Mathematics. — Skew Correlation between Three and More Varia-
bles, 1. By Prof. M. J. vaN UVEN. (Communicated by Prof. A. A.
NIJLAND).

(Communicated at the meeting of May 25, 1929).

I. Skew Correlation between th re e variables.

In order to furnish a model for the treatment of skew correlation
between an arbitrary number (n) of variables, we shall first establish
the method of treating the case of three variables. We continue the
method we followed formerly in treating the case of two variables,
exposed in the paper “Over het bewerken van scheeve correlatie” (“On
Treating Skew Correlation”) !), recently completed by the paper: “Scheeve
Correlatie tusschen twee veranderlijken” (“Skew Correlation between
Two Variables”) ?).

These papers (the former being distributed over three articles) will be
designated by the abbreviations S.C.1, a, b,¢, S.C.II

The three variables may be called x,, x; x;. For the variable
x.(@a=1,2,3) v, values, & (1), & (2),...& (ka), . .. & (va) 3), are recorded.
As a rule the interval between two class-centres is constant: &, (k) —
—&ki—1)=c.(a=1,2,3).

The frequency of the set & (k,), &, (ky), &5 (ks) may be denoted by
Y (k. k3. k;). For the total number N of the observed sets &, &,, & we
have

N

N=23 3 3Yl.ini). . « . . . . .1

i=1i=1i=1
Thus the relative frequency (a posteriori probability) of the set
& (k). & (k). &5 (k) is

ﬂh@@:ﬂ%%@ 2

What is properly meant by recording &, (k.) for x., is that x, is

1) Versl. K. A. v. W. 34, p. 787 en p. 965; 35, p. 129. (Proceed. K. Ak. v. Wet.
Amsterdam: Vol. 28, p. 797 and p. 919; Vol. 29, p. 580).

2 Versl. K. A. v. W. (Proceed. K. Ak. v. Wet. Amsterdam, Vol. 32, p. 408) (with
summary in English).

3) Using, also further on, the brackets () in denoting the class-numbers, we shall, in
the following text, designate a functional connexion by { |}, e.g. #{x}.
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found between &, (k,) —% and &, (k) + ;—" Putting

MM+%:nm).m:LZ$.. . » » 3

so that x, (k.) indicates the upper limit of the class k,, we may describe
the three-dimensional frequency distribution by the statement:

For Y(k,,k;, k3) sets xy, x,, x5 is found: x, (ka—1)<<x. <x. (ka), a=1,2,3. A

If the correlation between xj, x,, x3 is itself linear, then the probability
of the set &, &, &; is expressed by an infinitesimal probability formula,
which we may construct as follows:

We compute the mean &, of all observed values &,, and the deviations
u, =&, — &, from that mean.

Then the probability that such a set of deviations is found between
uy, Uy, us and u, +du,, u, + du,, u; +du; has theoretically the infinitesimal
value:

dW = Ce—fdu, . du, . dus.

Here the symbol f represents a positive-definite homogeneous quadratic

form in the u,:

f=hlul+ 22, h hyuyuy+ 243 hy hyuy us + hjui+2 Ay3 hy hy up us +

3 3
+ hg llg? 2 2 la/? ha h,? Uo us,

a=1 3=1
where
bw=1 , Ip=lg . Bs<1.
Putting
All ’ }'12 ' }‘l3 1 ’ 112 ’ j'31
I la,? | = 121 . )~22 5 123 = 112 ¥ l # 1123 :A’
Ayp A3, Ass Ayp Ay, 1
we find for the constant factor C:
c=tuhals V4
V 73

Before analysing this three-dimensional probability formula, we shall
introduce the unimodular variables t,, t,, t; by the relations:

th=hsttis » (a=1,2,3)

Hence the infinitesimal probability formula is expressed in these uni-
modular variables as follows:
VA
dW:—l/?e—fdtl.dtz.d%, v o8 o6 w3 o8 4
where
3 03
=842t t,+ 245+ 65+ 206t +5=23 2 lagtatz, 5

a=] 5=l
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with
la=1 , dg=as ., M3l , A=|has| . . . 6

For the study of the probability formula 4 we shall provisionally
suppose fy, t,, t; to be the original variables.
Putting
lyy=cos@, , Ay =cosg, , Ap,=cosg;, ¢ w ow

we may illustrate the form f geometrically by considering a skew system
of (rectilinear) coordinates t,,t,, t3, whereby the axes f, and f; include
the angle ¢,, the axes t; and t, the angle @, the axes f; and ¢, the
angle ¢; (fig. 1). The axes OQ,(=t), OQ;(=t). OQ;(=t;) may
(eventually prolonged) cut the sphere of radius unity with centre O
(“unity-sphere’) at the points @, ®,, Ps.

Q)z 2;1

fig.2

Then on this unity-sphere we have a triangle @, @, @;[(®)] the sides
of which are ¢, @,, 5. In our sketches we have taken all three sides
@1, @2, ¢; obtuse (fig. 2).

P being a point with the (skew) coordinates t,, t,, t;, the square of
the radius vector OP=r, carrying from the origin O to that point,
amounts to

oPP=¢g2=f . . . . . . .. . 8

In order to integrate easily the probability differential, we shall write
the quadratic form f as a sum of three squares. The geometrical meaning
of this is, that we decompose OP —=r along three rectangular axes.

So we shall decompose OP

19, along O9;,

51*

®;
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2°. along O%,.; ") within the plane @, O®; perpendicular to O®P;, O¥,,,
being directed to that side of O®; where O®, lies,

39 along O£, perpendicular to the plane @, O®;, directed to the
same side as O®,.

Now we find for the component Z; along O®;:

Z3 =proj. OP on OP;=(proj. OQ, + proj. Q,Q’;s + proj. Q3P) on OP; =

—t, cos ¢, + t; cos ¢, + t;.

To compute the second component ({21), we drop the perpendicular
PH from P on ®,0®; and (within the plane Q,Q',PQ’;) the perpen-
dicular PG on Q,Q; then /HGP is the solid angle between the
planes @,0®; and Q,QPQ'5, hence the supplement of the solid angle
at the edge O®;, thus the supplement of the angle @; of the spherical
triangle (@), whence GH = GP . cos (r — P;) = — GP. cos Ds.

Further we have GP—=Q',P.sin GQ';,P=Q', P. sin (=—¢,) = Q', P. sin p,.

—_—
So we find for the projection GH of QP on ¥,,0: GH=
=— Q,P. sin ¢, cos ;= — ¢, sin ¢, cos P;; therefore the projection

—
GH (—=—HG) of QP on OY,, is: + t, sin ¢, cos Ds.
Hence the component ;1 of OP along O¥,; amounts to:
{21 =proj. OP on O¥,,; = (proj. OQ', + proj. Q,P) on O¥,, =
= OF + t, sin ¢, cos P; = ¢, cos ((pl — g) + ¢, sin @, cos D;
or
(2.1 =.t, sin @, cos D5 + ¢, sin @,.
Finally we obtain for the component z, along O£;:
2, = proj. OP on O£, = HP = GPsin (r — P;) = ¢, sin ¢, sin Ps.

So we have:

z; —sing,sin D;. ¢, S (1)
CZ:I —sin @, COS qj; . tl + sin @ . tz, A R 9 1(2: 1)
Zs =cosg,.t; +cosq,.t, + t;. S ((3; 21)

In fig. 1 Z;, {31, z, are represented by OI, IH, HP respectively.

The perpendicular O, on @,0®P; meets the unity-sphere at either
of the poles 2, of ®,P;, and particularly at that pole, which lies with
®, on the same side of ?,9P;. .

Constructing in a similar way the pole 2, of ®;®, and the pole @,
of &,P, the points 2,, 2, £2; form the opposite triangle of that tri-
angle which is usually called the polar triangle of @, @,P;. Nevertheless
we shall further on denote that very triangle 2,2,2; by “the polar
triangle of @, 9,P;"

1) The sign; between the subscripts points out, that the arrangement of these subscripts
is relevant. Subscripts not separated by the sign; are permutable.
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Expressing the angles of the spherical triangle (®) in the sides w, of
its polar triangle (£2) by means of ®, =7 — w, (a=1, 2, 3), we obtain:

z; = sin @, sin w3 . £,
{31 =—sin p,coswy .t +sing, . £, . . . . . 9bis
Z; =cos@y.t, +cos .t + s S

&

‘{ll;a.

fig.s

Prolonging the sides of triangle (£2) (which are acute in our sketches),
2,0, meets ¢, at ¥Ysa, @; at ¥h3; 2509, meets @; at ¥p5, ¢, at Vs
0,92, meets ¢, at 51, ¢, at ¥z (fig. 3).

Each of the six triplets

Q, Vo Dy, V2D, VD, 2,Y5,D, 2,%.:9P, Q¥

determines a rectangular system of coordinates. The components of
OP = in these 6 systems are

Z CZ:] Z3v V4 51;2 Z3v Z ¢3:l ZZv Z) C3;2 th 23 Cl:3 ZZv Z3 CZ:3 Zl~

The point I1 where OP cuts the unity-sphere, is the common image
point of these 6 triplets.

As sin @, sin @; equals the sine of the altitude of (®) issuing from
®,, this latter being the supplement of the altitude vy, of (£2) issuing
from 2,, we have

sin @, sin P; = sin @, sin w; = sin y,,
sin @3 sin @, —=sin@;sinw; =siny,,, . . . . . 10
sin @, sin P, = sin ¢, sin w, = sin y;, S
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Hence we may write for z,:

Zo=siny,.t, . . . . . . . . . 11
We now have:

VA=V — B — B — 2+ 21345 4y = ?
= V1 — cos? ¢, — cos? p, — cos? @3 + 2 cos ¢; €Os @, COS P3 = S 12

=sing,.siny,, (@a=1,2,3)

cos w; = — cos P, = cos (p;_cos (plf oS A3y Aip — Ap3 _
sin @, sin @3 vV (1—22) (1—13) 3
= 4 ) sin @ :_LA_
V' A3 ' VTV Ay 4557
Putting
Y233 =COS®, , y3=COS®W; , Yy2=coswy . . . 7bis
and
Yu. Yize 713
I'= | Va3 | =\ %2, Y220 V23 . . . . . . Gbis
Y3tr  V32» V33
with

Yoo =— lo Ya3— YR 7£/3< 1'

we have, as a counterpart of 12,

V' I'=V'1— cos? w, —cos? w, — cos? w; + 2 cos w; COS W, COS W3 :i 12bis
—sinw,siny, (a=1,2,3),

and, as a counterpart of (13),

COS W3 COS W3 — COS Wy ___ Y31 Y12 — Va3 —
cos gy = —eos fh = sin w, sin w; V(=) (=) z 13bis
s F23 : — l/ [‘ —
VT Ty T, Iy
whence the rmutual relations between y., and 1,
Aap 1 Lo 13ter

)’ b— 1 a1 ’ b— —FH T
° VAIH Abb ° I/Fan be
The magnitude y,, is the total coefficient of correlation between £, and ¢;*
Moreover :
A'': = sin @, sin @, sin @5 . sin y, sin y, sin p; =
= sin? g, sin? ¢, sin? 5 . sin w, sin w, sin w;,

I'"l: = sin @, sin @, sin @5 . sin? @, sin? w, sin? w;,

thus
A, I'': = sin @, sin @, sin @5 . sin 0, sin w,sinw;, . . . 14
and
r y|
sin w; sin w, sin w; sin ¢, sin @, sin @3

1) ab denotes the minor (algebraic complement) of 246 in the determinant A.
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A and I’ being of the 3 order, we have also (annexe to 7 and 7bis)
sing, =V 1—2,=1/4,,, sing, =V 1—1,=|/4,,
sin @3 = V' 1—22,=/ A3,
sinw, =V 1—5=1/T},, sinw,=V 11—y =T},
sinw; =V 1—y2, =1/ T}y,

"

)

e 16bis
)

or, summarized,

sing, =} d,a . sinw, =TI, . (a=1,2,3). . . l16ter

We can now put the equations 9bis — by means of 7, 11, 13 (13ter),
16 — into the form:

I RY '
zZ ——(A—“) b m

Epy o Ay 4+ Ay oty ... . Oter ((2:1)
2:1 I/11” ’
Ly =13 .ty + 5. t,+t5. (3: 21

By summing up the squares we easily regain the expression 5 for f.

We may observe, that z, is a (linear) function of ¢, {;;1 of ¢, and
t,, Z3 of t;, t; and ¢,

Moreover:

b(zl, L2, Z3)__dzl 0824 aZ3——<i)ll-><Allll7>< 1 _‘/A
All - '

O(ty, th &) — dt; 0t, " 0t;
whence, by passing from the variables ¢, t,, t; to the variables z,, (5.1, Z;:
V'A.dt,.dt, . dt; 2 dz, .dlyy . dZ5. . . . . . 1T

Evidently V A . dt, . dt, . dt; represents the element of volume dV
expressed in the skew coordinates ¢, t,, £;:

dV=V'A.dt, .dt,.dt; 2 dz, .dis .dZ; . . . 17bis
So we may put the infinitesimal probability dW into the form:
dW:V17{3e_(‘¥+;i‘+Z§’ dz, . dt.dZ; . . . . 18
Putting in general
P
‘71; [e—v"dp:@;p;, Yy L. 19

and further:

Olz)i=s , Oflu}=o021 ., O{Z}}=S;, . . . 20
we obtain besides for dW the formula:

dW =d0 {z,}|.dO (1} .dO{Z;} =ds; . doyy . dS;, . . 21

and likewise 5 analogous expressions.

1) Cf. the footnote 3) on page 793.



800

In order to isolate two of the variables, e.g. £, and ¢,, we must keep
t;, and ¢, constant (with the ranges df;, and df,). Integrating now dW
over t; (from — oo to + o) we obtain the probability of the set #, ¢,
(with the ranges dt,, dt;). t; being arbitrary.

Now the integration over #; (with ¢, and ¢, constant) may be replaced
by that over Z; (from — oo to + o).

+ oo
On account ofjd@ {Z3} =0 |+ oo} =+ 1, we get:
Z:;=.—oo

Probability of the set t,t, (ranges dt, dt,), t; being arbitrary:
doW =d6 {2} .d6 [t )=~ e+ dzy . dly . . . 22

We might have obtained this same infinitesimal probability, if we had
started with the division f=—22+ {} ,4 Z3; hence this other formula
for d(3)W:

dyW =d0 {z,}.dO {C1.~2}:%e_(’%+;‘1ﬂ) dz,.dli; . . 22bis

The magnitudes zj, 25, {2.1,1;2 being independent of z;, we may
express both the differentials disy W in terms of 2z, and z,; so we obtain:

1 emy 082 1 ez, 00
d(3)W:7—Ze (‘+‘-:’)€:71.d21.d22——;e (‘+":“’)—azl—12.dll.d22, 22ter

whence
e~ EHTEY aCZ—'l:e—(z§+;'f_.2) Bl'],-z’ .. . . . 23
622 621
and generally:
e~ a5l %f:e""“;i:b) % .« .+ . . .. 23bis
Zp Za

In order to isolate one of the wvariables, e.g. f,, we must keep t,
constant (with the range dt), ¢, and ¢; being arbitrary. Then we obtain
the probability of the value #; (with the range dt), £, and t; being
arbitrary. Replacing the integration over ¢, (with ¢, constant) by that

oo
over (3, and taking account ofjd@ b ol =0 {4+ ool =+ 1, we
arrive at: -

Probability of the value ¢, (range dt,), t, and t; being arbitrary:

d(23)W:d(")§ZlE: ""fdzl .. {

1
V€

If a three-dimensional frequency distribution, given by the empirical
data:

“ForY (k,, k3, k3) individuals is found ¢, (ks — 1) <t, <t, (ks), a=1,2,3" 25
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shall be in accordance with the probability formula 4 (5, 6), it must be
possible to construct — by means of 24, 22, 21 — three functions
2y, $2.1,. Z5, which are connected with the variables t,, t,, t; by the relations
9ter, The coeflicients of the relations 9ter having been determined, the
constants Z,, on the one hand and the coefficients of correlation y., on
the other, can be calculated.

The construction of the function z, out of 24 is performed by equalizing
the theoretical probability of: [f < ¢, (k,), £, and ¢; arbitrary], resulting
from 24, to the empirical value of this probability, deduced from 25.

For this probability s, (k;) of: [¢, <t (k;), ¢t; and ¢t; arbitrary] we find :
theoretically:

ty (k)
. A I’_:
0 () = ]dmwv:@zz, (k)}. where 2 (k,>:( A—n) -ty (k).

empirically :

ky 2 n3
2 3 2 Y (i inis)

ky v 3 T g S
s k) = >3 X iv o iy, 12) = =1 i,=1 i;=1
1 (k) 225 y (i1, i, i3) N

Hence we obtain (putting successively k;=1, 2,...,»,—1) »,—1 pairs
2z, 8 Y.

If the frequency distribution {Y; ¢, ¢, t;} really corresponds to the
formula 4 (5, 6), it must appear, that the values z, (k;) resulting from

ky v, o
_2_7 2’; %‘ Y(il' i2' 13) A 1,
8 b (k) =y ()= Sl [zt =(5) e | B

are proportional to the associated values ¢, (k).

The function ¢, might be constructed, if the empirical treatment
enabled us to give an infinitesimal range to the variable f,. Then we
could determine the empirical probability of ¢, = ¢ (j,) with the range
dt;, t, being < t,(k,), t; being arbitrary.

Putting

d, Oz { =01z (j1)} — Otz () —dzi.
the theoretical expression of this probability is

— Ay - ty(j1) + Ay - £ (k)
V4, '
The least range however we actually can take for ¢, is the class-

interval Aty = ¢, (k;) — ¢ (k;— 1), so that the corresponding z, lies between
2, (k;—1) and z, (k;). Thus we must operate with a finite difference:

Ak.@zzl§:@§21(k1)§—@321(k1—1)§-

') The values of x; corresponding to z; = — o and z; = oo are essentially undeter-
mined; they need not coincide with the extreme class-limits (see S.C. I a, Dutch text p. 793,
English text p. 803).

djl@gzlf-@“2:1(]'1"‘2)?- where Cz,-1(j1.kz):
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Then it is necessary to take for the function {31(j,, ko) a value,
computed by substituting for £ (j) a certain mean value between
t; (k;—1) and ¢, (k;). Denoting this mean value by ¢ (k;—1%), we have:

Probability of [£ (k;— 1) <<t < ¢ (ky), &, < £, (kJ), t; arbitrary] :

Ax, 6z, }. 0 (L1 (ky — 4. ko).
Considering now the probability of [¢f, <t;(k,), t; arbitrary, being
given that t, (k,— 1) < t; < ¢ (k,)], we find for its theoretical value:
021 (ky — 4. ko) = O { Lai (ki—+4 ko)
— Ayt (kg —§) + 44y .15 (k)
‘/All )

The empirical value of this very probability is found to be

where {1 (kg — 4, ky) =

ky vy ky v
3 Sykpini) 2 2 Y(kizi)
02;1 (kl - 'i_l kz) f— L‘:‘l l“v_nl il

2 2y (_kl' iz i3) § 2 Y (ky, iy, 13)

=1 i=1 =1 i=1

So we find, equalizing both expressions for the:
Probability of [t,<¢,\k,), t; arbitr., being given: t, (k,— 1) <t, <# (k,)]:
ky vy
3 3 Y(ky iz i3)
(C] { L2 (kl = %y kz) } — 03,1 (kl - 1} kz) =l

Yo

E ZY(kyinis)\ B@1
iy=1iy=1
— Ayt (kg — 4) + Ay, . £ (k)
V4, )

If we succeed in determining exactly the mean values ¢ (k,—%
(ky=2,...,»—1), it must appear — provided that the given frequency
distribution be in accordance with the probability formula 4 (5, 6) —,
that the values of (3 (k; — 34, k;) computed from B(2:1) are linearly
dependent from the corresponding values £, (k;— 1), £; (k;). In this case
we can calculate the required values of 1., and y., from the coefficients
of the linear functions z, =a, ¢, {»,1 = a, £, + @, t,. However we must,
before making this calculation, ascertain whether the variables ¢, are
really unimodular. To test this we have to consider the function Z;.

To construct the function Z; empirically, we should be able to give
— also in the empirical treatment — an infinitesimal range, not only to
t;, but also to t,. Then it would be possible to determine the empirical
probability of; [£ = ¢, (j,) (range dt,), t, = ¢, (j,) (range dt,), t;< t;(k3)].

Putting

djij, O {821} = 0 {21 (1 )} — O {2 (1 jo) — dland,
this probability is theoretically expressed by
d,0{z}.d,;,0{l}. O{Z;(j1j2 ks)}

where Zs (jr Ja ks) = A3y .ty (1) + Aas . 5 (f2) + 5 (ks).

where (51 (ky — 4. k) =
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Actually we must operate with the finite ranges At; =t (k;) —¢, (k;—1),
At,=t,(k;) —ty(k; — 1) and with the corresponding finite ranges A z,,

A C2;l-
So we have (besides A\ O |z, }) to consider:
Dik, O 1L} =0 {0 (ki — . ko)) — O { Lo (k) — 3. ko — 1)}

We must therefore take a value of the function Z;(j, ja ki), which
is computed by substituting for ¢, the value ¢, (k; —$) (mentioned already
above), and for ¢, a mean value ¢, (k, — 1) between ¢, (k;—1) and ¢, (k,).

So we obtain for the
Probability of:

[t —1)<t,<tilk), t(ka—1)<t;<tp(ky). t5<t5(ks)]:
Ak, Oz} D, @180} . OF Z5 (ky — §, ko — 4, k3) ).

Hence the probability of [t; < t; (ks), being given: ¢, (k;—1)<#t; <t (k).
t; (k,—1) < t, < ¢, (k;)] has for its theoretical value:

Ss(ky — % ko — 3 k) = O{ Z5 (ky — 4. ko — §. k3) ).
where  Zs(ky — 4. ko — 4. ks) =251 . ty (ky — §) + A3 . £ (ky — §) + &5 (K3).
Its empirical value is found to be
ky
2y (k. ks i3) 2 Y (k. ka. i3)

S (k) — ke —4 ks) = '"‘1 =4
2 y (ks ko, i5) 2 Y (ky, k. 13)

By equalizing both expressions for S;, we have for the
Probability of:

[t; < t;(ks). being given: t,(k;—1) <t, <t (ky), t;(ks—1)<t;<t,(k;)]:

Z Y (ky. ko i3)
01Z; (ki — b ka— b k) =S (b —h ko —f k= — [
2 Y(kl, kz. 13)s

where Zs(ky— 4, ko — 4. ks) =25, .8, (ky —§) + 455, tz( — )+ t5(ks)

If we succeed in determining exactly the mean values ¢, (k; — 4) and
t, (k; — %), then it must appear — provided that the given frequency distrib-
ution be in accordance with the probability formula 4 (5, 6) — that the
values of Z;(k; — 4, k; — 4. k;) computed from B(3:21) are linearly con-
nected with the corresponding values ¢ (k; — %), & (k; — %), £ (k3).

If ¢, ¢, t; are really unimodular, then the linear relation
Zy=At,+A,t,+ A;t; must give: A;=1, A, and A, equal to the
values 13, and 1,; already calculated from the coefficients a;, a,, a,.

In the preceding analysis we have chosen the arrangement z,, (1, Z;;
that is to say: we have first left ¢, and ¢; arbitrary, then only ¢; (and
at last none of the t.). We may however just as well leave arbitrary :
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first ¢, and ¢;, then only ¢;. This arrangement furnishes us the new
functions z, and (1,2, Z; remaining the same.

z, is, as a function of £;, determined by associating z, (k;) with ¢, (k;)
according to

oo oky v
S 32 Y (i)

Oz, k)t =s; (k) = SRS lFl}\] . . . . B®

1,2 is, as a function of £ and f,, determined empirically by associating
L2 (kyy ky — 3) with ¢ (k). t;(k; — §) in virtue of the relation

ky v
2 2 Y (i, k. i3)
O { L1z (ki k=% ) =012 (ky by — 3) = l’:‘l '.':1 . . . . Bm2

3 2 Y (i ka is)

i=1 i;=1

Provided the mean values asked for be determined in the right way,
we shall find, between z, (.2, Z; on the one hand and ¢, t;, £; on the

other, the relations
A\
z; —(A_zz) ., (2

g Ay ty— Ay 6 . . . Oter ((1:2)
w V4, '
Zy =y . i +1s.t+ ¢, (3:12)

which evidently must furnish the same values of 1., and 7., as before.
Putting

248, =q¢, . Z2+8,=¢,, . . . . . 26

we must find
Qi=q2=q3 - - . . . . . . 27
since both @z and qi,2 must represent the projection OH of OP on

the plane @, O®;.
From 9bis (1), 9bis(2:1) we derive for the common value ¢2,:

q}, =sin? @, . # — 2 cos w; sin @, sin @, . t; £, + sin? @, . £.
Moreover we find from 9bis (1), 9bis(2:1) and from the corresponding
equations 9bis (2), 9bis (1:2):
21z, — L la=cosws.q%, ., z1l12+20n=sinw;.q%,, . 28
whence

2y L2+ 22 Lo
tg g —=—-—-2= ., . ... 29
B % 2y 2, — 621 2

The equations 28 and, in particular, the equation 29, which is inde-
pendent of the concordance between qi;2 and q;1, immediately furnish

w3, hence also the (total) coefficient of correlation y,, — cos w;.
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For OP? we obtain two expressions, viz.:
A, =240 A Zi=q 122 and B, =2+ Z0= g+ 23 30N 2

which turn out to be equal, if 27 is satisfied.
If we had operated with the arrangement z, {31, Z,, we should have
obtained for OP? a new expression, viz.:

2= 4 Z=q}, + 22, . . . . 3060

the value of which should be equal to the values furnished by 30(2:1)(1;2).
For the magnitudes g, determined by

2482 =q2, , @b=1L23. . ... . C
we have therefore together the three controlling equations:
Qb = Qpa(=qas) (@ b=1,2,3). . . . . . Ia
Putting
22— Coalan=As . ZalasT %lsa—=Bsp . . . D
we have, analogous to 29,
tg w. = —Bib "
A
Leaving it unsettled whether q.., is equal to gs.. or not, yet we have:
cos w, = A sin w B
V(AL + B “TV(A,+ B

Now
Afb _I_ B:b = (Za 2y — Cb;a Ca:b)z + (Zn Ca:b + Zp Cb:a)z -
—@ )@+ ) =a, @

Hence we have — no matter whether qs., = qa.; is satisfied or not —

Yab — COS W, = -—A"-b—- 5 l/l—yfb —sin w. = bBab , (
Qb.a - Qa;b qb; a - Qa;b
g 5 . E
1—yas __Ba, [ cos . S
- =tg wc_A‘b AL =>0
Putting
qb;a . qa;b: Q:b y . . . . . . . . Cbis
we may also write:
Aab l/ B,b
Yab = COS W, — == 1— y. = sin w. = =,
A " Q; 2
Ebis

‘/1—715 Bab (COS W, ) S .
Yab T tg Pe = Aab Aab > 0

In the case that qs.. = qa.s (= qus) is really satisfied, we have of course

Q-b —Qqab . . . o« W & % 5 W Iabiﬂ
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At present we can put r2= OP? into a form, which is entirely built
up of the functions z,, {s..(a. b=1, 2, 3).
From 5, 7, 11, 12bis, 13bis ensues:

f=rt= 2 Zla,ata ts =E 4+ 6+ 6+ 2cos, . tyts+2c0sp,. t5t, +2cos 5. £t
=1 3=1
3 22

zp2
=2 +2 2 COS Py ——2—— —
w=15in% P, a=1 sin 3 sin v,

3 3
ZIsin2 Wy . 22 + 2 Zx sin wg sin @, €OS P . 23 2y
a= a=

- r

or

3 3
2'sin? wy . 22 + 2 2 (cos w; cos w, — COS Wq) 232,

[:: =1 =1 . 31

1 —cos? w; —cos? w,— cos? w 2 cos w; cos w, oS W
1 2 3 1 2 3

Substituting, in the denominator [/, for cos w;, cos w,;, cos w; the
expressions furnished by Ebis, we obtain:

A§3 AZ Afz A23 A31 A]z

[—1]—_2%8_"3 "' i ekl
S R o R o N e O A a1
3
: Q33 le Q?z_afl A2 Q" Q;,, +2A; A3l A, Q§3 Qg, Qf;
N QL OF, OF, '

or, putting:

3
Qgs le Q?z—zzlA,zay Q;a Q:,a +2 A23 A31 Al? Q%s le sz EF{ Z, “' F

the abbreviated form:

Fiz ¢t}

=< ——<~——.
Qs Qs Qi

Likewise we find for the numerator of r?:

2

g B/w 22 Aw Auﬂ At37 P

ZQq —+—Z Qz —z |%Em—
a=1 g c‘/3 3y

3

2 B, Q1 QL 2+ Q3 Q5 QL 2 (A,,4,,Q3,—A, QL Q3,2
- Qs Qzl Qh
or, putting:

2_1 B?”Y Q1 Q"ﬁ 22 +

-
+2Q5, Q@ QL 2 (A A,Q,—A, Q Q)2 Z,G{z.ns
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the abbreviated form :
Gz, ¢}

numerator — <— =~ -
i 0OF Ot
Q; Qi Qi

The forms F and G are entirely built up of the functions z,, C..»
(a, =1, 2, 3).
Thus we find for OP2—r2:

= {2, =
Fi{z¢}
If the conditions Ia are fulfilled (wheﬁce Qs =qu, a, b=1, 2, 3), the
functions Z,, Z,, Z; must satisfy

Z*=H{zl}—q, Z:=H{zl|—q,. Z:=H{ztj—q, Ib

Hiz¢ . . .. ... H

(To be continued).





