cos \varphi_{1} \cdot t_{2}+t_{3} .
\end{array}\right\} \cdot9 \mathbf{b i s}
$$

fig. 3

Prolonging the sides of triangle (Ω) (which are acute in our sketches), $\Omega_{2} \Omega_{3}$ meets φ_{2} at $\Psi_{3 ; 2}, \varphi_{3}$ at $\Psi_{2 ; 3} ; \Omega_{3} \Omega_{1}$ meets φ_{3} at $\Psi_{1 ; 3,} \varphi_{1}$ at $\Psi_{3 ; 1}$; $\Omega_{1} \Omega_{2}$ meets φ_{1} at $\Psi_{2 ; 1}, \varphi_{2}$ at $\Psi_{1 ; 2}$ (fig. 3).

Each of the six triplets
$\Omega_{1} \Psi_{2: 1} \Phi_{3}, \quad \Omega_{2} \Psi_{1 ; 2} \Phi_{3}, \quad \Omega_{1} \Psi_{3: 1} \Phi_{2}, \quad \Omega_{2} \Psi_{3: 2} \Phi_{1}, \quad \Omega_{3} \Psi_{1 ; 3} \Phi_{2}, \quad \Omega_{3} \Psi_{2 ; 3} \Phi_{1}$ determines a rectangular system of coordinates. The components of $O P=r$ in these 6 systems are

$$
z_{1} \zeta_{2: 1} Z_{3}, \quad z_{2} \zeta_{1 ; 2} Z_{3}, \quad z_{1} \zeta_{3: 1} Z_{2}, \quad z_{2} \zeta_{3: 2} Z_{1}, \quad z_{3} \zeta_{1: 3} Z_{2}, \quad z_{3} \zeta_{2 ; 3} Z_{1}
$$

The point Π where $O P$ cuts the unity-sphere, is the common image point of these 6 triplets.

As $\sin \varphi_{2} \sin \Phi_{3}$ equals the sine of the altitude of (Φ) issuing from Φ_{1}, this latter being the supplement of the altitude ψ_{1} of (Ω) issuing from Ω_{1}, we have

$$
\left.\begin{array}{l}
\sin \varphi_{2} \sin \Phi_{3}=\sin \varphi_{2} \sin \omega_{3}=\sin \psi_{1}, \tag{10}\\
\sin \varphi_{3} \sin \Phi_{1}=\sin \varphi_{3} \sin \omega_{1}=\sin \psi_{2}, \\
\sin \varphi_{1} \sin \Phi_{2}=\sin \varphi_{1} \sin \omega_{2}=\sin \psi_{3},
\end{array}\right)
$$

Hence we may write for z_{a} :

$$
\begin{equation*}
z_{a}=\sin \psi_{a} \cdot t_{a} \tag{11}
\end{equation*}
$$

We now have:

$$
\begin{align*}
& V \Lambda=\sqrt{1-\lambda_{23}^{2}-\lambda_{31}^{2}-\lambda_{12}^{2}+2 \lambda_{23} \lambda_{31} \lambda_{12}}= \\
& \tag{12}\\
& \left.=\sqrt{1-\cos ^{2} \varphi_{1}-\cos ^{2} \varphi_{2}-\cos ^{2} \varphi_{3}+2 \cos \varphi_{1} \cos \varphi_{2} \cos \varphi_{3}}=\right\} \\
& \\
& =\sin \varphi_{\mathrm{a}} \cdot \sin \psi_{\mathrm{a}}, \quad(\mathrm{a}=1,2,3) \\
& \cos \omega_{1}=-\cos \Phi_{1}=\frac{\cos \varphi_{2} \cos \varphi_{3}-\cos \varphi_{1}}{\sin \varphi_{2} \sin \varphi_{3}}=\frac{\lambda_{31} \lambda_{12}-\lambda_{23}}{\sqrt{\left(1-\lambda_{31}^{2}\right)\left(1-\lambda_{12}^{2}\right)}}=\{ \\
& \\
& =\frac{\Lambda_{23}}{\sqrt{\Lambda_{22}} \Lambda_{33}}{ }^{1} \quad, \quad \sin \omega_{1}=\frac{V \Lambda}{\sqrt{\Lambda_{22}} \Lambda_{33}} .
\end{align*}
$$

Putting

$$
\gamma_{23}=\cos \omega_{1} \quad, \quad \gamma_{31}=\cos \omega_{2} \quad, \quad \gamma_{12}=\cos \omega_{3} . \quad . \quad 7 \mathbf{b i s}
$$

and

$$
\Gamma=\left|\gamma_{\alpha \beta}\right|=\left|\begin{array}{lll}
\gamma_{11}, & \gamma_{12}, & \gamma_{13} \\
\gamma_{21}, & \gamma_{22}, & \gamma_{23} \\
\gamma_{31}, & \gamma_{32}, & \gamma_{33}
\end{array}\right| .
$$

with

$$
\gamma_{\alpha \alpha}=1, \quad \gamma_{\alpha, \beta}=\gamma_{\beta \alpha}, \quad \gamma_{\alpha \beta}^{2}<1 .
$$

we have, as a counterpart of 12 .

$$
\begin{aligned}
V \Gamma & \left.=\sqrt{1-\cos ^{2} \omega_{1}-\cos ^{2} \omega_{2}-\cos ^{2} \omega_{3}+2 \cos \omega_{1} \cos \omega_{2} \cos \omega_{3}}=\right\} \\
& =\sin \omega_{a} \sin \psi_{a} \quad(a=1,2,3) .
\end{aligned}
$$

and, as a counterpart of (13).

$$
\begin{aligned}
& \left.\cos \varphi_{1}=-\cos \Omega_{1}=\frac{\cos \omega_{2} \cos \omega_{3}-\cos \omega_{1}}{\sin \omega_{2} \sin \omega_{3}}=\frac{\gamma_{31} \gamma_{12}-\gamma_{23}}{\sqrt{\left(1-\gamma_{31}^{2}\right)\left(1-\gamma_{i 2}^{2}\right)}}=\right) \\
& =\frac{\Gamma_{23}}{\sqrt{ } \Gamma_{22} \Gamma_{33}}, \quad \sin \varphi_{1}=\frac{V \Gamma}{V \Gamma_{22} \Gamma_{33}},
\end{aligned}
$$

whence the mutual relations between $\gamma_{a b}$ and $\lambda_{a b}$

$$
\gamma_{a b}=\frac{\Lambda_{a b}}{V \Lambda_{a a} \Lambda_{b b}} \quad, \quad \lambda_{a b}=\frac{\Gamma_{a b}}{V \Gamma_{a a} \Gamma_{b b}} .
$$

The magnitude $\gamma_{a b}$ is the total coefficient of correlation between t_{a} and t_{b}. Moreover :
$\Lambda^{3 / 2}=\sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3} . \sin \psi_{1} \sin \psi_{2} \sin \psi_{3}=$

$$
=\sin ^{2} \varphi_{1} \sin ^{2} \varphi_{2} \sin ^{2} \varphi_{3} . \sin \omega_{1} \sin \omega_{2} \sin \omega_{3},
$$ $\Gamma^{3 / 2}=\sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3} \cdot \sin ^{2} \omega_{1} \sin ^{2} \omega_{2} \sin ^{2} \omega_{3}$.

thus

$$
A^{1 / 2} . \Gamma^{1 / 2}=\sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3} \cdot \sin \omega_{1} \sin \omega_{2} \sin \omega_{3}, . \quad . \quad . \quad 14
$$

and

$$
\begin{equation*}
\checkmark \Lambda=\frac{\Gamma}{\sin \omega_{1} \sin \omega_{2} \sin \omega_{3}} \quad, \quad V \Gamma=\frac{\Lambda}{\sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3}} \tag{15}
\end{equation*}
$$

[^2]A and I being of the $3^{\text {rd }}$ order, we have also (annexe to 7 and 7 bis) $\sin \varphi_{1}=\sqrt{1-\lambda_{23}^{2}}=V \Lambda_{11}, \quad \sin \varphi_{2}=V 1-\lambda_{31}^{2}=V \Lambda_{22}$,

$\left.\begin{array}{r}\sin \omega_{1}=\sqrt{1-\gamma_{23}^{2}}=V \Gamma_{11}, \quad \sin \omega_{2}=V 1-\overline{\gamma_{31}^{2}}=V \Gamma_{22}, \\ \sin \omega_{3}=V \overline{1-\gamma_{12}^{2}}=V \Gamma_{33},\end{array}\right\}$
or, summarized,

$$
\sin \varphi_{a}=V \Lambda_{a a} \quad, \quad \sin \omega_{a}=V / \Gamma_{a a} \quad . \quad(a=1,2,3) .
$$

16 ter
We can now put the equations 9 bis - by means of 7, 11, 13 (13ter), 16 - into the form:

$$
\left.\begin{array}{l}
z_{1}=\left(\frac{\Lambda}{\Lambda_{11}}\right)^{1 / 2} \cdot t_{1}, \\
\zeta_{2: 1}=\frac{-\Lambda_{21} \cdot t_{1}+\Lambda_{11} \cdot t_{2}}{V \Lambda_{11}}, \\
Z_{3}=\lambda_{31} \cdot t_{1}+\lambda_{23} \cdot t_{2}+t_{3} .
\end{array}\right\} \cdot . \quad . \quad . \quad \mathbf{9 t e r}\left\{\begin{array}{l}
(\mathbf{1}) \\
(2 ; \mathbf{1}) \\
(\mathbf{3}: \mathbf{2 1})
\end{array}\right.
$$

By summing up the squares we easily regain the expression 5 for f. We may observe, that z_{1} is a (linear) function of $t_{1}, \zeta_{2 ; 1}$ of t_{1} and t_{2}, Z_{3} of t_{1}, t_{2} and t_{3}.

Moreover:

$$
\frac{\partial\left(z_{1}, \zeta_{2: 1}, Z_{3}\right)}{\partial\left(t_{1}, t_{2}, t_{3}\right)}=\frac{d z_{1}}{d t_{1}} \cdot \frac{\partial \zeta_{2: 1}}{\partial t_{2}} \cdot \frac{\partial Z_{3}}{\partial t_{3}}=\left(\frac{\Lambda}{\Lambda_{11}}\right)^{1 / 2} \times \Lambda_{11}^{1 / 2} \times 1=V \Lambda,
$$

whence, by passing from the variables t_{1}, t_{2}, t_{3} to the variables $z_{1}, \zeta_{2: 1}, Z_{3}$:

$$
\begin{equation*}
\sqrt{\Lambda} \cdot d t_{1} \cdot d t_{2} \cdot d t_{3} \rightleftarrows d z_{1} \cdot d \zeta_{2 ; 1} \cdot d Z_{3} . \tag{17}
\end{equation*}
$$

Evidently $V \bar{\Lambda} \cdot d t_{1} \cdot d t_{2} . d t_{3}$ represents the element of volume $d V$ expressed in the skew coordinates t_{1}, t_{2}, t_{3} :

$$
d V=V \Lambda \cdot d t_{1} \cdot d t_{2} \cdot d t_{3} \rightleftarrows d z_{1} \cdot d \zeta_{2 ; 1} \cdot d Z_{3} \cdot . \quad .17 \mathrm{bis}
$$

So we may put the infinitesimal probability $d W$ into the form:

$$
\begin{equation*}
\left.d W=\frac{1}{\sqrt{\pi^{3}}} e^{-\left(z_{1}^{3}+\frac{2}{1}, 1\right.}+Z_{3)}^{z}\right) d z_{1} \cdot d \zeta_{2 ; 1} \cdot d Z_{3} \tag{18}
\end{equation*}
$$

Putting in general

$$
\begin{equation*}
\left.\frac{1}{\sqrt{\pi}} \int_{-\infty}^{p} e^{-p^{2}} d p=\Theta\{p\},{ }^{1}\right) \tag{19}
\end{equation*}
$$

and further:

$$
\Theta\left\{z_{1}\right\}=s_{1} \quad, \quad \Theta\left\{\zeta_{2: 1}\right\}=\sigma_{2: 1} \quad, \Theta\left\{Z_{3}\right\}=S_{3}, . . \quad .20
$$

we obtain besides for $d W$ the formula:

$$
\begin{equation*}
d W=d \Theta\left\{z_{1}\right\} \cdot d \Theta\left\{\zeta_{2: 1}\right\} \cdot d \Theta\left\{Z_{3}\right\}=d s_{1} \cdot d \sigma_{2 ; 1} \cdot d S_{3} \tag{21}
\end{equation*}
$$

and likewise 5 analogous expressions.
${ }^{1}$) Cf. the footnote ${ }^{3}$) on page 793.

In order to isolate two of the variables, e.g. t_{1} and t_{2}, we must keep t_{1} and t_{2} constant (with the ranges $d t_{1}$ and $d t_{2}$). Integrating now $d W$ over t_{3} (from $-\infty$ to $+\infty$) we obtain the probability of the set t_{1}, t_{2} (with the ranges $d t_{1}, d t_{2}$), t_{3} being arbitrary.

Now the integration over t_{3} (with t_{1} and t_{2} constant) may be replaced by that over Z_{3} (from $-\infty$ to $+\infty$).

On account of $\int_{Z_{3}=-\infty}^{+\infty} d \Theta\left\{Z_{3}\right\}=\Theta\{+\infty\}=+1$, we get:
Probability of the set t_{1}, t_{2} (ranges $d t_{1}, d t_{2}$), t_{3} being arbitrary:

$$
\begin{equation*}
d_{(3)} W=d \Theta\left\{z_{1}\right\} \cdot d \Theta\left\{\zeta_{2: 1}\right\}=\frac{1}{\pi} e^{-\left(z_{i}^{2}+\zeta_{2 ;}\right)} d z_{1} \cdot d \zeta_{2 ; 1} . \tag{22}
\end{equation*}
$$

We might have obtained this same infinitesimal probability, if we had started with the division $f=z_{2}^{2}+\zeta_{1 ; 2}^{2}+Z_{3}^{2}$; hence this other formula for $d_{(3)} W$:

$$
d_{(3)} W=d \Theta\left\{z_{2}\right\} \cdot d \Theta\left\{\zeta_{1: 2}\right\}=\frac{1}{\pi} e^{-\left(z_{2}^{2}+\zeta_{i ; 2}^{2}\right)} d z_{2} \cdot d \zeta_{1: 2} .
$$

The magnitudes $z_{1}, z_{2}, \zeta_{2: 1}, \zeta_{1 ; 2}$ being independent of z_{3}, we may express both the differentials $d_{(3)} W$ in terms of z_{1} and z_{2}; so we obtain:

$$
d_{(3)} W=\frac{1}{\pi} \mathrm{e}^{-\left(z_{1}^{2}+\zeta_{2}^{2}, 1\right)} \frac{\partial \zeta_{2: 1}}{\partial z_{2}} \cdot d z_{1} \cdot d z_{2}=\frac{1}{\pi} \mathrm{e}^{-\left(z_{i}^{2}+\xi_{i}^{2}, 2\right)} \frac{\partial \zeta_{1: 2}}{\partial z_{1}} \cdot d z_{1} \cdot d z_{2}, \quad 22 \text { ter }
$$

whence

$$
\begin{equation*}
e^{-\left(z_{1}^{2}+\sum_{2 ;}^{2} ;\right)} \frac{\partial \zeta_{2 ; 1}}{\partial z_{2}}=e^{-\left(z_{2}^{2}+\xi_{1 ; 2}^{2}\right)} \frac{\partial \zeta_{1 ; 2}}{\partial z_{1}}, \tag{23}
\end{equation*}
$$

and generally :

$$
\begin{equation*}
e^{-\left(z_{a}^{2}+\check{y}_{b ; a}^{2}\right)} \frac{\partial \zeta_{b ; a}}{\partial z_{b}}=e^{-\left(z_{b}^{2}+\zeta_{a ; b}^{2}\right)} \frac{\partial \zeta_{a ; b}}{\partial z_{a}} . \tag{23bis}
\end{equation*}
$$

In order to isolate one of the variables, e.g. t_{1}, we must keep t_{1} constant (with the range $d t_{1}$), t_{2} and t_{3} being arbitrary. Then we obtain the probability of the value t_{1} (with the range $d t_{1}$), t_{2} and t_{3} being arbitrary. Replacing the integration over t_{2} (with t_{1} constant) by that over $\zeta_{2: 1}$, and taking account of $\int_{\zeta_{2}: 1}^{+\infty} d \Theta\left\{\zeta_{2: 1}\right\}=\Theta\{+\infty\}=+1$, we arrive at:

Probability of the value t_{1} (range $d t_{1}$), t_{2} and t_{3} being arbitrary:

$$
\begin{equation*}
d_{(23)} W=d \Theta\left\{z_{1}\right\}=\frac{1}{\sqrt{\pi}} e^{-z_{1}^{i}} d z_{1} \tag{24}
\end{equation*}
$$

If a three-dimensional frequency distribution, given by the empirical data:
"For $Y\left(k_{1}, k_{2}, k_{3}\right)$ individuals is found $t_{a}\left(k_{a}-1\right)<t_{a}<t_{a}\left(k_{a}\right), a=1,2,3 " 25$
shall be in accordance with the probability formula $4(5,6)$, it must be possible to construct - by means of 24, 22, 21 - three functions $z_{1}, \zeta_{2: 1}, Z_{3}$, which are connected with the variables t_{1}, t_{2}, t_{3} by the relations 9 ter. The coefficients of the relations 9 ter having been determined, the constants $\lambda_{a b}$ on the one hand and the coefficients of correlation $\gamma_{a b}$ on the other, can be calculated.

The construction of the function z_{1} out of 24 is performed by equalizing the theoretical probability of: [$t_{1}<t_{1}\left(k_{1}\right), t_{2}$ and t_{3} arbitrary], resulting from 24, to the empirical value of this probability, deduced from 25.

For this probability $s_{1}\left(k_{1}\right)$ of: [$t_{1}<t_{1}\left(k_{1}\right), t_{2}$ and t_{3} arbitrary] we find: theoretically:

$$
s_{1}\left(k_{1}\right)=\int_{t_{1}=-\infty}^{t_{1}\left(k_{1}\right)} d_{(23)} W=\Theta\left\{z_{1}\left(k_{1}\right)\right\}, \quad \text { where } \quad z_{1}\left(k_{1}\right)=\left(\frac{\Lambda}{\Lambda_{11}}\right)^{1 / 2} \cdot t_{1}\left(k_{1}\right),
$$

empirically :

$$
s_{1}\left(k_{1}\right)=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{i}=1}^{y_{3}} \sum_{i_{3}=1}^{y_{3}} y\left(i_{1}, i_{2}, i_{3}\right)=\frac{\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{\gamma_{2}} \sum_{i_{3}=1}^{\gamma_{3}} Y\left(i_{1}, i_{2}, i_{3}\right)}{N}
$$

Hence we obtain (putting successively $k_{1}=1,2, \ldots, v_{1}-1$) $v_{1}-1$ pairs $z_{1}, t_{1}{ }^{1}$).

If the frequency distribution $\left\{Y ; t_{1}, t_{2}, t_{3}\right\}$ really corresponds to the formula $4(5,6)$, it must appear, that the values $z_{1}\left(k_{1}\right)$ resulting from

$$
\Theta\left\{z_{1}\left(k_{1}\right)\right\}=s_{1}\left(k_{1}\right)=\frac{\sum_{i_{1}=1}^{k_{1}} \sum_{i=1}^{y_{2}=1} \sum_{i_{j}=1}^{v_{3}} Y\left(i_{1}, i_{2}, i_{3}\right)}{N}\left[z_{1}\left(k_{1}\right)=\left(\frac{\Lambda}{\Lambda_{11}}\right)^{1 / 2} \cdot t_{1}\left(k_{1}\right)\right], \mathbf{B}(1)
$$

are proportional to the associated values $t_{1}\left(k_{1}\right)$.
The function $\zeta_{2 ; 1}$ might be constructed, if the empirical treatment enabled us to give an infinitesimal range to the variable t_{1}. Then we could determine the empirical probability of $t_{1}=t_{1}\left(j_{1}\right)$ with the range $d t_{1}, t_{2}$ being $<t_{2}\left(k_{2}\right), t_{3}$ being arbitrary.

Putting

$$
d_{j_{1}} \Theta\left\{z_{1}\right\}=\Theta\left\{z_{1}\left(j_{1}\right)\right\}-\Theta\left\{z_{1}\left(j_{1}\right)-d z_{1}\right\}
$$

the theoretical expression of this probability is
$d_{j_{1}} \Theta\left\{z_{1}\right\} . \Theta\left\{\zeta_{2: 1}\left(j_{1}, k_{2}\right)\right\}, \quad$ where $\quad \zeta_{2: 1}\left(j_{1}, k_{2}\right)=\frac{-\Lambda_{21} \cdot t_{1}\left(j_{1}\right)+\Lambda_{11} \cdot t_{2}\left(k_{2}\right)}{V \Lambda_{11}}$.
The least range however we actually can take for t_{1} is the classinterval $\triangle t_{1}=t_{1}\left(k_{1}\right)-t_{1}\left(k_{1}-1\right)$, so that the corresponding z_{1} lies between $z_{1}\left(k_{1}-1\right)$ and $z_{1}\left(k_{1}\right)$. Thus we must operate with a finite difference:

$$
\triangle_{k_{1}} \Theta\left\{z_{1}\right\}=\Theta\left\{z_{1}\left(k_{1}\right)\right\}-\Theta\left\{z_{1}\left(k_{1}-1\right)\right\} .
$$

[^3]Then it is necessary to take for the function $\zeta_{2: 1}\left(j_{1}, k_{2}\right)$ a value, computed by substituting for $t_{1}\left(j_{1}\right)$ a certain mean value between $t_{1}\left(k_{1}-1\right)$ and $t_{1}\left(k_{1}\right)$. Denoting this mean value by $t_{1}\left(k_{1}-\frac{1}{2}\right)$, we have:

Probability of [$t_{1}\left(k_{1}-1\right)<t_{1}<t_{1}\left(k_{1}\right), t_{2}<t_{2}\left(k_{2}\right), t_{3}$ arbitrary]:

$$
\Delta_{k_{1}} \Theta\left\{z_{1}\right\} . \Theta\left\{\zeta_{2 ; 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)\right\} .
$$

Considering now the probability of $\left[t_{2}<t_{2}\left(k_{2}\right), t_{3}\right.$ arbitrary, being given that $t_{1}\left(k_{1}-1\right)<t_{1}<t_{1}\left(k_{1}\right)$], we find for its theoretical value:
where

$$
\begin{aligned}
\sigma_{2: 1}\left(k_{1}-\frac{1}{2}, k_{2}\right) & =\Theta\left\{\zeta_{2: 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)\right\}, \\
\zeta_{2: 1}\left(k_{1}-\frac{1}{2}, k_{2}\right) & =\frac{-\Lambda_{21} \cdot t_{1}\left(k_{1}-\frac{1}{2}\right)+\Lambda_{11} \cdot t_{2}\left(k_{2}\right)}{V \Lambda_{11}} .
\end{aligned}
$$

The empirical value of this very probability is found to be

$$
\sigma_{2 ; 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)=\frac{\sum_{i_{i}=1}^{k_{2}} \sum_{i_{3}=1}^{v_{3}} y\left(k_{1}, i_{2}, i_{3}\right)}{\sum_{i_{2}=1}^{v_{2}} \sum_{i_{3}=1}^{y_{3}} y\left(k_{1}, i_{2}, i_{3}\right)}=\frac{\sum_{i_{i}=1}^{k_{2}} \sum_{i_{3}=1}^{v_{3}} Y\left(k_{1}, i_{2}, i_{3}\right)}{\sum_{i_{2}=1}^{v_{2}} \sum_{i_{3}=1}^{v_{3}} Y\left(k_{1}, i_{2}, i_{3}\right)} .
$$

So we find, equalizing both expressions for the:
Probability of [$t_{2}<t_{2}\left(k_{2}\right), t_{3}$ arbitr., being given: $\left.t_{1}\left(k_{1}-1\right)<t_{1}<t_{1}\left(k_{1}\right)\right]$:

$$
\begin{equation*}
\Theta\left\{\zeta_{2: 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)\right\}=\sigma_{2: 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)=\frac{\sum_{i_{2}=1}^{k_{2}} \sum_{i_{3}=1}^{\nu_{3}} Y\left(k_{1}, i_{2}, i_{3}\right)}{\sum_{i_{2}=1}^{\nu_{2}} \sum_{i_{3}=1}^{y_{3}}} Y\left(k_{1}, i_{2}, i_{3}\right), \tag{2;1}
\end{equation*}
$$

where $\quad \zeta_{2 ; 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)=\frac{-\Lambda_{21} \cdot t_{1}\left(k_{1}-\frac{1}{2}\right)+\Lambda_{11} \cdot t_{2}\left(k_{2}\right)}{V \Lambda_{11}}$.
If we succeed in determining exactly the mean values $t_{1}\left(k_{1}-\frac{1}{2}\right)$ $\left(k_{1}=2, \ldots, v_{1}-1\right)$, it must appear - provided that the given frequency distribution be in accordance with the probability formula $4(5,6)$, , that the values of $\zeta_{2 ; 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)$ computed from $\mathbf{B}(2 ; 1)$ are linearly dependent from the corresponding values $t_{1}\left(k_{1}-\frac{1}{2}\right), t_{2}\left(k_{2}\right)$. In this case we can calculate the required values of $\lambda_{a b}$ and $\gamma_{a b}$ from the coefficients of the linear functions $z_{1}=a_{1} t_{1}, \zeta_{2 ; 1}=a_{1} t_{1}+\alpha_{2} t_{2}$. However we must, before making this calculation, ascertain whether the variables t_{a} are really unimodular. To test this we have to consider the function Z_{3}.

To construct the function Z_{3} empirically, we should be able to give - also in the empirical treatment - an infinitesimal range, not only to t_{1}, but also to t_{2}. Then it would be possible to determine the empirical probability of: $\left[t_{1}=t_{1}\left(j_{1}\right)\right.$ (range $\left.d t_{1}\right), t_{2}=t_{2}\left(j_{2}\right)$ (range $\left.\left.d t_{2}\right), t_{3}<t_{3}\left(k_{3}\right)\right]$.

Putting

$$
d_{j_{1} j_{2}} \Theta\left\{\zeta_{2 ; 1}\right\}=\Theta\left\{\zeta_{2 ; 1}\left(j_{1}, j_{2}\right)\right\}-\Theta\left\{\zeta_{2 ; 1}\left(j_{1}, j_{2}\right)-d \zeta_{2 ; 1}\right\},
$$

this probability is theoretically expressed by

$$
d_{j_{1}} \Theta\left\{z_{1}\right\} \cdot d_{j_{1}, j_{2}} \Theta\left\{\zeta_{2: 1}\right\} \cdot \Theta\left\{Z_{3}\left(j_{1}, j_{2}, k_{3}\right)\right\}
$$

where $\quad Z_{3}\left(j_{1}, j_{2}, k_{3}\right)=\lambda_{31} \cdot t_{1}\left(j_{1}\right)+\lambda_{23} \cdot t_{2}\left(j_{2}\right)+t_{3}\left(k_{3}\right)$.

Actually we must operate with the finite ranges $\Delta t_{1}=t_{1}\left(k_{1}\right)-t_{1}\left(k_{1}-1\right)$, $\Delta t_{2}=t_{2}\left(k_{2}\right)-t_{2}\left(k_{2}-1\right)$ and with the corresponding finite ranges $\triangle z_{1}$, $\triangle \zeta_{2 ; 1}$.

So we have (besides $\triangle_{k_{1}} \Theta\left\{z_{1}\right\}$) to consider:

$$
\triangle_{k_{1} k_{2}} \Theta\left\{\zeta_{2: 1}\right\}=\Theta\left\{\zeta_{2 ; 1}\left(k_{1}-\frac{1}{2}, k_{2}\right)\right\}-\Theta\left\{\zeta_{2 ; 1}\left(k_{1}-\frac{1}{2}, k_{2}-1\right)\right\} .
$$

We must therefore take a value of the function $Z_{3}\left(j_{1}, j_{2}, k_{3}\right)$, which is computed by substituting for t_{1} the value $t_{1}\left(k_{1}-\frac{1}{2}\right)$ (mentioned already above), and for t_{2} a mean value $t_{2}\left(k_{2}-\frac{1}{2}\right)$ between $t_{2}\left(k_{2}-1\right)$ and $t_{2}\left(k_{2}\right)$. So we obtain for the

Probability of:

$$
\begin{gathered}
{\left[t_{1}\left(k_{1}-1\right)<t_{1}<t_{1}\left(k_{1}\right), \quad t_{2}\left(k_{2}-1\right)<t_{2}<t_{2}\left(k_{2}\right) . \quad t_{3}<t_{3}\left(k_{3}\right)\right]:} \\
\triangle_{k_{1}} \Theta\left\{z_{1}\right\} . \triangle_{k_{1} k_{2}} \Theta\left\{\zeta_{2 ; 1}\right\} . \Theta\left\{Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)\right\} .
\end{gathered}
$$

Hence the probability of $\left[t_{3}<t_{3}\left(k_{3}\right)\right.$, being given: $t_{1}\left(k_{1}-1\right)<t_{1}<t_{1}\left(k_{1}\right)$, $\left.t_{2}\left(k_{2}-1\right)<t_{2}<t_{2}\left(k_{2}\right)\right]$ has for its theoretical value:

$$
S_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)=\Theta\left\{Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)\right\},
$$

where $\quad Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)=\lambda_{31} \cdot t_{1}\left(k_{1}-\frac{1}{2}\right)+\lambda_{23} \cdot t_{2}\left(k_{2}-\frac{1}{2}\right)+t_{3}\left(k_{3}\right)$.
Its empirical value is found to be

$$
S_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)=\frac{\sum_{i_{1}=1}^{k_{3}} y\left(k_{1}, k_{2}, i_{3}\right)}{\sum_{i_{3}=1}^{\sum_{3}} y\left(k_{1}, k_{2}, i_{3}\right)}=\frac{\sum_{i_{1}=1}^{k_{8}} Y\left(k_{1}, k_{2}, i_{3}\right)}{\sum_{i_{i}=1}^{k_{3}} Y\left(k_{1}, k_{2}, i_{3}\right)} .
$$

By equalizing both expressions for S_{3}, we have for the Probability of:
$\left[t_{3}<t_{3}\left(k_{3}\right)\right.$, being given: $\left.t_{1}\left(k_{1}-1\right)<t_{1}<t_{1}\left(k_{1}\right), t_{2}\left(k_{2}-1\right)<t_{2}<t_{2}\left(k_{2}\right)\right]$:
$\Theta\left\{Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)\right\}=S_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)=\frac{\sum_{i_{i}=1}^{k_{3}} Y\left(k_{1}, k_{2}, i_{3}\right)}{\sum_{i_{3}=1}^{\lambda_{3}} Y\left(k_{1}, k_{2}, i_{3}\right)} \cdot(\mathbf{B}(\mathbf{3} ; 21)$
where $Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)=\lambda_{31}, t_{1}\left(k_{1}-\frac{1}{2}\right)+\lambda_{23} . t_{2}\left(k_{2}-\frac{1}{2}\right)+t_{3}\left(k_{3}\right)$
If we succeed in determining exactly the mean values $t_{1}\left(k_{1}-\frac{1}{2}\right)$ and $t_{2}\left(k_{2}-\frac{1}{2}\right)$, then it must appear - provided that the given frequency distribution be in accordance with the probability formula $4(5,6)$ - that the values of $Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)$ computed from $\mathbf{B}(3 ; 21)$ are linearly connected with the corresponding values $t_{1}\left(k_{1}-\frac{1}{2}\right), t_{2}\left(k_{2}-\frac{1}{2}\right), t_{3}\left(k_{3}\right)$.

If t_{1}, t_{2}, t_{3} are really unimodular, then the linear relation $Z_{3}=A_{1} t_{1}+A_{2} t_{2}+A_{3} t_{3}$ must give : $A_{3}=1, A_{1}$ and A_{2} equal to the values λ_{31} and λ_{23} already calculated from the coefficients a_{1}, a_{1}, a_{2}.

In the preceding analysis we have chosen the arrangement $z_{1}, \zeta_{2 ; 1}, Z_{3}$; that is to say: we have first left t_{2} and t_{3} arbitrary, then only t_{3} (and at last none of the t_{a}). We may however just as well leave arbitrary:
first t_{1} and t_{3}, then only t_{3}. This arrangement furnishes us the new functions z_{2} and $\zeta_{1 ; 2}, Z_{3}$ remaining the same.
z_{2} is, as a function of t_{2}, determined by associating $z_{2}\left(k_{2}\right)$ with $t_{2}\left(k_{2}\right)$ according to

$$
\begin{equation*}
\Theta\left\{z_{2}\left(k_{2}\right)\right\}=s_{2}\left(k_{2}\right)=\frac{\sum_{i_{1}=1}^{y_{1}} \sum_{i_{2}=1}^{k_{2}} \sum_{i_{3}=1}^{y_{3}} Y\left(i_{1}, i_{2}, i_{3}\right)}{N} \tag{2}
\end{equation*}
$$

$\zeta_{1 ; 2}$ is, as a function of t_{1} and t_{2}, determined empirically by associating $\zeta_{1 ; 2}\left(k_{1}, k_{2}-\frac{1}{2}\right)$ with $t_{1}\left(k_{1}\right), t_{2}\left(k_{2}-\frac{1}{8}\right)$ in virtue of the relation

$$
\begin{equation*}
\Theta\left\{\zeta_{1 ; 2}\left(k_{1}, k_{2}-\frac{1}{2}\right)\right\}=\sigma_{1 ; 2}\left(k_{1}, k_{2}-\frac{1}{2}\right)=\frac{\sum_{i_{1}=1}^{k_{1}} \sum_{i_{i}=1}^{v_{3}} Y\left(i_{1}, k_{2}, i_{3}\right)}{\sum_{i_{1}=1}^{\nu_{1}} \sum_{i_{3}=1}^{y_{3}} Y\left(i_{1}, k_{2}, i_{3}\right)} . \tag{1;2}
\end{equation*}
$$

Provided the mean values asked for be determined in the right way, we shall find, between $z_{2}, \zeta_{1: 2}, Z_{3}$ on the one hand and t_{1}, t_{2}, t_{3} on the other, the relations

$$
\left.\begin{array}{l}
z_{2}=\left(\frac{\Lambda}{\Lambda_{22}}\right)^{1 / 2} \cdot t_{2}, \\
\zeta_{1 ; 2}=\frac{\Lambda_{22} \cdot t_{1}-\Lambda_{12} \cdot t_{2}}{V \Lambda_{22}}, \\
Z_{3}=\lambda_{31} \cdot t_{1}+\lambda_{23} \cdot t_{2}+t_{3},
\end{array}\right\} \quad . \quad . \quad . \quad \text { 9ter }\left\{\begin{array}{l}
(2) \\
(1 ; 2) \\
(3 ; 12)
\end{array}\right.
$$

which evidently must furnish the same values of $\lambda_{a b}$ and $\gamma_{a b}$ as before. Putting

$$
\begin{equation*}
z_{1}^{2}+\zeta_{2 ; 1}^{2}=q_{2 ; 1}^{2} \quad, \quad z_{2}^{2}+\zeta_{1 ; 2}^{2}=q_{1 ; 2}^{2}, \tag{26}
\end{equation*}
$$

we must find

$$
\begin{equation*}
q_{2 ; 1}=q_{1 ; 2}\left(=q_{12}\right) . \tag{27}
\end{equation*}
$$

since both $q_{2 ; 1}$ and $q_{1 ; 2}$ must represent the projection $O H$ of $O P$ on the plane $\Phi_{2} O \Phi_{3}$.

From 9 bis $(1), 9$ bis $(2 ; 1)$ we derive for the common value q_{12}^{2} :

$$
q_{12}^{2}=\sin ^{2} \varphi_{2} \cdot t_{1}^{2}-2 \cos \omega_{3} \sin \varphi_{1} \sin \varphi_{2} \cdot t_{1} t_{2}+\sin ^{2} \varphi_{1} \cdot t_{2}^{2}
$$

Moreover we find from 9 bis (1), 9 bis $(2 ; 1$) and from the corresponding equations 9bis (2), 9bis (1; 2):

$$
z_{1} z_{2}-\zeta_{2 ; 1} \zeta_{1 ; 2}=\cos \omega_{3} \cdot q_{12}^{2} \quad, \quad z_{1} \zeta_{1 ; 2}+z_{2} \zeta_{2 ; 1}=\sin \omega_{3} \cdot q_{12}^{2}, \quad . \quad 28
$$

whence

$$
\begin{equation*}
\operatorname{tg} \omega_{3}=\frac{z_{1} \zeta_{1 ; 2}+z_{2} \zeta_{2 ; 1}}{z_{1} z_{2}-\zeta_{2 ; 1} \zeta_{1 ; 2}} \tag{29}
\end{equation*}
$$

The equations 28 and, in particular, the equation 29, which is independent of the concordance between $q_{1 ; 2}$ and $q_{2 ; 1}$, immediately furnish ω_{3}, hence also the (total) coefficient of correlation $\gamma_{12}=\cos \omega_{3}$.

For $O P^{2}$ we obtain two expressions, viz.:
$r_{2 ; 1}^{2}=z_{1}^{2}+\zeta_{2 ; 1}^{2}+Z_{3}^{2}=q_{2 ; 1}^{2}+Z_{3}^{2}$ and $r_{1 ; 2}^{2}=z_{2}^{2}+\zeta_{1 ; 2}^{2}+Z_{3}^{2}=q_{1 ; 2}^{2}+Z_{3}^{2} \mathbf{3 0 (2 ; 1) (1 ; 2)}$ which turn out to be equal, if 27 is satisfied.

If we had operated with the arrangement $z_{1}, \zeta_{3: 1}, Z_{2}$, we should have obtained for $O P^{2}$ a new expression, viz.:

$$
\begin{equation*}
r_{3,1}^{2}=z_{1}^{2}+\zeta_{3: 1}^{2}+Z_{2}^{2}=q_{3 ; 1}^{2}+Z_{2}^{2} \tag{3:1}
\end{equation*}
$$

the value of which should be equal to the values furnished by $\mathbf{3 0}(\mathbf{2} ; \mathbf{1})(\mathbf{1} \mathbf{2} \mathbf{2}$. For the magnitudes $q_{b ; a}$, determined by

$$
z_{a}^{2}+\zeta_{b ; a}^{2}=q_{b ; a}^{2} \quad, \quad(a, b=1,2,3)
$$

we have therefore together the three controlling equations:

$$
q_{a ; b}=q_{b ; a}\left(=q_{a b}\right) \quad(a, b=1,2,3) . \quad . \quad . \quad . \quad \mathbf{I a}
$$

Putting

$$
\begin{equation*}
z_{a} z_{b}-\zeta_{b ; a} \zeta_{a ; b}=A_{a b} \quad, \quad z_{a} \zeta_{a ; b}+z_{b} \zeta_{b ; a}=B_{a b} \tag{D}
\end{equation*}
$$

we have, analogous to 29 ,

$$
\operatorname{tg} \omega_{c}=\frac{B_{a b}}{A_{a b}}
$$

Leaving it unsettled whether $q_{a: b}$ is equal to $q_{b: a}$ or not, yet we have:

$$
\cos \omega_{c}=\frac{A_{a b}}{V\left(A_{a b}^{2}+B_{a b}^{2}\right)} \quad, \quad \sin \omega_{c}=\frac{B_{a b}}{V\left(A_{a b}^{2}+B_{a b}^{2}\right)} .
$$

Now

$$
\begin{aligned}
A_{a b}^{2}+B_{a b}^{2}=\left(z_{a} z_{b}-\zeta_{b ; a} \zeta_{a ; b}\right)^{2}+\left(z_{a} \zeta_{a: b}\right. & \left.+z_{b} \zeta_{b: a}\right)^{2}= \\
& =\left(z_{a}^{2}+\zeta_{b ; a}^{2}\right)\left(z_{b}^{2}+\zeta_{a ; b}^{2}\right)=q_{b ; a}^{2} \cdot q_{a ; b}^{2}
\end{aligned}
$$

Hence we have - no matter whether $q_{b ; a}=q_{a: b}$ is satisfied or not -

$$
\begin{array}{r}
\gamma_{a b}=\cos \omega_{c}=\frac{A_{a b}}{q_{b ; a} \cdot q_{a ; b}}, V{\overline{1-\gamma_{a b}}}^{2}=\sin \omega_{c}=\frac{B_{a b}}{q_{b: a} \cdot q_{a ; b}}, \\
\frac{V \overline{1-\gamma_{a b}^{2}}}{\gamma_{a b}}=\operatorname{tg} \omega_{c}=\frac{B_{a b}}{A_{a b}}\left(\frac{\cos \omega_{c}}{A_{a b}}>0\right) .
\end{array}
$$

E

Putting

$$
q_{b ; a}, q_{a ; b}=Q_{a b}^{2}, . \quad \text { Cbis }
$$

we may also write:

$$
\left.\begin{array}{r}
\gamma_{a b}=\cos \omega_{c}=\frac{A_{a b}}{Q_{a b}^{2}}, \quad \sqrt{1-\gamma_{a b}^{2}}=\sin \omega_{c}=\frac{B_{a b}}{Q_{a b}^{2}}, \\
\frac{V \overline{1-\gamma_{a b}^{2}}}{\gamma_{a b}}=\operatorname{tg} \omega_{c}=\frac{B_{a b}}{A_{a b}}\left(\frac{\cos \omega_{c}}{A_{a b}}>0\right)
\end{array}\right\} .
$$

Ebis

In the case that $q_{b: a}=q_{a: b}\left(=q_{a b}\right)$ is really satisfied, we have of course

$$
Q_{a b}=q_{a b} . \quad \text { Iabis }
$$

At present we can put $r^{2}=O P^{2}$ into a form, which is entirely built up of the functions $z_{a}, \zeta_{b: a}(a . b=1,2,3)$.

From 5, 7, 11, 12bis, 13bis ensues:

$$
\begin{aligned}
& f=r^{2}=\sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \lambda_{\alpha_{\beta}} t_{\alpha} t_{\xi}=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+2 \cos \varphi_{1} \cdot t_{2} t_{3}+2 \cos \varphi_{2} \cdot t_{3} t_{1}+2 \cos \varphi_{3} \cdot t_{1} t_{2} \\
& =\sum_{\alpha=1}^{3} \frac{z_{\alpha}^{2}}{\sin ^{2} \psi_{\alpha}}+2 \sum_{\alpha=1}^{3} \cos \varphi_{\alpha} \frac{z_{\beta} z_{\gamma}}{\sin \psi_{\beta} \sin \psi_{\gamma}}= \\
& =\frac{\sum_{\alpha=1}^{3} \sin ^{2} \omega_{\alpha} \cdot z_{\alpha}^{2}+2 \sum_{\alpha=1}^{3} \sin \omega_{\beta} \sin \omega_{\gamma} \cos \varphi_{\alpha} \cdot z_{\beta} z_{\gamma}}{\Gamma}
\end{aligned}
$$

or

$$
\begin{equation*}
f=\frac{\sum_{\alpha=1}^{3} \sin ^{2} \omega_{\alpha} \cdot z_{\alpha}^{2}+2 \sum_{\alpha=1}^{3}\left(\cos \omega_{\beta} \cos \omega_{\gamma}-\cos \omega_{\alpha}\right) z_{\beta} z_{\gamma}}{1-\cos ^{2} \omega_{1}-\cos ^{2} \omega_{2}-\cos ^{2} \omega_{3}+2 \cos \omega_{1} \cos \omega_{2} \cos \omega_{3}} \tag{31}
\end{equation*}
$$

Substituting, in the denominator I, for $\cos \omega_{1}, \cos \omega_{2}, \cos \omega_{3}$ the expressions furnished by Ebis, we obtain:

$$
\begin{aligned}
\Gamma & =1-\frac{A_{23}^{2}}{Q_{23}^{4}}-\frac{A_{31}^{2}}{Q_{31}^{4}}-\frac{A_{12}^{2}}{Q_{12}^{4}}+2 \frac{A_{23} A_{31} A_{12}}{Q_{23}^{2} Q_{31}^{2} Q_{12}^{2}} \\
& =\frac{. Q_{23}^{4} Q_{31}^{4} Q_{12}^{4}-\sum_{\alpha=1}^{3} A_{\beta \gamma}^{2} Q_{\gamma \alpha}^{4} Q_{\alpha \beta}^{4}+2 A_{23} A_{31} A_{12} Q_{23}^{2} Q_{31}^{2} Q_{12}^{2}}{Q_{23}^{4} Q_{31}^{4} Q_{12}^{4}}
\end{aligned}
$$

or, putting:

$$
Q_{23}^{4} Q_{31}^{4} Q_{12}^{4}-\sum_{\alpha=1}^{3} A_{\beta \gamma}^{2} Q_{\gamma \alpha}^{4} Q_{\alpha, \beta}^{4}+2 A_{23} A_{31} A_{12} Q_{23}^{2} Q_{31}^{2} Q_{12}^{2} \equiv F\{z, \zeta\}, \quad \mathbf{F}
$$

the abbreviated form:

$$
\Gamma=\frac{F\{z, \zeta\}}{Q_{23}^{4} Q_{31}^{4} Q_{12}^{4}}
$$

Likewise we find for the numerator of r^{2} :

$$
\begin{gathered}
\sum_{\alpha=1}^{3} \frac{B_{\beta \gamma}^{2}}{Q_{\beta \gamma}^{4}} \cdot z_{\alpha}^{2}+\sum_{\alpha=1}^{3}\left(\frac{A_{\gamma \alpha}}{Q_{\gamma \alpha}^{2}} \frac{A_{\alpha, \beta}}{Q_{\alpha \beta}^{2}}-\frac{A_{\beta \gamma}}{Q_{\beta \gamma}^{2}}\right) z_{\beta} z_{\gamma}= \\
=\frac{\sum_{\alpha=1}^{3} B_{\beta \gamma}^{2} Q_{\gamma \alpha}^{4} Q_{\alpha, \beta}^{4} \cdot z_{\alpha}^{2}+Q_{23}^{2} Q_{31}^{2} Q_{12}^{2} \cdot \sum_{\alpha=1}^{3}\left(A_{\gamma \alpha} A_{\alpha, \beta} Q_{\beta \gamma}^{2}-A_{\beta \gamma} Q_{\gamma \alpha}^{2} Q_{\alpha, \beta}^{2}\right) z_{\beta} z_{\gamma}}{Q_{23}^{4} Q_{31}^{4} Q_{12}^{4}}
\end{gathered}
$$

or, putting:

$$
\left.\begin{array}{l}
\sum_{\alpha=1}^{3} B_{\beta \gamma}^{2} Q_{\gamma \alpha}^{4} Q_{\alpha \beta}^{4} \cdot z_{\alpha}^{2}+ \\
\left.\quad+2 Q_{23}^{2} Q_{31}^{2} Q_{12}^{2} \sum_{\alpha=1}^{3}\left(A_{\gamma \alpha} A_{\alpha, \beta} Q_{\beta \gamma}^{2}-A_{\beta \gamma} Q_{\gamma \alpha}^{2} Q_{\alpha \beta}^{2}\right) z_{\beta} z_{\gamma} \equiv G\{z, \zeta\},\right\}
\end{array}\right\}
$$

the abbreviated form :

$$
\text { numerator }=\frac{G\{z, \zeta\}}{Q_{23}^{4} Q_{31}^{4} Q_{12}^{4}} .
$$

The forms F and G are entirely built up of the functions $z_{a}, \zeta_{a: b}$ ($a, b=1,2,3$).

Thus we find for $O P^{2}=r^{2}$:

$$
r^{2}=\frac{G\{z, \zeta\}}{F\{z, \zeta\}}=H\{z, \zeta\} \cdot . \cdot \mathbf{H}
$$

If the conditions Ia are fulfilled (whence $Q_{a b}=q_{a b}, a, b=1,2,3$), the functions Z_{1}, Z_{2}, Z_{3} must satisfy

$$
Z_{1}^{2}=H\{z, \zeta\}-q_{23}^{2}, \quad Z_{2}^{2}=H\{z, \zeta\}-q_{31}^{2}, \quad Z_{3}^{2}=H\{z, \zeta\}-q_{12}^{2} \quad \text { Ib }
$$

(To be continued).

[^0]: ${ }^{1}$) Versl. K. A. v. W. 34, p. 787 en p. 965; 35, p. 129. (Proceed. K. Ak. v. Wet. Amsterdam: Vol. 28, p. 797 and p. 919; Vol. 29, p. 580).
 ${ }^{2}$) Versl. K. A. v. W. (Proceed. K. Ak. v. Wet. Amsterdam, Vol. 32, p. 408) (with summary in English).
 ${ }^{3}$) Using, also further on, the brackets () in denoting the class-numbers, we shall, in the following text, designate a functional connexion by $\}$, e.g. $t\{x\}$.

[^1]: ${ }^{1}$) The sign; between the subscripts points out, that the arrangement of these subscripts is relevant. Subscripts not separated by the sign; are permutable.

[^2]: ${ }^{1}$) $\lambda_{a b}$ denotes the minor (algebraic complement) of $\lambda_{a b}$ in the determinant A.

[^3]: ${ }^{1}$) The values of x_{1} corresponding to $z_{1}=-\infty$ and $z_{1}=+\infty$ are essentially undetermined; they need not coincide with the extreme class-limits (see S.C. Ia, Dutch text p. 793, English text p. 803).

