Hydrodynamics. — On the application of statistical mechanics to
the theory of turbulent fluid motion. 1I1.') By J. M. BURGERS.
(Mededeeling N°. 12 uit het laboratorium voor Aero- en Hydro-
dynamica der Technische Hoogeschool te Delft). (Communicated
by Prof. P. EHRENFEST).
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8. Deduction of a new form for the dissipation condition.

In Part II we have devoted much attention to a relation that was
deduced from the dissipation condition and led to certain results con-
cerning the resistance coefficient and the distribution of the velocity of
the mean motion. As the distribution obtained differed rather from that
observed experimentally, we tried to penetrate into the physical meaning
of this condition; in doing so we struck upon the circumstance that, as
the mean motion in our equations was defined as a mean with respect
to time, a variation effected in the intensity of the relative motion,
applied during a small interval, brought about a variation of the mean
motion over the whole of the time considered. The latter variation in
its turn influenced the transmission of energy from the mean motion to
the relative motion — again during the whole of the time considered,
a result which seemed rather difficult to understand from a physical
point of view.

As has been mentioned at the end of § 6, this difficulty — though,
as will be shown in § 11, it is more an apparent than a real one —
can be obviated to a certain extent by defining the mean motion as a
mean with respect to x. In the normal state of turbulent motion we may
safely expect that this will lead to the same result as the use of mean
values with respect to time, and indeed in various investigations relating
to turbulent motion space means are used instead of or along with
time means. The reason that in our former considerations we adhered
to mean values defined with respect to time, was simply that in the
case of a stationary mean motion this seemed to be the most natural
procedure.

In order to develop a system of formulae on the basis of mean values
defined with respect to x, we start afresh from the real motion. Quan-
tities relating to the latter shall be distinguished by the index r: u., v,
l:, p.. Then we define the mean velocity U and the mean pressure P
by the equations:

U= 1 oP 1 (op:

[ Joed: =T | 5=

de« . . . . (519

1) Parts I, Il have appeared in these Proceedings 32, p. 414, 643, 1929.
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The integrations with respect to x are extended from x=ux, to x=

Xxo+ L, where L is a length which may be taken arbitrarily great.
Neglecting quantities of the order L—!, we further have:

!L_ v.dx=0, %‘JC,dx:%. etc. . . . (519

Moreover in order to ensure the stationary character of the mean
motion, and to be able to fix the value of the mean pressure gradient,

we shall suppose:
i)ur . y
Lf L B

Then the relative motion is defined by means of the formulae:

u=—u — U, v=uv,, O =t — < p=p:—P {52)

Now from the equation for the x-component of the real motion
(expressed in non-dimensional variables):

ou, op. 3
B +6x'+6 uor = — 5~ +R'Au. . . . (53
we deduce (by integrating it with respect to x and dividing it by L):
azu b,—P; 1, 0
—1 e = ey
R =71 “LLJd"ay""’"
In the second term on the right hand side of this equation we write
_ U e (U [
u,v. = Uv + uv; then the term L dxal; (Uv) = T (L‘Jv dx) may be

omitted on account of (51%); in this way we get:

dau__ P — Pu

R-! a7 = —I— dxuv. . . . . (59

"We consider again the case of the motion between two fixed parallel
walls. As we may deduce from the equation for the y-component of

PI———Pﬂ
L

from (54) we obtain:

R- ldif @)_y_p%fdxuv N XS

the real motion, can be treated as independent of y: hence

We multiply this equation by y and integrate it over the breadth
of the channel (i.e. from y—— 1 to y— -+ 1); then we get:

P’—P" dexdyyuv—{—lzR—
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Substitution of this result into the former equation leads to:

du 12R
dy = =— 12y ————‘liffdxdyyuv-}-Lfdxuv . . (55

Now the equation for the rate of increase of the energy of the real
motion can be written (with unsignificant neglections):

E:‘j‘(pr ur)] dy —j‘(pr ur)]ldy - R—jjfdx dy Cf e (56)

As‘J.ur dy =1, further {, = aa

d—y-l—C. and %JCdx:O, we may trans-

form this expression into:

=(P;— Py)—R? Lfdy((;—g)z—R—l‘f dxdyl? . (569

in which terms that do not become of the order L have been neglected.
Substituting now the values of (P; — Py) and of dU/dy as given
above, we obtain:

e B[ foco e B [fucayfs
] . (67)
—i—lefdxdyyuv—-R—‘f dxdyczs

Until now we have restricted ourselves to the consideration of the
motion at a given instant of time. Henceforth we shall introduce the
supposition that the mean value of E with respect to time must be zero.
This will give us the new form of the dissipation condition.

In order to put this supposition into a form which can serve as a
basis for a statistical treatment, we use the same scheme as has been
applied in § 2, Part I (lc. p. 417 seqq.). We represent the various
types of relative motion, occurring in the sequence constituting the
normal state of turbulent motion, by means of points in the £-space.
The numbers of the points in the cells of equal volume @ in which the
é-space is divided, are denoted by n,—=» M, n,=», M, ..., so that
Zv=1 (comp. eq. 9). Then, making use of (10), the dissipation con-
dition can be written:

SyvE=0 . . . . . . . . . (58

In order to compare this new form with that given in § 4, equation
(31), we again introduce the abbrevations (3), and express integrations
over the x, y-plane by summations with respect to the index k—k, 4 ik,.
When we put:

F*=—R'ZvE . . . . . . . (58
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we obtain :
_zF*——Z'VZ(Ztk)z—lzezZV(ZHktk)2+
L ky L " "% /
12 ©)
—i—'EZZ"yktk_}—Rzgzvzk——o\

It will be seen that the first two terms of this expression differ from
the corresponding terms occurring in (31). In the normal state we may
expect that for the majority of the various relative motions presenting
themselves in course of time, mean values with respect to x will be
equal to the corresponding mean values with respect to time, so that:

LZtkIthk_tk.

Then (59) will be equal to (31).

The variation of F* which is caused by an arbitrary variation of one
of the »'s, however, is different in the two cases. On account of the
new formula (58?) we obtain:

0F*=— R 'Edv.

Hence '‘when we retain the probability hypothesis formulated in § 2,

the “most probable distribution” of representative points now becomes:
v=Ae*¥L . . . . . . . (60)

Here for the parameter we have written B/L instead of B, in order
to simplify some of the formulae occurring in further deductions. (It
will be seen that E/L measures the mean rate of increase of energy
per unit length of the channel).

Formula (60) has a more simple structure than the one obtained
formerly (equation 21), in as much as it is not an implicit equation:
for every given function vy (i.e. for every given point of the &-space)
the value of E is at once wholly determined by (57). When we put:

Z=Ie*®L . . . . . (6]

(where the summation is extended over the whole of the &-space), we
have:

A=Z-' . . . . . . . . . (619

The value of B is determined by the condition (58); it is easily to
be seen that this condition may be written:

0Z
of

When B has been found all mean values can be calculated; so for
instance we get for the resistance coefficient (compare the definition of

Cin § 4):
z BE|L d d
_P,—Py_6 (e f ¥ ”"U)

=0. . . . . . . . . . (62
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It may be of interest to remark that equation (60) can be obtained
also by FOWLER's method of calculating averages by means of the
introduction of a partition function.!) This avoids the use of the con-
ception of a “most probable distribution”. We then have to reason as
follows: We have assumed that the course of the turbulent motion
during a given lapse of time T can be described *“microscopically’” by
giving the states of the field at M moments, separated by equal intervals
T/M. In such a sequence of instantaneous states the various fields of
motion represented by the points of the &-space (or rather by the centra
of the cells in which this space is divided) occur resp. n;, n, nj...
times, where 3 n — M (summation extended over all cells of the &-space).
For a “macroscopic’’ observer the set of numbers n;, n;, n;... only is
of importance; not the various ways in which the individual fields may
be arranged. When each possible sequence is counted for one, then
there are

M!

nl.’nz.’n3!...

W =

differently arranged sequences corresponding to a given set of numbers

ny, ny ns, ... (comp. eq. 14). Hence in the assembly of all possible
sequences the average value of any one of the n's, say of n;, is given by :
—T; _ 2* erj
) — W

where the summation 3* is to be extended over all values of the n's,
consistent with the relations:

Zn,-:M. Zn,»E,-:O.
J J

Making use now of FOWLER's methods we can easily show that the
average value n; is equal to the value given by the system of equations
(60)—(62). Summarizing in a few lines: we introduce the partition
function:

flsl=3s5,

J

s being a complex variable; then we have:

2*W=.‘z‘:;- df[ﬂs)]M. z*Wm:z%fd?ssEf [F(s)]™ -,

where y denotes a closed contour circulating counter-clockwise round
s=0. Application of the method of “steepest descent” finally gives:

_ SEi
n; —M m.

1) Comp. C. G. DARWIN and R. H. FOWLER, Phil. Mag. (6) 44, p. 450, 1922; R. H.
POWLER, Statistical Mechanics (Cambridge 1929), p. 22 seqgq.
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# being the root of df/ds=0. When s is replaced by e%L, n; by My,,
we immediately see that this result is equivalent to the one formerly
obtained.

All mean values may be defined in the same way, as for any quantity
X we may write, starting from equation (10):

*
X—zyx -3 (ZHuM)x il
M™7 5 W 4 W

This formula, however, is practical only when the quantltyZ n; X; can
be calculated easily.

Another point that may be noticed relates to the evaluation of the
mean value occurring in (63). The following formal device may be used
for this purpose. We write:

IZJJ‘dxdyyuv:E'L, R“‘fﬁixdyCZIE”L

‘de( jdx uv)z— 12 ( J‘J.dx dyy uv)zz R-'E" L2,

so that: E=L(E’'— E”"— E"). Then we put:

Z =3 e¥E—FIE—p E" . . . (6l
and replace (62) by the system of equations:

0Z  0Z _ ;
aﬂ/+aﬂll+aﬂ///—o’ ﬂ_ﬂ _ﬂ * * . N (62)

In that case we have:

ZEIL
122(8 J‘jdxdyyuv)—ng 2 o ) (63
L Z A AT AR

In the deductions of the following §, however, we shall adhere to the
expression (61) and to formula (62), containing one parameter § only,
though the extension to the case of more f£'s is not difficult.

9. Investigation of equation (62).
The first question which now presents itself is whether the sum
occurring in (61) converges. According to a lemma called after SCHWARZ

fdy 5 .J}iy(fdx uv)2> U;iy(yfdx uv) :Z,
= dy(fdxuv)z>(‘[ dxdyytw)z.

Hence the terms of E that are of the fourth degree relatively to y

we have:

or:
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are definite negative, and so E certainly will become negative when in
the &Z-space we go to infinity in an arbitrary direction.?)

In order to get some insight into the general character of the distri-
bution of points, determined by (60), we introduce polar coordinates
into the &-space, and begin with the consideration of a cone of infinitely
small aperture dy stretching out radially from the origin. The points
within such a cone represent similar fields of motion. Hence putting:

1 2
Lf dxdyvy?. . . . . . . . (64
we may write:
12 dxd 1 r dxdy (?=K o? (659)
I xdy y uv RL fx yl?=Kpo* . . .

gﬁiy(fdxuv)z lzR(ffdxdyyuv) Ho'. . (659

Then K and H have the same values for all yoints within our cone;
these values moreover are independent of L and of N. In consequence
of the lemma mentioned above H always is positive; K on the contrary
will be negative for some directions in the &-space, positive for others.
The value of E/L now becomes:

EIL=Ko¢>—Ho*. . . . . . . . (66
The distance r of any point of the &-space from the origin is given by :
:Zf,f:s—2f dxdyy?*=ec2Lo*=Npg? . . . (67)

(It has to be reminded that the number of points in the lattice, N,
can be obtained by dividing the area of the channel by 2. As the
breadth of the channel is unity, and the length considered is L, we have
N=¢2L). Now the volume of the element of the cone contained
between “spherical surfaces” with radii r and r+ dr is equal to
Nl dr dy = NN2 oN—! dp dj. Consequently equation (62) may be written:

N—1 o8 (Kot — Ho%) —
Gﬂ*bﬂfdx dgg ef (Kp*—Hp 0O . . . . (68

The constant factor INV? has been omitted, as this factor has no
influence on the distribution. The integration with respect to dy has to
be extended over all possible directions of the &-space.

Instead of this equation, however, we shall provisionally consider an
approximate form, in which the integration with respect to dy is not

1) The inequality could become an equality only when [ dx uv considered as a function

of y should be proportional to y. This, however, is lmp0551ble as uv =0 at the walls
of the channel, i.e. for y = — 1/, 4 1/5.
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executed, and which in consequence relates to one elementary cone only.
So putting:

0
L3

(in which for simplicity we have written N for N—1), we will consider
the equation:

We shall suppose that for the cone considered K >0, as otherwise
this equation would admit no solution; then for the evaluation of Z,
we may apply an approximate method, making use of the circumstance
that the exponent of e passes through a maximum for a certain value
g of 9, which is determined by the equation:

—+2ﬂK90—4ﬂHg3—‘0 B 1)

This equation gives us:

& = 4H+4HV1 4;%?'

As the second derivative of the exponent for o — g, takes the value:

_@ﬂz+zﬁf(— 12pKgt=—4VFK? T 4pNH,

0

we may write for the exponent :
Nigoo+ (Ko —He) —2V K>+ 4 NH.(o—0) +.

When we assume provisionally that the coefficient of (o—g,)? is large,
we may neglect the terms not written out in the above expression (which
are of the third and higher degrees in (0—g,)), and we find the following
approximate value for Z;:

Z l/?l— eNlgpot B (K es—Hpy
1=} 4 (BPK?+4p NHY"

Now we apply the condition 0Z,/08 = 0. Having regard to equation
(a), we obtain:

2BK*+4NH _
spKkiragNE) - - - ©

aﬁngl Ko — Hej —

As we may increase L indefinitely, N may become as large as we
please. Assuming for a moment that # increases simultaneously with N,
we shall neglect the third term of equation (b), which gives us:

Ko?—Hgti=0. . . . . . . . . (9

53
Proceedings Royal Acad. Amsterdam. Vol. XXXII. 1929.
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from which we deduce:
02 =K|H.
Then (a) gives:
B=NH/2K?,

which justifies the supposition about the order of magnitude of . The
same result is obtained when the value of g,? is substituted immediately
into equation (b); with the abbreviation NH/fK?=s, this equation then
takes the form:

T _1s1+2s
1—2s+l/1+4s_N1+4s,

with the solution s—=2 for N — oo.
Equation (c) is equivalent to the formula:

E(‘a:fyo) = 0.

The coeflicient of (0—g,)? in the development of the exponent now
assumes the value 3 NH/K; this may be made arbitrarily great by
increasing N, which justifies the procedure adopted in the calculation of
Z,. The value of Z, finally becomes (when we write again N—1

for N): -
~ (K
2= | sw(a)

This result shows us that small variations in the value of the quotient
K|H will have a very large influence on Z,. Let us suppose that there
exists a maximum value for this quotient. As the value calculated for Z,
is the maximum value that quantity can attain when § is varied, it seems
reasonable to expect that in the full integral:

oo
Z Z‘de d@ e(N—l) Ig p+ B (Kp?—Hp?
0

only those elementary cones will contribute significant amounts for which
K/H differs only very little from its maximum value. Then the value
of B that makes Z stationary will be approximately :

B=NH/2K? for K|/H—= maximum.

So we are led to the supposition that in studying the properties of
the “most probable distribution of representative points” and in calcul-
ating mean values relating to the normal state of turbulent motion, we
have to take regard only of those regions of the &-space, that lie around
the points defined by

E=0, K/H = maximum . . . . . . (69)

We readily own that this reasoning is only approximative, and that
it is not easy to estimate the extent of the regions mentioned. The
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increase of the number of dimensions of the £&-space, which is the
consequence of an increase of L and N, makes the study of this problem
rather complicate. We have to bear in mind also that all fields which
can be deduced from a given one by a shift parallel to the x-axis over
an arbitrary multiple of ¢ (the number of fields obtained in this way is
Le"), will lead to very nearly the same values of both K and H.})
As to such a shift corresponds a certain permutation of the coordinates
in the &-space, we must expect that there will be Le¢—! different cones
for which K/H assumes the same value, f.i. attains its maximum value.
Besides it has to be remarked that K and H do not change, when we
change the sign of all the coordinates in the &-space.

10. Further approximations. — Introduction of a special vortex field.

Notwithstanding the difficulties mentioned at the end of the foregoing
§, we will go still further with our approximations, and shall assume
that in calculating mean values we have to take regard only of a number
of equal small elements of volume of the &-space, each having its centre
in one of the points defined by (69). Then we may even restrict our-
selves to the consideration of one such an element of volume, as all of
them contribute the same amount. This amounts to saying that we have
to determine only that field of relative motion, which makes:

B=0: . 4 s« &« 4 & « « . (09

(that is to say, which fulfills the ordinary dissipation condition), and at
the same time makes:

K/H —maximum . . . . . . . . (69)

Now here we have arrived at a point of view, which presents some
resemblance with that taken in a former paper on the resistance expe-
rienced by a fluid in turbulent motion. ?)

In that paper we had tried to get an estimate of the maximum value
the resistance coefficient could possibly obtain.

Introducing the notation (comp. l.c. eq. 52):

ALVAl al - 2
}—4‘ dedyyuv:o, lilez‘de(deuv) =(1+41)0?

1 [, -
~17'E\J.1dxdy42:xo,

szzjjdxdywzzlo,

and putting further:

) That the values of K and H in general will not be exactly the same for all fields
obtained by the process indicated, is due to the fact that the values of » which in one
field occur in the points of the end sections (resp. at xp and at xg—+ L), in another field
lie in the interior. The influence of this circumstance will be very small, however.

2) J. M. BURGERS, these Proceedings 26, p. 582, 1923.
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we have:

KH=47v'(R~!'—x R-?).
The condition E—=0 gives for ¢ (comp. l.c. eq. 53):
o=t ' (R"'—=x R,
whereas from (63) we deduce for the resistance coefficient C: 1)
C=6(+ R).

In the paper mentioned we had asked for the maximum value of o;
now we ask for the maximum of K/H. In order to obtain an idea of
the order of magnitude of the quantities introduced, we may construct
special fields of relative motion and calculate the various integrals for
them. As has been shown in that paper, fields which shall give high
values for ¢ have to satisfy the condition that strong vorticity is present
only in very thin layers along the walls. This can be obtained by con-
structing fields, in which the “mean wave length” is small in the region
along the walls, and increases towards the central region. Such a field
can be built up in the simplest way from an assemblage of elliptic
vortices of the type studied by LORENTZ.?2) These vortices are deduced
from circular vortices by a compression in the proportion ¢ =0,475 in
a direction inclined to the x-axis. Two groups of them have to be taken,
one lying against the wall y = — {, consisting of vortices for which uv
is mainly negative; the other, lying against the wall y = + }, is obtained
from the former one by a reflexion in the x-axis. The vortices in either
group have “thicknesses” D (by which their dimension in the y-direc-
tion is denoted) ranging from 1 down to a minimum value D,. Consi-
dering particularly the vortices lying against the wall y = — 4, the number
and mean intensity of a subgroup, having thicknesses between D and
D +dD, is taken such that the contribution of this subgroup in the

integral }‘f dx uv = uv for a value of y’ =} -+ y, less than D, is given by

—m(D“—-—i-)dD.w(y’/D). @

where m is a constant, and @ is the function defined by ¢ (1) —=2*(1—2)*.?)
By means of this formula the value of uv, due to all vortices together,
can be calculated for any value of y; from this calculation was deduced:

To == 2,129 Do N . . . . . . (I.C. eq. 57)
As for every individual vortex the relation existed:

i dex dy uv

[fawaye="T:
1) L.c. equation (54). In the paper of 1923 the value of C is double of that taken now.
2) H. A. LORENTZ, Abhandlungen iiber theoret. Physik I, p. 48—52.
3) Comp. l.c, equation (55). The constant factor m is omitted in the formulae of that
paper.

(l.c. eq. 30)
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(here the integrals are taken over the area of a single vortex only), the

value of fjdxdy {2 for the whole system also could be calculated;

this gave for x: -
»=131Dy" . . . . . . (Lc. eq. 58)

The quantity 1 was not introduced in the former paper. It can be
calculated on the same lines as %, as soon as we know the coefficient a
in the equation:

v, .

j’dxdyuv

in which the integrals again relate to a single vortex. It is not difficult
to determine this factor: as the elliptic vortices are deduced from circular
ones by a compression in the proportion ¢, while the velocity component
in the direction of the compression was reduced in the same proportion,
it follows that the stream function in any point of the elliptic vortex is
equal to ¢ times the stream function in the corresponding point of the
circular vortex. We pass over the calculation of the latter quantity,
and mention only the result:

’J‘dxdywz:aDz

a—=20,144,

which leads to:
A=0,112.

It has to be remarked that this quantity — at least to a first approxi-
mation — appears to be independent of D,.

Now we can introduce the results for z, », 1 into the expression
for K/H.

As the value of D, has not yet been fixed, we can ask for that value
which makes K/H a maximum. It is readily seen that this is the same
value D, as makes ¢ a maximum. Hence in this case the condition (69°)
is identical with the condition of maximum resistance; in other words:
we completely fall back on the result of the former paper. We obtain:

Dy=262 R, ¢ = 0,00090, K|/H =0,00010,
and:
C =0,0054,
which is much higher than the values observed experimentally.

It is interesting to consider the distribution of the velocity of the
mean motion obtained in this “model”’. According to equation (56) of
the paper mentioned, we have for values of y, numerically less than
1+ — Dy

— m
uv = 140 Y-

where again we have introduced the factor m, mentioned above in
connection with equation (a), and at the same time have substituted y
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for y — 4, according to the position of the axes used here. Further it
was found that:

+'/, X
6= fdyy ‘;:Ts%(l —%Do ):0,00090.
Sy,

Introducing both expressions into equation (55) of this paper, we
obtain :
dau 8 m .
This is not much better than the result of § 4, though the curve for
U becomes a little bit flatter.

11. General remarks. Other formulation of the problem.

The result of the foregoing § does not seem very satisfactory. But we
must not forget that we have artificially’ reduced all integrals over the
&-space to a single point, and thus have made a caricature of the general
equations. So it may be that there is more good-in them than would
appear from § 10, and it is still possible that formula (63), when cor-
rectly worked out, will give a better result. In fact it fulfills in so far
the requirements, mentioned in the former paper (l.c. p. 600), as that it
leaves room to irregular displacements and deformations of the vortices, etc.

Meanwhile it is of importance to make some remarks about the
relation between the two different methods we have used to arrive ata
distribution function, especially as it is possible to develop a third system
of formulae on a basis which takes a somewhat intermediate position
between those two points of view.

It might be argued that the procedure adopted in § 8 of defining the
mean motion as a mean with respect to x introduces a similar difficulty
as the method of employing time averages did, in so far as the new
definition implies that the variation of the relative motion at a certain
part of the channel would influence the mean motion over the whole
length of the latter. On viewing closer, however, this difficulty is but
an apparent one. The deductions of § 8 are based on the instantaneous
state of the real motion over the whole field; the various equations
served only to obtain a transformation of equation (56), and in this
transformation I and P may be considered as purely formal quantities
without any further meaning. When the state of the real motion has
been given, the value of E can be calculated at once, either from (56)
or from (57).

The only assumption of a more physical nature that has been made,
is the one expressed by equation (51¢), which served to obtain (55). In
the deductions of § 8 these equations (51°), (55) were considered as being
valid at every moment; consequently the latter could be used to eliminate

dU/dy from (567).
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An analogous remark may be made in connection with the deductions
of Parts I and II. The object of these deductions can be expressed as
follows: to obtain a transformation of the integral of the rate of increase
of the energy over a long interval of time; in such a transformation
time means may be introduced as formal quantities. Thereby, at least in
the calculations of § 4, the equation (27) was considered as being wvalid
at every point of the channel (in § 5 a somewhat more general stand-
point was taken).

Now instead of accepting either the one or the other supposition,
we may take an intermediate point of view, and demand that equation
(55) shall be satisfied only on the average over a long interval of time.
We may just as well replace equation (27) by its integral over x. The
latter way is not wholly so simple, as for a more rigorous treatment it
would be necessary to start from equations (44). The consideration of
equation (55), however, will be sufficient. We shall adhere to the sup-
position that the total flow through a section of the channel remains
absolutely constant, as this is the kinematical basis of the boundary
conditions for the stream function.

When we wish to construct a system of formulae consistent with this
idea, we must retain the real motion explicitly in our equations, and
eliminate only P;—Pj; by means of the condition of constant total flow.

We then write (comp. (55) and (567)):

v 1dU 12y ’
z_ fdxdyyuv Lfdxuv—}—Rd +? .. (709

| dlN2 12
:I. ijdxdy(IZyuv — R '{? —R‘[dy(-@) + R (700

In these expressions u, v, { are derived from the stream function y as
usual. U is derived from a new stream function for which we shall
write Y, and which is a functicn of y only, so that U=Y". The boundary
conditions to be satisfied by these functions are:

gy:_%; Y=—4, Y =yp=0y/dy=0
y=+4: Y=+4, Y =yp=0y/dy=0.

The &-space must now be extended by ¢! new coordinates #,, 4, ...
%k . - ., which represent the values Y takes at a cross line of the lattice
(i.e. at a row of points, parallel to the y-axis). It will be convenient to
call the space determined by the #'s: the #-space, and to retain the
denomination &-space for the one determined by the &'s only. The whole
may be denoted as &, z-space. The values of v (which like Y is a function
of y only) in the points of a cross line shall be denoted by vx. Then
the following conditions have to be fulfilled:

SvE=0, Svoe=0(k=12,...,s7Y). . . (71)
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where the summation has to be extended over all the cells of the
&, n-space.
The distribution function now becomes:

BE+eX 7 v)IL
y—Ae € 27k v
where the parameters f,7,,7,... have to be determined from the
conditions (71). Putting:
' B(E + €3y up)lL B(E + [ dy ¥ V)L
Z=23e A ! s s s (12)

where the first summation again is extended over all the cells in which
the &, y-space is divided, we can write these equations:

0Z/0=0; 6Z =0 for an arbitrary variation of y (y). (73)

We shall not go into a detailed discussion of these equations, and
will mention only a few points. Collecting together the various terms
in the exponent of e we have:

E+fdy7v § ( )
B L ‘dxdy(—uv(—IZ;{deyy—l— —12y) R—ICZS*—

“rfa(woru) g (Jarve)

It appears that the part depending on Y is definite negative. The
part depending on yw has a form which reminds immediately the formulae
of § 4, Part II; when we put:

o =R (—12y [dyrytr—t12g) ... 09
we may write for it:
R ((teds S Loy ay
1 [feeats R 0w —er S
Hence we see that this part will be definite negative only when the
function ¢* fulfills the same condition as was asked for the function ¢

investigated in § 4. Thus for y <0 we have (comp. eq. (36) above,
where y' =4 + y):

— 1Ryldyyy+y— 12y< (+ o ¢ 5 s (76)

(74)

When g and y (y) are known, the mean value of U’ is derived from:

72 U e— 2R /dgu—yu) -
T S e PRyt —y ) (77)

It is readily seen that the function Y,, which makes the exponent of
e a maximum, is determined by:

2YV =oU,) =y
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Hence:
y=2U,+cy+c
We may suppose that y =0 in the axis of the channel, and so we
can discard c,. Substitution in (76) then gives:

A
R+ gy

This condition recalls the result of the end of § 4, but it has to be
observed that now U, is not equal to the mean value of U.

Further investigations will be necessary to throw more light on this
point.

2U, + 12y <

I should like to mention two more questions which arise in connection
with our deductions.

A thing which is not cleared up is the part played by the number
of coordinates in the &-space, particularly in so far as it depends on
the magnitude of ¢ (the spacing of the lattice introduced into the x,y-plane).
Allusion has already been made to this circumstance in § 2, Part I, in
connection with equation (16). Another point is this: the results of § 9
seem to make it probable that when L is taken large enough, the values
of E for the most frequent fields will differ from zero only by amounts
of the order L/f—2LK?/NH=—2¢K?/H. It is somewhat surprising
that the value of ¢ here suddenly turns up.

The other point I would consider is about the weights given to the
various fields present in the sequence. We have given equal weights to
equal volumes of the &-space, and leaving aside the considerations of § 2
connected with LIOUVILLE's theorem, the question again might be put
forward whether we are right in doing so? Might not it be that some
fields a priori had a greater probability than others? From the point of
view accepted in statistical mechanics this could only be the case when
our fields could be built up in various ways from other units. But our
fields are already fully specified. And the introduction of “units” for y by
means of which its value in every separate point could be built up in
various ways, would seem rather absurd.

The introduction of principal solutions (Eigenlésungen) of any fourth
order differential equation for y does not promise any help. Every field
we considered can be built up from such functions in one way only.
The use of such functions comes down to the introduction of a new
system of coordinates in the &-space, to be derived from the &'s by
means of an orthogonal transformation; so it does not change the constant
proportion between weight and volume. Principal solutions are useful
only, when they make it easier to express the energy or some suchlike
quantity.

Hence it would appear that there is no indication which forces us to
look for other weights.





