Physics. — Disturbance of the superconductivity of the compound Bi_5Tl_3 and of the alloys Sn-Sb and Sn-Cd by magnetic fields. By W. J. DE HAAS and J. VOOGD. (Comm. N⁰. 199c from the Phys. Lab. at Leiden).

(Communicated at the meeting of September 28, 1929).

In collaboration with Prof. E. VAN AUBEL we found, that the compound Bi_5Tl_3 already becomes superconductive above the boiling point of helium (4.2° K.) 1). We now tried to determine its magnetic threshold value at the boiling point of helium. This threshold value proved to lie so high, that the solenoid always used in the other experiments (H up to 1250 gauss) did not suffice, so that we were obliged to use an electromagnet to reach field intensities strong enough to disturb the supraconductivity.

The compound Sb_2Tl_7 too, which becomes superconductive above 4.2° K., demands a field higher than 1250 G. to disturb its superconductivity at 4.2° K. 2). The further investigation of the magnetic disturbance of the superconductivity of Bi_5Tl_3 showed, that the fall of the magnetic threshold value with decreasing temperature is much steeper here than for pure superconductors.

In order to find out whether this also is a general property of alloys, we chose for the further research solid solutions of bismuth in tin and of cadmium in tin and especially used the eutectics of the systems Sn-Bi and Sn-Cd. In collaboration with Prof. E. VAN AUBEL we had already investigated these solid solutions with respect to the temperature transition point (thermal transition curve) 3).

§ 2. Bi_5Tl_3 .

We worked with the rod that had also been used the second time for the investigation of the resistance 4). This rod was mounted in a removable helium cryostat which after having been filled with liquid helium was placed between the pole pieces (diameter 16 cm.) of an electro-magnet (type Weiss, Oerlikon make). The field intensity was measured ballistically. Also the inhomogeneity was investigated and it proved to be less than 1 % along the rod.

¹⁾ These Proceedings, 32, 218, 1929.

²⁾ These Proceedings, 32, 731, 1929. Comm. Leiden 197d.

³⁾ These Proceedings, 32, 715, 1929. Comm. Leiden 197b.

⁴⁾ These Proceedings, 32, 731, 1929. Comm. Leiden 197d.

We give the results of these determinations in table I and in fig. 1. TABLE I. $Bi_5 Tl_3$ (magnetic field transversal).

H R T p 3865 0 4.208 766 4038 0.000221 766 4151 0.000436 766 4181 0.000582 766 4254 0.000582 766 4634 0.000597 766 4149 0 4.038 4240 0.000597 766 4283 0.000158 766 4392 0.000350 766 4627 0.000594 766 4851 0.000594 766 4851 0.000594 766 4654 0.000594 766 4874 0.000597 767 5049 0.000134 3.611 399 5275 0.000594 766 767 5405 0.000594 766 767 5423 0.00087 3.390 299	J	i inagnetic	field transversal).	
4038 0.000221 4151 0.000436 4181 0.000582 4634 0.000597 4149 0 4.038 647 4240 0.00058 4283 0.000158 4392 0.000350 4627 0.000594 4851 0.000594 3.884 549 4654 0.000604 3.884 549 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 399 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	Н	R	T	p
4151 0.000436 4181 0.000496 4254 0.000582 4634 0.000597 4149 0 4.038 647 4240 0.00058 647 4283 0.000158 647 4392 0.000350 6427 0.000594 4851 0.000594 5836 0.000604 4402 0 3.884 549 4654 0.000245 647 647 4773 0.000480 647 647 4874 0.000579 649 0.000579 5049 0.000579 6405 0.000579 5405 0.000579 6405 0.000579 5577 0.000594 6405 647 5423 0.000087 3.390 299	3865	0	4.208	766
4181 0.000496 4254 0.000582 4634 0.000597 4149 0 4240 0.00058 4283 0.000158 4392 0.000594 4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 399 5275 0.000471 3.611 399 5577 0.000594 3.390 299	4038	0.000221		
4254 0.000582 4634 0.000597 4149 0 4240 0.00058 4283 0.000158 4392 0.000350 4627 0.000594 4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5275 0.000471 5405 0.000594 5868 0.000594 5423 0.000087 3.390 299	4151	0.000436		
4634 0.000597 4149 0 4.038 647 4240 0.000058 647 4283 0.000158 647 4392 0.000350 6627 4627 0.000594 6627 4851 0.000594 6627 5836 0.000604 7 4402 0 3.884 549 4654 0.000245 7 4773 0.000480 7 4874 0.000579 7 5049 0.000134 3.611 399 5275 0.000471 7 5405 0.000579 7 7 5577 0.000594 7 7 5868 0.000594 7 299	4181	0.000496		
4149 0 4.038 647 4240 0.000058 4.038 647 4283 0.000158 4392 0.000350 4627 0.000594 4851 0.000594 5836 0.000604 3.884 549 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 399 5275 0.000471 5405 0.000594 5868 0.000594 5868 0.000594 5423 0.000087 3.390 299	4254	0.000582		
4240 0.000058 4283 0.000158 4392 0.000350 4627 0.000594 4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4634	0.000597		
4283 0.000158 4392 0.000350 4627 0.000594 4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4149	0	4.038	6 4 7
4392 0.000350 4627 0.000594 4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4240	0.000058		
4627 0.000594 4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4283	0.000158		
4851 0.000594 5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4392	0.000350		
5836 0.000604 4402 0 4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4627	0.000594		
4402 0 3.884 549 4654 0.000245 549 4773 0.000480 4874 0.000579 5245 0.000597 3.61¹ 399 5275 0.000471 399 300 300 300 5405 0.000579 5577 0.000594 300 300 299 5423 0.000087 3.390 299	1 851	0.000594		
4654 0.000245 4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	5836	0.000604		
4773 0.000480 4874 0.000579 5245 0.000597 5049 0.000134 3.611 399 5275 0.000471 3.611 399 5405 0.000579 5577 0.000594 5868 0.000594 3.390 299	4402	0	3.884	549
4874 0.000579 5245 0.000597 5049 0.000134 3.611 399 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	4654	0.000245		
5245 0.000597 5049 0.000134 3.61¹ 399 5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.39° 299	1 773	0.000480		
5049 0.000134 3.611 399 5275 0.000471 399 5405 0.000579 3000594 5868 0.000594 3.390 299	4874	0.000579		
5275 0.000471 5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	5 245	0.000597		
5405 0.000579 5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	50 49	0.000134	3.611	399
5577 0.000594 5868 0.000594 5423 0.000087 3.390 299	5275	0.000471		
5868 0.000594 5423 0.000087 3.390 299	5 4 05	0.000579		
5423 0.000087 3.390 299	5577	0.000594		
	5868	0.000594		
5575	5 42 3	0.000087	3.390	299
0.000342	5575	0.000342		
5961 0.000595	5961	0.000595		
5846 0.000585	58 4 6	0.000585		

From the figure we can find the value of the magnetic field, for which the resistance is restored to half of its original value $(H_{W'})$. In table II

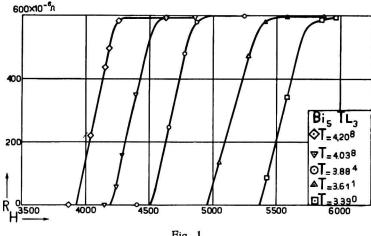


Fig. 1.

the values of $H_{W^{\prime} \mid_2}$ are given for the different temperatures. Fig. 2 represents the curve of $H_{W^1|_2}$ as a function of the temperature. For comparison this same curve has been plotted for pure lead (derived from the determinations of W. TUYN and H. KAMERLINGH ONNES 1)).

We see, that the inclination of this curve is much steeper for Bi_5Tl_3 than for lead.

By extrapolation we can make from the figure an estimate of the transition point of Bi_5Tl_3 , for which we find approximately 6.5° K.

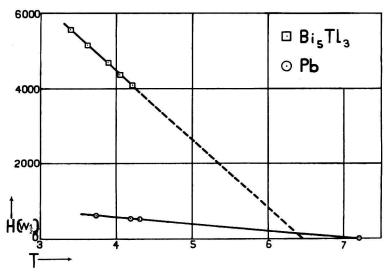
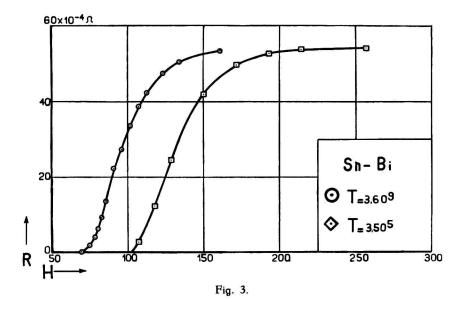


Fig. 2.

¹⁾ Comm. Leiden 174a. Journal of the Franklin Institute, 201, 379, 1926.


TABLE II. Bi₅ Tl₃.

$Hw_{1} _{2}$	T
4080	4.208
4360	4.038
46 80	3.884
5150	3.611
5560	4.390
	<u> </u>

§ 3. Sn-Bi.

We worked with a rod of the eutectic mixture, which according to the melting point diagram consists of a solid solution of bismuth in tin and a solid solution of tin in bismuth. The superconductivity of the rod is a consequence of the continuity of the layers of the solid solution of bismuth in tin and the magnetic transition figure must be ascribed to this solid solution 1).

The longitudinal fields were obtained by means of a solenoid surrounding the helium cryostat. In table III we give the determinations of the magnetic transition figures, plotted in fig. 3.

We see, that the magnetic field in which the return of the resistance

¹⁾ These Proceedings, 32, 715, 1929. Comm. Leiden 197b.

878

TABLE III.

Sn—Bi.

Н	R	Т	р
69.5	0.000017	3.609	398
7 4 .9	0.000168		
78.1	0.000392		
80.3	0.000613		
82.6	0.000902		
85 .6	0.001357		
91.0	0.002225		-
96.3	0.002731		
101.7	0.003351		
107.0	0.003861		
112.4	0.004233		
123.1	0.004748		
133.8	0.005055		
160.5	0.005351		
107.0	0.003845		
80.3	0.000617		
107.0	0.000262	3.50 ⁵	349
117.7	0.001227		
128.4	0.002440		
149.8	0.004181		
171 . 2	0.004962		
192.6	0.005274		
214.0	0.005380		
256.8	0.005425		
171 .2	0.004968		
117.7	0.001223		

begins and that in which the resistance has reached again its original value, lie at a great distance.

This must be ascribed, if not wholly then at all events partly to the fact,

that the current has to choose its path through the differently orientated layers of the solid solution and that the current vector has all directions

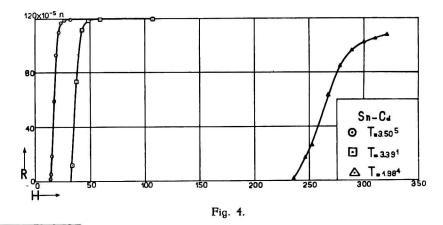
We have therefore to do both with the transverse and with the longitudinal action of the magnetic field.

In table IV we give the values of $H_{W^{1}/_{2}}$ with the corresponding temperatures.

TABLE IV.

Sn—Bi.

$Hw_{1/2}$	T
95	3.60 ⁹
130	3.505


In fig. 5 these values have been plotted with those of *Sn-Cd* and those of pure tin ¹) (derived from the determinations of W. Tuyn and H. Kamerlingh Onnes).

It is seen, that for Sn-Bi the values of $H_{W^1/_2}$ increase more rapidly with decreasing temperature than for pure tin.

§ 4. Sn-Cd.

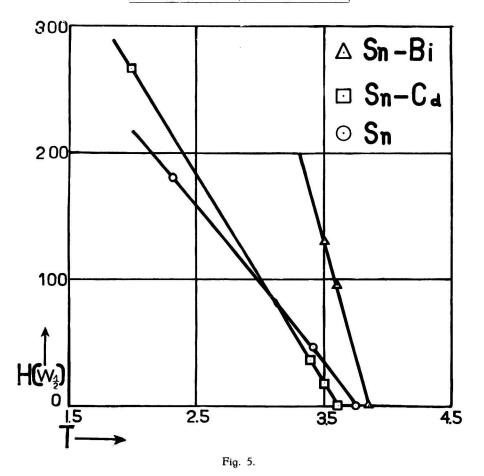
Here too we worked with a rod of the eutectic mixture, in which it is the solid solution of cadmium in tin that becomes superconductive ²).

In the same way as for *Sn-Bi* the magnetic transition curves were determined here. The results are given in table V and are plotted in fig. 4. With respect to the form of the transition figures the same remarks may

¹⁾ Comm. Leiden 174a. Journal of the Franklin Institute, 201, 379, 1926.

²) These Proceedings, 32, 715, 1929. Comm, Leiden 197b.

880


TABLE V. Sn—Cd.

	Sn—C	Cd.	
Н	R	T	р
12.84	0	3.505	34 9
13.27	0.000016		
13.91	0.000051		
1 1 .98	0.000187		
17.12	0.000594		
19.26	0.000931		
21.40	0.001100		
23.54	0.001169		
26.75	0.001190		
32.10	0.001195		
21.40	0.001108		
17.12	0.000605		
13.91	0.000059		
33.2	0.000118	3.391	299
37.5	0.000734		
42.8	0.001116		
48.2	0.001186		
64.2	0.001197		
107.0	0.001197		
42.8	0.001127		-8
37.5	0.000736		
32.1	0.000040		
235.4	0.000019	1.984	17.0
246.1	0.000131		
252.5	0.000265		
267.5	0.000634		
278.2	0.000847		
288.9	0.000964		
299.6	0.001023		
310.3	0.001053		
321.0	0.001079		
288.9	0.000965		
267.5	0.000634		
246.1	0.000123		

be made as in the case of Sn-Bi. Table VI gives the values of $H_{W^{1}/2}$, which have been plotted in fig. 5.

TABLE VI. $S_n = Cd$

Sn=Ca.		
$m{H}m{w}_{}^{i}m{l}_{2}$	T	
17.5	3.505	
36	3.911	
2 66	1.984	

The difference with pure tin is less pronounced which may be ascribed perhaps to the fact, that in the eutectic Sn-Cd the percentage of cadmium is considerably lower than that of bismuth solved in tin in the eutectic Sn-Bi.

§ 5. The result of these measurements with alloys is, that in all cases

investigated the value of $H_{W^{1}l_{2}}$ increases more rapidly with decreasing temperature than in the case of the pure superconductors. We can also express this by saying, that for the same temperature distance from the transition point higher field intensities are required to restore the resistance. This unexpected result may become of use in magnetic researches because of the high values of $H_{W^{1}l_{2}}$ found for $Bi_{5}Tl_{3}$.

We found, that at 3.4° K. a field of 5.3 kilogauss did not yet disturb the superconductivity of Bi_5Tl_3 . We have not yet extended our investigations to still lower temperatures. An extrapolation however of the data would predict that at a temperature of 1.3° K. a field of about 9 kilogauss would not yet disturb the superconductivity. This would render possible the production of magnetic fields of this order of magnitude with a solenoid from Bi_5Tl_3 wire without production of heat. It is evident however, that besides this eventual practical application, the phenomenon itself is of the highest importance.