Mathematics. - Skew Correlation between Three and More Variables, II. By Prof. M. J. van Uven. (Communicated by Prof. A. A. Nijland).
(Communicated at the meeting of May 25, 1929).
We may still apply the method hitherto followed, when there is no linear correlation between the original variables x_{1}, x_{2}, x_{3} appearing in the given frequency distribution A, but when linear correlation can be found between the (unimodular) variables $t_{1}, t_{2}, t_{3}, t_{a}$ being a function of only $x_{a}(a=1,2,3)$.

Considering, in particular, $t_{a}\left\{x_{a}\right\}$ as an ever increasing one-valued function of $\left.x_{a}(a=1,2,3)^{1}\right), s_{a}\left(k_{a}\right)(\mathbf{B a})$ gives the probability of $x_{a}<x_{a}\left(k_{a}\right)$. Thus the equation $\mathbf{B a}$ associates a value $z_{a}\left(k_{a}\right)$ with $x_{a}\left(k_{a}\right)$, and we obtain a series of $\nu_{a}-1$ empirical values of the function $z_{a}\left\{x_{a}\right\}$.

Likewise $\sigma_{b ; a}\left(k_{a}-\frac{1}{2}, k_{b}\right)(\mathbf{B}(\mathbf{b} ; \mathbf{a}))$ furnishes the probability of $\left[x_{b}<x_{b}\left(k_{b}\right)\right.$, being given: $\left.x_{a}\left(k_{a}-1\right)<x_{a}<x_{a}\left(k_{a}\right)\right]$. Hence the equation $\mathbf{B}(\mathbf{b} ; \mathbf{a})$ joins a value $\zeta_{b ; a}\left(k_{a}-\frac{1}{2}, k_{b}\right)$ to the set $x_{a}\left(k_{a}-\frac{1}{2}\right), x_{b}\left(k_{b}\right)$, and we obtain a series of empirical values of the function $\zeta_{b: a}\left\{x_{a}, x_{b}\right\}$.

As x_{a} itself is to be considered as a function of z_{a}, we may also conceive $\zeta_{b: a}$ as a function of z_{a} and z_{b}.

Now z_{a} is proportional to t_{a}, so that we (cf 13) may put 9ter (b;a) into the form:

$$
\left.\begin{array}{rl}
\zeta_{b ; a} & =-\frac{-\Lambda_{b a} \cdot\left(\frac{\Lambda_{a \mathrm{a}}}{\Lambda}\right)^{1 / z} \cdot z_{a}+\Lambda_{\mathrm{aa}} \cdot\left(\frac{\Lambda_{b b}}{\Lambda}\right)^{1 / z} \cdot z_{b}}{V \Lambda_{a \mathrm{a}}}= \\
& =\frac{-\Lambda_{b \mathrm{a}} \cdot z_{\mathrm{a}}+V \Lambda_{a \mathrm{a}} \Lambda_{b b} \cdot z_{b}}{V \Lambda}=-\cot \omega_{c} \cdot z_{a}+\frac{1}{\sin \omega_{c}} \cdot z_{b}
\end{array}\right\} \mathbf{9 q u a t e r}(\mathrm{b} ; \mathbf{a})
$$

Hence $\zeta_{b ; a}$ appears to be a linear function of z_{a} and z_{b}.
Finally $S_{\mathrm{c}}\left(k_{a}-\frac{1}{2}, k_{b}-\frac{1}{2}, k_{c}\right)(\mathrm{B}(\mathbf{c} ; \mathrm{ba}))$ gives the probability of $\left[x_{\mathrm{c}}<\right.$ $<x_{c}\left(k_{c}\right)$, being given: $\left.x_{a}\left(k_{a}-1\right)<x_{a}<x_{a}\left(k_{a}\right), x_{b}\left(k_{b}-1\right)<x_{b}<x_{b}\left(k_{b}\right)\right]$. Thus the equation B(c; ba) associates a value $Z_{c}\left(k_{a}-\frac{1}{2}, k_{b}-\frac{1}{2}, k_{c}\right)$ with the set $x_{a}\left(k_{a}-\frac{1}{2}\right), x_{b}\left(k_{b}-\frac{1}{2}\right), x_{c}\left(k_{c}\right)$. This furnishes us a set of empirical values of the function $Z_{c}\left\{x_{1}, x_{2}, x_{3}\right\}$. As x_{a} depends only on $z_{\mathrm{a}}, Z_{\mathrm{c}}$ is also to be considered as a function of all three variables z_{1}, z_{2}, z_{3}.

[^0]In virtue of

$$
\begin{aligned}
Z_{c}=\lambda_{c a} \cdot t_{a} & +\lambda_{b c} \cdot t_{b}+t_{c}= \\
& \left.=\frac{\lambda_{c a} V \overline{\Lambda_{a a}} \cdot z_{a}+\lambda_{b c} V \overline{\Lambda_{b b}} \cdot z_{b}+V \overline{\Lambda_{c c}} \cdot z_{c}}{V \Lambda}\right\} \mathbf{9} \text { quater (c; ba) }
\end{aligned}
$$

Z_{c} is a linear function of z_{1}, z_{2}, z_{3}.
In constructing empirically the functions $\zeta_{b ; a}$ and Z_{c} it is necessary to determine the required mean values as exactly as possible.

Now the values of the functions $\zeta_{b: a}, Z_{c}$, which correspond to the sets of class-limits $x_{a}\left(k_{a}\right)$, and to the associated values $z_{a}\left(k_{a}\right)$, are to be calculated by interpolation. If these calculations are made correctly, and if the conditions that the unimodular variables t_{1}, t_{2}, t_{3} are pure functions of x_{1}, x_{2}, x_{3} respectively, are really fulfilled, then it must appear, that the functional values $z_{a}\left(k_{a}\right), \zeta_{b ; a}\left(k_{a}, k_{b}\right) . Z_{c}\left(k_{a}, k_{b}, k_{c}\right)$, corresponding to $x_{a}\left(k_{a}\right), x_{b}\left(k_{b}\right), x_{c}\left(k_{c}\right)$, satisfy the two conditions Ia and Ib. Moreover it must appear that the three magnitudes $\gamma_{a b}$, computed from Ebis, are constant, that is to say: that

$$
\gamma_{a b}=\frac{A_{a b}}{Q_{a b}^{2}}=\text { constant }(a, b=1,2,3) \quad . \quad . \quad . \quad \text { II }
$$

Inversely, when the conditions

$$
\left.\begin{array}{l}
z_{a}^{2}+\zeta_{b ; a}^{2}=z_{b}^{2}+\zeta_{a ; b}^{2}\left(=q_{a b}^{2}\right), \\
Z_{c}^{2}=H\{z, \zeta\}-q_{a b}^{2}, \\
\gamma_{a b}=\frac{A_{a b}}{Q_{a b}^{2}}=\text { constant, }
\end{array}\right\}(a, b, c=1,2,3) \quad . \quad . \quad . \quad \mathbf{I b}
$$

are fulfilled, we may conclude, that linear correlation exists between the unimodular variables t_{1}, t_{2}, t_{3}, determined by

$$
\begin{equation*}
t_{a}=\frac{z_{a}}{\sin \psi_{a}}=\left(\frac{\Gamma_{a a}}{\Gamma}\right)^{1 / 2} \cdot z_{a} \quad(a=1,2,3) \tag{J}
\end{equation*}
$$

t_{a} being (in virtue of $\psi_{a}=$ const.) a pure function of x_{a}.
If t_{a} is a pure function of $x_{a}(a=1,2,3)$, each arrangement $z_{a}, \zeta_{b ; a}, Z_{c}$ associates with the set x_{1}, x_{2}, x_{3} the same point $P\left(t_{1}, t_{2}, t_{3}\right)$ in the same (skew) system of coordinates t_{1}, t_{2}, t_{3}. Hence we obtain on the unitysphere for each set x_{1}, x_{2}, x_{3} the same spherical triangle (Φ) of reference, thus also the same polar triangle (Ω). In this case the (total) coefficients of correlation of $t_{1}\left\{x_{1}\right\}, t_{2}\left\{x_{2}\right\}, t_{3}\left\{x_{3}\right\}$ are the cosines of the (constant) sides of the polar triangle:

$$
\gamma_{23}=\cos \omega_{1} \quad, \quad \gamma_{31}=\cos \omega_{2} \quad, \quad \gamma_{12}=\cos \omega_{3}
$$

If, in particular, t_{a} is a linear function of $x_{a}, t_{a}=h_{a}\left(x_{a}-\bar{x}_{a}\right)$, the
function z_{a}, too, will be a linear function of x_{a}, the function $\zeta_{b ; a}$ will be linear in x_{a} and x_{b}, Z_{c} linear in x_{1}, x_{2}, x_{3}. Then the original variables x_{1}, x_{2}, x_{3} themselves are linearly correlated.

This statement furnishes us a rather reliable test of the linearity of the correlation between $x_{1}, x_{2}, x_{3}{ }^{1}$)

Since no empirical frequency distribution is rigorously conform to any ideal theoretical probability scheme, and since we have to reckon with several sources of inaccuracy, as well in calculating mean values (such as $\left.\zeta_{2: 1}\left(k_{1}-\frac{1}{2}, k_{2}\right), Z_{3}\left(k_{1}-\frac{1}{2}, k_{2}-\frac{1}{2}, k_{3}\right)\right)$ as in interpolating (e.g. to compute $\left.\zeta_{2: 1}\left(k_{1}, k_{2}\right), Z_{3}\left(k_{1}, k_{2}, k_{3}\right)\right)$, we cannot reasonably expect, that even in the case $t_{a}\left\{x_{a}\right\}$ the conditions Ia,b and II will be satisfied exactly. We shall have to content ourselves with an approximate validity of these equations. Only when the quotients $q_{a: b}: q_{b: a}, Z_{c}^{2}:\left(H\{z, \zeta\}-Q_{a b}^{2}\right)$ and the variables $\gamma_{a b}$ show some obvious functional dependency on x_{1}, x_{2}, x_{3}, should we be obliged to drop the supposition $t_{n}\left\{x_{a}\right\}(a=1,2,3)$.

If the condition II is not fulfilled, that is to say: if the values of $\gamma^{\prime} b c=\cos \omega_{a}$ computed for the different sets $x_{1}\left(k_{1}\right), x_{2}\left(k_{2}\right), x_{3}\left(k_{3}\right)$, are unequal, so that $\omega_{1}, \omega_{2}, \omega_{3}$ are variable magnitudes, then we may introduce a constant polar triangle (Ω) with sides $\bar{\omega}_{1}, \bar{\omega}_{2}, \bar{\omega}_{3}$. In order to keep in touch, as much as possible, with the values $\omega_{1}, \omega_{2}, \omega_{3}$ really found: it is preferable to choose for ω_{a} an average value of ω_{a}. We may obtain such average values by taking the averages of

$$
M_{1}=\operatorname{tg} \omega_{1}=\frac{B_{23}}{A_{23}} \quad, \quad M_{2}=\operatorname{tg} \omega_{2}=\frac{B_{31}}{A_{31}} \quad, \quad M_{3}=\operatorname{tg} \omega_{3}=\frac{B_{12}}{A_{12}}
$$

according to the precept we have formerly given in S. C. I. b (Dutch text p. 976, English text p. 929).
A_{23} and B_{23} are merely functions of x_{2} and x_{3}. So, in averaging M_{1}, the frequency distribution is to be treated as a two-dimensional one, its frequencies being $Y^{\prime}\left(k_{2}, k_{3}\right)=\sum_{i_{1}=1}^{k_{1}} Y\left(i_{1}, k_{2}, k_{3}\right)$. Hence the "weights" introduced in averaging $M_{1}=\operatorname{tg} \omega_{1}$ are built up of these two-dimensional frequencies $Y^{\prime}\left(k_{2}, k_{3}\right)$. Likewise for averaging M_{2} and M_{3}.

From the averages $\bar{\omega}_{a}(a=1,2,3)$ we compute the corresponding arcs φ_{a} and $\psi_{a}(a=1,2,3)$.

Then we put, guided by 9bis,

$$
\left.\begin{array}{l}
z_{1}=\sin \overline{\psi_{1}} \cdot T_{1}, \\
\zeta_{2 ; 1}=-\sin \overline{\varphi_{2}} \cos \bar{\omega}_{3} \cdot T_{1}+\sin \bar{\varphi}_{1} \cdot T_{2} \\
Z_{3}=\cos \overline{\psi_{2}} \cdot T_{1}+\cos \bar{\varphi}_{1} \cdot T_{2}+T_{3} .
\end{array}\right\}: \quad 32\left\{\begin{array}{l}
(\mathbf{1}) \\
(\mathbf{2} ; \mathbf{1}) \\
(\mathbf{3} ; \mathbf{2} \mathbf{1})
\end{array}\right.
$$

[^1]By confronting these equations with the equations 9 bis we obtain:

$$
\begin{aligned}
& z_{1}=\sin \bar{\psi}_{1} \cdot T_{1}=\sin \psi_{1} \cdot t_{1} \\
& \zeta_{2: 1}=-\sin \bar{\varphi}_{2} \cos \bar{\omega}_{3} \cdot T_{1}+\sin \bar{\varphi}_{1} \cdot T_{2}=-\sin \varphi_{2} \cos \omega_{3} \cdot t_{1}+\sin \varphi_{1} \cdot t_{2} \\
& Z_{3}=\cos \bar{\varphi}_{2} \cdot T_{1}+\cos \bar{\varphi}_{1} \cdot T_{2}+T_{3}=\cos \varphi_{2} \cdot t_{1}+\cos \varphi_{1} \cdot t_{2}+t_{3}
\end{aligned}
$$

whence

$$
\begin{align*}
T_{1} & =\frac{\sin \psi_{1}}{\sin \overline{\psi_{1}}} t_{1}=\frac{z_{1}}{\sin \overline{\psi_{1}}} \cdot \ldots \tag{33}\\
T_{2} & =\frac{1}{\sin \overline{\varphi_{1}}}\left(-\sin \varphi_{2} \cos \omega_{3} \cdot t_{1}+\sin \varphi_{1} \cdot t_{2}+\sin \overline{\varphi_{2}} \cos \bar{\omega}_{3} \cdot T_{1}\right) \\
& =\frac{1}{\sin \overline{\varphi_{1}}}\left(-\sin \varphi_{2} \cos \omega_{3}+\frac{\sin \overline{\varphi_{2}} \cos \bar{\omega}_{3} \sin \psi_{1}}{\sin \overline{\psi_{1}}}\right) t_{1}+\frac{\sin \bar{\varphi}_{1}}{\sin \bar{\varphi}_{1}} \cdot t_{2} \cdot 34 \tag{34}\\
& =\frac{1}{\sin \overline{\varphi_{1}} \sin \overline{\psi_{1}}}\left(-\sin \varphi_{2} \cos \omega_{3} \sin \overline{\varphi_{2}} \sin \overline{\omega_{3}}+\right. \\
& \left.+\sin \overline{\varphi_{2}} \cos \overline{\omega_{3}} \sin \varphi_{2} \sin \omega_{3}\right) t_{1}+\frac{\sin \varphi_{1}}{\sin \overline{\varphi_{1}}} \cdot t_{2} \\
& =\frac{\sin \varphi_{2} \sin \overline{\varphi_{2}} \sin \left(\omega_{3}-\overline{\omega_{3}}\right)}{\sin \overline{\varphi_{1}} \sin \overline{\psi_{1}}} t_{1}+\frac{\sin \varphi_{1}}{\sin \overline{\varphi_{1}}} t_{2} \\
& =\frac{\sin \varphi_{2} \sin \left(\omega_{3}-\overline{\omega_{3}}\right)}{\sin \overline{\varphi_{1}} \sin \overline{\omega_{3}}} t_{1}+\frac{\sin \varphi_{1}}{\sin \overline{\varphi_{1}}} \cdot t_{2} \\
& =\frac{\sin \varphi_{2} \sin \left(\omega_{3}-\overline{\omega_{3}}\right)}{\sin \overline{\psi_{2}}} t_{1}+\frac{\sin \varphi_{1}}{\sin \overline{\varphi_{1}}} t_{2} \\
& =\frac{\sin \varphi_{2} \sin \left(\omega_{3}-\overline{\omega_{3}}\right)}{\sin \overline{\psi_{2}}} \cdot \frac{1}{\sin \varphi_{2} \sin \omega_{3}} z_{1}+\frac{\sin \varphi_{1}}{\sin \overline{\varphi_{1}}} \cdot \frac{1}{\sin \varphi_{1} \sin \omega_{3}} z_{2}
\end{align*}
$$

or

$$
\left.\begin{array}{rl}
T_{2} & =\frac{\sin \left(\omega_{3}-\bar{\omega}_{3}\right)}{\sin \bar{\psi}_{2} \sin \omega_{3}} z_{1}+\frac{1}{\sin \bar{\varphi}_{1} \sin \omega_{3}} z_{2}, \\
& =\frac{\sin \left(\omega_{3}-\bar{\omega}_{3}\right)}{\sin \bar{\varphi}_{1} \sin \bar{\omega}_{3} \sin \omega_{3}} z_{1}+\frac{1}{\sin \bar{\varphi}_{1} \sin \omega_{3}} z_{2}
\end{array}\right\} \quad . \quad 34 \mathrm{bis}
$$

and

$$
T_{3}=\cos \varphi_{2} \cdot t_{1}+\cos \varphi_{1} \cdot t_{2}+t_{3}-\cos \overline{\varphi_{2}} \cdot T_{1}-\cos \overline{\varphi_{1}} \cdot T_{2}
$$

or, by 34 ,

$$
\begin{aligned}
T_{3}= & \cos \varphi_{2} \cdot t_{1}+\cos \varphi_{1} \cdot t_{2}+t_{3}-\cos \overline{\varphi_{2}} \frac{\sin \psi_{1}}{\sin \overline{\psi_{1}}} t_{1}- \\
& -\cos \overline{\varphi_{1}}\left(-\frac{\sin \varphi_{2} \cos \omega_{3}}{\sin \overline{\varphi_{1}}}+\frac{\sin \overline{\varphi_{2}} \cos \overline{\omega_{3}} \sin \psi_{1}}{\sin \overline{\varphi_{1}} \sin \overline{\psi_{1}}}\right) t_{1}-\cos \overline{\varphi_{1}} \frac{\sin \varphi_{1}}{\sin \overline{\varphi_{1}}} t_{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& T_{3}=\left\{\frac{\cos \varphi_{2} \sin \overline{\varphi_{1}}+\cos \overline{\varphi_{1}} \sin \varphi_{2} \cos \omega_{3}}{\sin \overline{\varphi_{1}}}-\right. \\
& \left.-\frac{\left(\cos \overline{\varphi_{2}} \sin \overline{\varphi_{1}}+\cos \overline{\varphi_{1}} \sin \overline{\varphi_{2}} \cos \overline{\omega_{3}}\right) \sin \psi_{1}}{\sin \overline{\varphi_{1}} \sin \overline{\psi_{1}}}\right\} t_{1}- \\
& -\frac{\sin \varphi_{1} \cos \overline{\varphi_{1}}-\cos \varphi_{1} \sin \overline{\varphi_{1}}}{\sin \bar{\varphi}_{1}} t_{2}+t_{3} .
\end{aligned}
$$

We now have in the "average" spherical triangle $\bar{\Phi}_{1} \bar{\Phi}_{2} \bar{\Phi}_{3}$: $\cos \overline{\varphi_{2}} \sin \overline{\varphi_{1}}+\cos \overline{\varphi_{1}} \sin \bar{\varphi}_{2} \cos \bar{\omega}_{3}=\cos \overline{\varphi_{2}} \sin \overline{\varphi_{1}}-\cos \overline{\varphi_{1}} \sin \overline{\varphi_{2}} \cos \bar{\Phi}_{3}=$

$$
=\sin \bar{\varphi}_{3} \cos \overline{\Phi_{2}}=-\sin \bar{\varphi}_{3} \cos \bar{\omega}_{2}
$$

hence the second term in the coefficient of t_{1} becomes:

$$
+\frac{\sin \overline{\varphi_{3}} \cos \overline{\omega_{2}}}{\sin \overline{\varphi_{1}} \sin \overline{\psi_{1}}} \cdot \sin \psi_{1}=\frac{\sin \overline{\varphi_{3}} \cos \overline{\omega_{2}}}{\sin \overline{\varphi_{1}} \sin \overline{\varphi_{3}} \sin \overline{\omega_{2}}} \cdot \sin \psi_{1}=\frac{\cot \overline{\omega_{2}}}{\sin \overline{\varphi_{1}}} \cdot \sin \psi_{1}
$$

Thus we obtain, by $t_{a}=\frac{z_{a}}{\sin \psi_{a}}(a=1,2,3)$,

$$
\left.\begin{array}{rl}
T_{3}=\left(\frac{\cos \varphi_{2} \sin \overline{\varphi_{1}}+\cos \overline{\varphi_{1}} \sin \varphi_{2} \cos \omega_{3}}{\sin \overline{\varphi_{1}} \sin \psi_{1}}+\frac{\cot \overline{\omega_{2}}}{\sin \overline{\varphi_{1}}}\right) z_{1}- \\
& -\frac{\sin \left(\varphi_{1}-\overline{\varphi_{1}}\right)}{\sin \widetilde{\varphi_{1}} \sin \psi_{2}} z_{2}+\frac{1}{\sin \psi_{3}} z_{3}
\end{array}\right\}
$$

The first term in the coefficient of z_{1} can be interpreted geometrically as follows:

fig. 4
We locate the "average" spherical triangle so, that $\bar{\Phi}_{3}$ coincides with Φ_{3}, and that $\bar{\Phi}_{2} \bar{\Phi}_{3}$ falls along $\Phi_{2} \Phi_{3}$ (fig. 4).

Putting

$$
\angle \Phi_{1} \overline{\Phi_{2}} \overline{\Phi_{1}}=\varepsilon
$$

we have in $\triangle \Phi_{1} \bar{\Phi}_{2} \Phi_{3}$:

$$
\cos \varphi_{2} \sin \overline{\varphi_{1}}-\cos \bar{\varphi}_{1} \sin \varphi_{2} \cos \Phi_{3}=\sin \bar{\Phi}_{2} \Phi_{1} \cdot \cos \Phi_{3} \bar{\Phi}_{2} \Phi_{1},
$$

or
$\cos \varphi_{2} \sin \overline{\varphi_{1}}+\cos \overline{\varphi_{1}} \sin \varphi_{2} \cos \omega_{3}=\frac{\sin h_{1}}{\sin \left(\overline{\Phi_{2}}+\varepsilon\right)} \cos \left(\bar{\Phi}_{2}+\varepsilon\right)=$

$$
=\sin \psi_{1} \cot \left(\overline{\Phi_{2}}+\varepsilon\right)=-\sin \psi_{1} \cot \left(\overline{\omega_{2}}-\varepsilon\right) .
$$

Hence the coefficient of z_{1} becomes:
$\frac{1}{\sin \overline{\varphi_{1}}}\left\{-\cot \left(\overline{\omega_{2}}-\varepsilon\right)+\cot \overline{\omega_{2}}\right\}=\frac{-\sin \varepsilon}{\sin \bar{\varphi}_{1} \sin \bar{\omega}_{2} \sin \left(\overline{\omega_{2}}-\varepsilon\right)}=\frac{-\sin \varepsilon}{\sin \overline{\psi_{3}} \sin \left(\overline{\omega_{2}}-\varepsilon\right)}$.
Thus we find for T_{3} :

$$
T_{3}=\frac{-\sin \varepsilon}{\sin \overline{\psi_{3}} \sin \left(\overline{\omega_{2}}-\varepsilon\right)} z_{1}-\frac{\sin \left(\varphi_{1}-\overline{\varphi_{1}}\right)}{\sin \overline{\varphi_{1}} \sin \psi_{2}} z_{2}+\frac{1}{\sin \psi_{3}} z_{3} . \quad \text {. 35bis }
$$

So we have together:

$$
\begin{aligned}
& T_{1}=\frac{1}{\sin \bar{\psi}_{1}} z_{1} \\
& T_{2}=\frac{\sin \left(\omega_{3}-\overline{\omega_{3}}\right)}{\sin \bar{\psi}_{2} \sin \omega_{3}} z_{1}+\frac{1}{\sin \overline{\varphi_{1} \sin \omega_{3}} z_{2}} \\
& T_{3}=\frac{-\sin \varepsilon}{\sin } z_{1}-\frac{\sin \left(\varphi_{1}-\overline{\varphi_{1}}\right)}{\sin } z_{2}+\frac{1}{\sin } z_{3}
\end{aligned}
$$

where ε is determined by

$$
\cot \left(\overline{\omega_{2}}-\varepsilon\right)=-\frac{\sin \overline{\varphi_{1}} \cos \varphi_{2}+\cos \overline{\varphi_{1}} \sin \varphi_{2} \cos \omega_{3}}{\sin \psi_{1}}
$$

In this way we have constructed three variables T_{1}, T_{2}, T_{3}, which are linearly correlated, having the (total) coefficients of correlation:

$$
\overline{\gamma_{23}}=\cos \overline{\omega_{1}}, \quad \overline{\gamma_{31}}=\cos \overline{\omega_{2}}, \quad \overline{\gamma_{12}}=\cos \overline{\omega_{3}} .
$$

T_{1} is a function of only z_{1}, thus a pure function of x_{1}.
Since $\omega_{3}=\operatorname{arctg} \frac{B_{12}}{A_{12}}$ is built up out of $z_{1}, z_{2}, \zeta_{2 ; 1}, \zeta_{1 ; 2}, z_{1}$ depending only on x_{1}, z_{2} only on $x_{2}, \zeta_{2: 1}$ and $\zeta_{1: 2}$ only on x_{1} and x_{2}, we recognize ω_{3} to be a function only of x_{1} and x_{2}. Thus:
T_{2} is a function only of x_{1} and $x_{2}\left(\frac{\partial T_{2}}{\partial x_{3}}=0\right)$.
T_{3} however is a function of all three variables x_{1}, x_{2}, x_{3}.
Hence:
If the conditions Ia and Ib are fulfilled, but II is not, we may, by introducing the constant (average) magnitudes
$\overline{\omega_{1}}, \overline{\omega_{2}}, \overline{\omega_{3}}$, establish a linear correlation between $T_{1}\left\{x_{1}\right\}$, $T_{2}\left\{x_{1}, x_{2}\right\}, T_{3}\left\{x_{1}, x_{2}, x_{3}\right\}$. Then the (total) coefficients of correlation are $\bar{\gamma}_{23}=\cos \bar{\omega}_{1}, \bar{\gamma}_{31}=\cos \bar{\omega}_{2}, \bar{\gamma}_{12}=\cos \bar{\omega}_{3}$.

If, the magnitudes ω_{1} and ω_{2} being variable, the magnitude $\omega_{3}=\operatorname{arctg} \frac{B_{12}}{A_{12}}$ is found to be constant, then we naturally choose this constant value for $\bar{\omega}_{3}$ (fig. 5), whence $\omega_{3}-\omega_{3}=0$.

In this case T_{2} becomes a pure function of x_{2}.

fig. 5

fig. 6

fig. 7

If it is found that not only ω_{3}, but also φ_{1} is constant (fig. 6), the expression

$$
\cos \varphi_{1}=\frac{\cos \omega_{2} \cos \omega_{3}-\cos \omega_{1}}{\sin \omega_{2} \sin \omega_{3}}=\frac{A_{31} A_{12} Q_{23}^{2}-A_{23} Q_{31}^{2} Q_{12}^{2}}{B_{31} B_{12} Q_{23}^{2}} \frac{}{2}
$$

turning out to take the same value for each set $x_{1}\left(k_{1}\right), x_{2}\left(k_{2}\right), x_{3}\left(k_{3}\right)$, then we have also

$$
\sin \psi_{2}=\sin \omega_{3} \sin \varphi_{1}=\text { constant }
$$

We now obtain (see fig. 6):

$$
\varepsilon=\Phi_{2}-\bar{\Phi}_{2}=-\left(\omega_{2}-\bar{\omega}_{2}\right) \quad, \quad \bar{\omega}_{2}-\varepsilon=\omega_{2}
$$

In this case the expression 35 bis for T_{3} gets rid of its term with z_{2}, and is reduced to

$$
T_{3}=\frac{\sin \left(\omega_{2}-\overline{\omega_{2}}\right)}{\sin \overline{\psi_{3}} \sin \omega_{2}} z_{1}+\frac{1}{\sin \psi_{3}} z_{3} .
$$

Here ω_{2} is a function only of z_{1} and z_{3}; so $\sin \psi_{3}\left(=\sin p_{1} \sin \omega_{2}\right)$ is.
Therefore: $\omega_{3}=$ const. and $\varphi_{1}=$ const. furnishes $T_{1}\left\{x_{1}\right\}, T_{2}\left\{x_{2}\right\}$, $T_{3}\left\{x_{1}, x_{3}\right\}$.

If, besides ω_{3}, also p_{2} turns out to be constant, the expression

$$
\cos \psi_{2}=\frac{A_{12} A_{23} Q_{31}^{2}-A_{31} Q_{12}^{2} Q_{23}^{2}}{B_{12} B_{23} Q_{31}^{2}}
$$

taking the same value for each set $x_{1}\left(k_{1}\right), x_{2}\left(k_{2}\right), x_{3}\left(k_{3}\right)$, then $\varepsilon=0$ (see fig. 7), so that T_{3} drops its term with z_{1}, and is reduced to

$$
T_{3}=\frac{-\sin \left(\varphi_{1}-\overline{\varphi_{1}}\right)}{\sin \overline{\varphi_{1}} \sin \psi_{2}} z_{2}+\frac{1}{\sin \psi_{3}} z_{3}
$$

Here $\sin \psi_{3}=\sin \varphi_{2} \sin \omega_{1}\left\{x_{2}, x_{3}\right\}$ is a function only of x_{2} and x_{3}; however the coefficient of z_{2} still depends on all the variables x_{1}, x_{2}, x_{3}. Hence in this case T_{3} is still a function of all three variables x_{a}.

By interchanging the subscripts we may - in the same manner arrive at analogous relations of dependency.

We may observe, that we have computed the elements of the spherical triangle of reference exclusively by means of \mathbf{E}, hence out of the magnitudes $z_{a}, \zeta_{b: a}$. So we have only used these magnitudes, which are much more accurate than the magnitudes $Z_{\mathrm{c}}, 1^{0}$ because, for calculating Z_{c}, we have much more to do with mean values (e.g. $z_{a}\left(k_{a}-\frac{1}{2}\right)$) and with interpolated values (e.g. $\left.Z_{c}\left(k_{1}, k_{2}, k_{3}\right)\right), 2^{0}$ because the magnitudes Z_{c} (see $\mathbf{B}(\mathbf{3} ; 21)$) are computed from - generally small - one-dimensional frequency sums.

If Ia is satisfied, but Ib is not, then the 6 triplets $z_{\mathrm{a}}, \zeta_{\mathrm{b}: \mathrm{a}}, Z_{\mathrm{c}}$ still join to each set $x_{1}\left(k_{1}\right), x_{2}\left(k_{2}\right), x_{3}\left(k_{3}\right)$ one and the same image point $\Pi\left(k_{1}, k_{2}, k_{3}\right)$ on the unity-sphere (see fig. 3), the 3 expressions $r_{a b}^{2}=q_{a b}^{2}+Z_{c}^{2}$ giving however values for r^{2} different from the value of $H\{z, \zeta\}$ as it is deduced solely from the magnitudes $z_{a}, \zeta_{b: a}$. We may now introduce new magnitudes $Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}$, which do satisfy Ib , in other words: we put:

$$
\begin{equation*}
Z_{c}^{\prime 2}=H\{z, \zeta\}-q_{a b}^{2} \quad . \quad(c=1,2,3) \tag{36}
\end{equation*}
$$

and consider these Z_{c}^{\prime} as "adjusted" values of Z_{c}. So we replace the empirical triplets $z_{a}, \zeta_{b ; a}, Z_{c}$, computed from the given frequency distribution, by the triplets $z_{a}, \zeta_{b ; a}, Z_{c}^{\prime}$. By computing back the frequency distribution corresponding to the adjusted triplets, this frequency distribution will appear to be somewhat different from the given one. Then we must judge whether the discrepancy thus found between the given and the computed frequency distribution may be considered as a small accidental deviation.

We are inclined to adjust in the first place the magnitudes Z_{c}, these being subject to the greatest uncertainty. It is, on the other hand, the great uncertainty of Z_{c} which makes the frequency distribution rather insensible to an alteration of Z_{c}.

When we, nevertheless, in computing back the frequency distribution, desire to get back exactly the given frequencies, we may succeed by keeping one of the magnitudes Z_{c}, for instance Z_{3}, unaltered. ${ }^{1}$) Then

[^2]the triplets $z_{1}, \zeta_{2: 1}, Z_{3}$ and $z_{2}, \zeta_{1: 2}, Z_{3}$ will give back exactly the original frequency distribution.

In this case it is necessary to take for r^{2} :

$$
\begin{equation*}
r^{\prime 2}=r_{12}^{2}=q_{12}^{2}+Z_{3}^{2} \tag{37}
\end{equation*}
$$

Hence $H\{z, \zeta\}$ must be adjusted to this value r_{12}^{2}. Thus some of the magnitudes $z_{3}, \zeta_{1 ; 3}, \zeta_{3: 1}, \zeta_{2 ; 3}, \zeta_{3 ; 2}$ must certainly undergo alteration. We naturally prefer to leave the comparatively accurate magnitude z_{3} unaltered. As the two conditions

$$
\zeta_{2 ; 3}^{2}-\zeta_{3 ; 2}^{2}=z_{2}^{2}-z_{3}^{2} \quad, \quad \zeta_{3 ; 1}^{2}-\zeta_{1 ; 3}^{2}=z_{3}^{2}-z_{1}^{2}
$$

deriving from Ia, must in any case be satisfied, we must vary simultaneously either $\zeta_{2: 3}$, and $\zeta_{3: 2}$, or $\zeta_{3: 1}$ and $\zeta_{1: 3}$.

Leaving, for instance, $\zeta_{3: 1}$ and $\zeta_{1: 3}$ unaltered, the alteration required in adjusting $H\{z, \zeta\}$ will be effectuated solely on $\zeta_{2 ; 3}$ and $\zeta_{3: 2}$. The magnitudes $\zeta_{3 ; 1}$ and $\zeta_{1 ; 3}$ keeping their values and q_{31} also doing so, we must first adjust Z_{2} into Z_{2}^{\prime}, determined by

$$
\begin{equation*}
Z_{2}^{\prime 2}=r^{\prime 2}-q_{31}^{2} \tag{38}
\end{equation*}
$$

When we, in applying the equations D and E, interchange the spherical triangle (Φ) and its polar triangle (Ω), and take into account, that, in interchanging (Φ) and (Ω), the magnitude z_{a} (projection of OP on $O \Omega_{a}$) passes into the magnitude Z_{a} (projection of $O P$ on $O \Phi_{a}$), the magnitude $\zeta_{b: a}$ (projection of $O P$ on the line $O \Psi_{b: a}$ of intersection of $O \varphi_{a}$ and $O \omega_{c}$) passing into $\zeta_{b ; c}$ (projection of $O P$ on the line $O \Psi_{b ; c}$ of intersection of $O \omega_{\mathrm{a}}$ and $O \varphi_{\mathrm{c}}$) (see fig. 1 and 3), then we obtain from $\operatorname{tg} \omega_{1}=\frac{z_{2} \zeta_{2 ; 3}+z_{3} \zeta_{3 ; 2}}{z_{2} z_{3}-\zeta_{3 ; 2} \zeta_{2 ; 3}}:$

$$
\begin{equation*}
\operatorname{tg} \varphi_{1}=\frac{Z_{2} \zeta_{2 ; 1}+Z_{3} \zeta_{3 ; 1}}{Z_{2} Z_{3}-\zeta_{3 ; 1} \zeta_{2 ; 1}} \tag{39}
\end{equation*}
$$

Replacing in this expression Z_{2} by Z_{2}^{\prime}, we obtain an adjusted value φ_{1}^{\prime} of φ_{1}, determined by

$$
\begin{equation*}
\operatorname{tg} \varphi_{1}^{\prime}=\frac{Z_{2}^{\prime} \zeta_{2 ; 1}+Z_{3} \zeta_{3 ; 1}}{Z_{2}^{\prime} Z_{3}-\zeta_{3: 1} \zeta_{2 ; 1}} \tag{39bia}
\end{equation*}
$$

The arcs ω_{2} and ω_{3} remaining unaltered, the arc ω_{1}, which depends on $\zeta_{2 ; 3}$ and $\zeta_{3 ; 2}$, undergoes alteration. Here the formula:
$\cos \omega_{1}=\cos \omega_{2} \cos \omega_{3}-\sin \omega_{2} \sin \omega_{3} \cos \varphi_{1}$ furnishes, if applied to the adjusted values:

$$
\cos \omega_{1}^{\prime}=\cos \omega_{2} \cos \omega_{3}-\sin \omega_{2} \sin \omega_{3} \cos \varphi_{1}^{\prime} \text {. . . . } 40
$$

The relation

$$
\begin{aligned}
q_{23}^{2}=\sin ^{2} \varphi_{3} \cdot t_{2}^{2}-2 \cos \omega_{1} \sin \varphi_{2} \sin \varphi_{3} \cdot t_{2} t_{3} & +\sin ^{2} \varphi_{2} \cdot t_{3}^{2}= \\
& =\frac{z_{2}^{2}-2 \cos \omega_{1} \cdot z_{2} z_{3}+z_{3}^{2}}{\sin ^{2} \omega_{1}}
\end{aligned}
$$

enables us to compute the new value $q^{\prime}{ }_{23}$ of q_{23}, viz. :

$$
\begin{equation*}
q_{23}^{\prime 2}=\frac{z_{2}^{2}-2 \cos \omega_{1}^{\prime} \cdot z_{2} z_{3}+z_{3}^{2}}{\sin ^{2} \omega_{1}^{\prime}} \tag{41}
\end{equation*}
$$

Putting:

$$
\begin{equation*}
q_{23}^{\prime 2}=q_{23}^{2}+\delta, \tag{42}
\end{equation*}
$$

the equations

$$
\begin{equation*}
\zeta_{2 ; 3}^{\prime 2}=\zeta_{2 ; 3}^{2}+\delta \quad, \quad \zeta_{3 ; 2}^{\prime 2}=\zeta_{3 ; 2}^{2}+\delta \tag{43}
\end{equation*}
$$

furnish the adjusted values $\zeta_{2 ; 3}^{\prime}$ and $\zeta_{3 ; 2}^{\prime}$ of $\zeta_{2 ; 3}$ and $\zeta_{3 ; 2}$.
We naturally choose the average value $\bar{\omega}_{1}^{\prime}$ of the new values ω_{1}^{\prime} for the constant $\bar{\omega}_{1}$ in the formulae \mathbf{K} for T_{1}, T_{2}, T_{3}. Here we use the adjusted spherical triangles $\left(\Phi^{\prime}\right)$ and $\left(\Omega^{\prime}\right)$, determined by the unaltered sides ω_{2} and ω_{3}, and by the adjusted side ω_{1}^{\prime}. This latter must be computed from 37, 38, 39bis, 40, thus according to the scheme:

$$
\begin{align*}
t^{\prime 2} & =r_{12}^{2}=q_{12}^{2}+Z_{3}^{2} \\
Z_{2}^{\prime 2} & =t^{\prime 2}-q_{31}^{2} \\
\operatorname{tg} \varphi_{1}^{\prime} & =\frac{Z_{2}^{\prime} \zeta_{2 ; 1}+Z_{3} \zeta_{3 ; 1}}{Z_{2}^{\prime} Z_{3}-\zeta_{3 ; 1} \zeta_{2 ; 1}} \\
\cos \omega_{1}^{\prime} & =\cos \omega_{2} \cos \omega_{3}-\sin \omega_{2} \sin \omega_{3} \cos \varphi_{1}^{\prime}
\end{align*}
$$

If none of the conditions Ia, $\mathbf{b}, \mathbf{I I}$ is satisfied, then some of the magnitudes $z_{a}, \zeta_{b ; a}$ must also be adjusted. Unless we desire, intentionally, to keep at least one of the magnitudes Z_{c}, we prefer to determine ω_{1}, ω_{2}, ω_{3} again by the equations Ebis, in which $A_{\mathrm{a} b}$ and $B_{\mathrm{a} b}$ are constructed out of the unadjusted values $z_{a}, z_{b}, \zeta_{b ; a}, \zeta_{a ; b}$.

Now we must make $q_{b ; a}$ agree with $q_{a ; b}$.
Referring to S.C. II, p. 408, we observe that the most preferable methods of adjustment are the following two:
a.: we keep z_{a} and z_{b}, derive ω_{c} from Ebis, and adjust the values $\zeta_{b ; a}$ and $\zeta_{a ; b}$ to the values $\zeta_{b ; a}^{\prime}$ and $\zeta_{a ; b}^{\prime}$, which are, in virtue of 9ter (b; a) determined by

$$
\begin{equation*}
\zeta_{b ; a}^{\prime}=\frac{z_{b}-\cos \omega_{c} \cdot z_{\mathrm{a}}}{\sin \omega_{\mathrm{c}}} \quad, \quad \zeta_{\mathrm{a} ; b}^{\prime}=\frac{z_{\mathrm{a}}-\cos \omega_{\mathrm{c}} \cdot z_{b}}{\sin \omega_{\mathrm{c}}} \tag{44}
\end{equation*}
$$

(see fig. 8).

So we adjust $q_{b ; a}$ and $q_{a ; b}$ to $q_{b ; a}^{\prime}=q_{a ; b}^{\prime}=q_{a b}^{\prime}$, determined by

$$
\begin{equation*}
q_{a b}^{\prime 2}=z_{a}^{2}+\zeta_{b ; a}^{\prime 2}=z_{b}^{2}+\zeta_{a ; b}^{\prime 2}=\frac{z_{a}^{2}-2 \cos \omega_{c} \cdot z_{a} z_{b}+z_{b}^{2}}{\sin ^{2} \omega_{c}} . \tag{45}
\end{equation*}
$$

Then the function $r^{2}=H\{z, \zeta\}$, being (by 31) built up of the magni-
tudes z_{a} and $\omega_{a}(a=1,2,3)$ may be computed immediately by means of the values $\omega_{1} . \omega_{2}, \omega_{3}$ calculated from Ebis.

So we have evidently:

$$
H\left\{z, \zeta^{\prime}\right\}=H\{z, \zeta\} .
$$

fig. 8

fig. 9

Then the magnitudes Z_{c} are adjusted into Z_{c}^{\prime} according to 36 .
The spherical triangles (Φ) and (Ω) remaining unaltered, we derive the unimodular, linearly correlated variables T_{1}, T_{2}, T_{3} still from the same equations K, we formerly constructed.

In computing back the frequency distribution out of one of the triplets $z_{a}, \zeta_{b ; a}^{\prime}, Z_{c}^{\prime}$, we must be prepared to find deviations from the original frequency distribution. The advantage of this method is, however, that we make as much use as possible of the magnitudes z_{1}, z_{2}, z_{3}, which are the most accurate ones.
b. We keep z_{a} and $\zeta_{b ; a}$, thus also $q_{b ; a}^{2}=z_{a}^{2}+\zeta_{b ; a}^{2}$, and derive ω_{c} still $\mathrm{f}_{\text {rom }} \mathrm{E}$ bis (fig. 9). The magnitude z_{b} however must now be replaced by $z^{\prime \prime}{ }_{b}$, which is, in virtue of 9 ter (\mathbf{b}; $\left.\mathbf{a}\right)$, determined by

$$
z_{b}^{\prime \prime}=\cos \omega_{c} \cdot z_{a}+\sin \omega_{c} \cdot \zeta_{b ; a}
$$

By means of \mathbf{E} we may transform this expression into:
$z_{b}^{\prime \prime}=\frac{z_{\mathrm{a}} A_{\mathrm{ab}}+\zeta_{b ; a} B_{a b}}{q_{b ; a} \cdot q_{a ; b}}=\frac{z_{a}\left(z_{a} z_{b}-\zeta_{b ; a} \zeta_{a ; b}\right)+\zeta_{b ; a}\left(z_{a} \zeta_{a ; b}+z_{b} \zeta_{b ; a}\right)}{q_{b ; a} \cdot q_{a ; b}}=\frac{z_{b} \cdot q_{b ; a}^{2}}{q_{b ; a} \cdot q_{a ; b}}$.
or

$$
z_{b}^{\prime \prime}=\frac{q_{b ; a}}{q_{a ; b}} \cdot z_{b} . \quad \mathbf{M b i s}^{\mathbf{b}}
$$

Therefore, if we wish to keep, for instance, z_{1} and $\zeta_{2 ; 1}$, we must replace z_{2} by $z^{\prime \prime}{ }_{2}=\frac{q_{2 ; 1}}{q_{1 ; 2}} \cdot z_{2}$, and substitute this value $z^{\prime \prime}{ }_{2}$ for z_{2} in the equations K. The method (b) is to be followed, if we desire, intentionally, to get back the original frequency distribution out of one of the triplets. In this case we have, of course, to leave also Z_{c} (ic. Z_{3})
unaltered, and to apply the corresponding method of adjustment, however on the understanding, that we must take for r^{2} the value:

$$
r^{\prime \prime 2}=r_{2 ; 1}^{2}=q_{2 ; 1}^{2}+Z_{3}^{2}=z_{1}^{2}+\zeta_{2 ; 1}^{2}+Z_{3}^{2}, \quad . \quad . \quad .46
$$

so that also the values of $Z_{2}^{\prime}, \varphi_{1}^{\prime}, \omega_{1}^{\prime}$ turn out to be different from those derived from L.

If we desire to keep $\zeta_{3 ; 1}$ and $\zeta_{1 ; 3}$, we must, while retaining ω_{2}, replace these magnitudes, according to 44, by

$$
\zeta_{3 ; 1}^{\prime \prime}=\frac{z_{3}-\cos \omega_{2} \cdot z_{1}}{\sin \omega_{2}}, \zeta_{1 ; 3}^{\prime \prime}=\frac{z_{1}-\cos \omega_{2} \cdot z_{3}}{\sin \omega_{2}} \cdot . .47
$$

Then we must take for q_{31}^{2} (see 41):

$$
\begin{equation*}
q_{31}^{\prime \prime 2}=\frac{z_{3}^{2}-2 \cos \omega_{2} \cdot z_{3} z_{1}+z_{1}^{2}}{\sin ^{2} \omega_{2}} \tag{48}
\end{equation*}
$$

So we obtain for Z_{2} the adjusted value $Z^{\prime \prime}{ }_{2}$, determined by

$$
\begin{equation*}
Z_{2}^{\prime \prime 2}=r^{\prime \prime 2}-q_{31}^{\prime \prime 2} \tag{49}
\end{equation*}
$$

By means of the value $\zeta^{\prime \prime}{ }_{3 ;}$, found from 47, and the value $Z^{\prime \prime}{ }_{2}$, derived from 49, we now compute the adjusted value $\varphi^{\prime \prime}{ }_{1}$ from

$$
\begin{equation*}
\operatorname{tg} \varphi_{1}^{\prime \prime}=\frac{Z_{2}^{\prime \prime} \zeta_{2 ; 1}+Z_{3} \zeta_{3 ; 1}^{\prime \prime}}{Z_{2}^{\prime \prime} Z_{3}-\zeta_{3 ; 1}^{\prime \prime} \zeta_{2 ; 1}} \tag{50}
\end{equation*}
$$

At last we find the adjusted value $\omega^{\prime \prime}{ }_{1}$ from

$$
\cos \omega_{1}^{\prime \prime}=\cos \omega_{2} \cos \omega_{3}-\sin \omega_{2} \sin \omega_{3} \cos \varphi_{1}^{\prime \prime} \text {. . . . } 51
$$

Then we determine the average value $\bar{\omega}^{\prime \prime}{ }_{1}$ of this adjusted value $\omega^{\prime \prime}{ }_{1}$, after which we substitute this value $\bar{\omega}_{1}^{\prime \prime}$ for the constant $\bar{\omega}_{1}$ in the formulae K. Hence, in the actual case ($z_{1}, \zeta_{2 ; 1}, Z_{3}$ being kept) the formulae K are altered in such a way that we replace z_{2} by $z^{\prime \prime}{ }_{2}$ (determined by $M(M$ bis $)$) and ω_{1} by $\omega^{\prime \prime}{ }_{1}$ (determined by $46-51$). So the adjustment is to be effectuated according to the scheme:

$$
\left.\begin{array}{rl}
z_{2}^{\prime \prime} & =\cos \omega_{3} \cdot z_{1}+\sin \omega_{3} \cdot \zeta_{2 ; 1}=\frac{q_{2 ; 1}}{q_{1 ; 2}} \cdot z_{2} \\
r^{\prime \prime 2} & =r_{2 ; 1}^{2}=z_{1}^{2}+\zeta_{2 ; 1}^{2}+Z_{3}^{2} \\
\zeta_{3 ; 1}^{\prime \prime} & =\frac{z_{3}-\cos \omega_{2} \cdot z_{1}}{\sin \omega_{2}} \\
q_{31}^{\prime \prime 2} & =\frac{z_{3}^{2}-2 \cos \omega_{2} \cdot z_{3} z_{1}+z_{1}^{2}}{\sin ^{2} \omega_{2}} \\
Z_{2}^{\prime \prime 2} & =r^{\prime \prime 2}-q_{31}^{\prime \prime 2} \\
\operatorname{tg} \varphi_{1}^{\prime \prime} & =\frac{Z_{2}^{\prime \prime} \zeta_{2 ; 1}+Z_{3} \zeta_{3 ; 1}^{\prime \prime}}{Z_{2}^{\prime \prime} Z_{3}-\zeta_{3 ; 1}^{\prime \prime} \zeta_{2 ; 1}} \\
\cos \omega_{1}^{\prime \prime} & =\cos \omega_{2} \cos \omega_{3}-\sin \omega_{2} \sin \omega_{3} \cos \varphi_{1}^{\prime \prime}
\end{array}\right\} \cdot . . . N \mathbf{N}
$$

Of course the other elements p_{a}, ψ_{a} of the spherical triangles occurring in \mathbf{K}, are to be recomputed from $\omega_{1 \prime \prime}^{\prime \prime}, \omega_{2}, \omega_{3}$. Thereby they undergo alteration, and so do the constants $\bar{\varphi}_{a}, \bar{\psi}_{a}$ derived from $\bar{\omega}^{\prime \prime}{ }_{1}, \bar{\omega}_{2}, \bar{\omega}_{3}$.

Summary of the Treatment of Skew Correlation between Three Variables:

From the given frequency distribution \mathbf{A} the magnitudes $z_{a}, \zeta_{b ; a}, Z_{c}$ are calculated by means of \mathbf{B}.

The equations $\mathbf{C}\left(\mathbf{C b i s}^{\mathbf{b}}\right), \mathrm{D}, \mathbf{E}(\mathbf{E b i s}), \mathbf{F}, \mathbf{G}, \mathbf{H}$ define the magnitudes $q_{b ; a}, Q_{a b}, A_{a b}, B_{a b}, M_{a b}, \gamma_{a b}, r^{2}=H\{z, \zeta\}$, by means of which we can formulate the conditions Ia, b, II:

$$
\begin{array}{llllll}
q_{b ; a}=q_{a ; b}\left(=q_{a b}\right) & (a, b=1,2,3) & . & . & \mathbf{I a} \\
Z_{\mathrm{c}}^{2}=H\{z, \zeta\}-q_{a b}^{2} & (c=1,2,3) & . & . & . & \mathbf{I b} \\
V \frac{1-\gamma_{a b}^{2}}{\gamma_{a b}}=M_{a b}=\frac{B_{a b}}{A_{a b}}=\text { constant } . . & . & . & \text { II }
\end{array}
$$

If both Ia, b and II are satisfied for each set $x_{1}\left(k_{1}\right), x_{2}\left(k_{2}\right), x_{3}\left(k_{3}\right)$, there exists linear correlation between the unimodular variables $t_{1}\left\{x_{1}\right\}$, $t_{2}\left\{x_{2}\right\}, t_{3}\left\{x_{3}\right\}$, determined by the equations J , the total coefficients of correlation being $\gamma_{23}, \gamma_{31}, \gamma_{12}\left(\frac{\gamma_{a b}}{A_{a b}}>0\right)$.

If Ia, b are satisfied, but II is not, then we can establish linear correlation between the (unimodular) variables $T_{1}\left\{x_{1}\right\}, T_{2}\left\{x_{1}, x_{2}\right\}$, $T_{3}\left\{x_{1}, x_{2}, x_{3}\right\}$ given by the equations K, the total coefficients of correlation being $\gamma_{23}, \gamma_{31}, \gamma_{12}$.

If Ib is not satisfied, then we may, by abandoning - if necessary all the magnitudes Z_{c}, keep the variables $T_{1}\left\{x_{1}\right\}, T_{2}\left\{x_{1}, x_{2}\right\}, T_{3}\left\{x_{1}, x_{2}, x_{3}\right\}$ determined by K. If, however, we insist upon keeping Z_{3} intact, then either ω_{1} or ω_{2} must be altered. When we keep ω_{2}, the magnitude ω_{1} must be adjusted to the magnitude ω_{1}^{\prime}, to be computed by means of the equations L. Then this ω_{1}^{\prime} and its average ω_{1}^{\prime} take the place of ω_{1} and $\bar{\omega}_{1}$ in the formulae \mathbf{K}.

If even Ia is not fulfilled, we may, by abandoning - if necessary all the magnitudes $\zeta_{b ; a}$, but keeping the magnitudes $\omega_{1}, \omega_{2}, \omega_{3}$, computed from Ebis, retain, even in this case, the variables $T_{1}\left\{x_{1}\right\}, T_{2}\left\{x_{1}, x_{2}\right\}$, $T_{3}\left\{x_{1}, x_{2}, x_{3}\right\}$ defined by \mathbf{K}.

If, on the contrary, we wish to keep $\zeta_{2 ; 1}$ intact, we must replace z_{2} by the magnitude $z^{\prime \prime}{ }_{2}$, determined by \mathbf{M} (Mbis). If we desire to keep not only $\zeta_{2 ; 1}$ but also Z_{3} unaltered, we must replace the magnitudes z_{2} and ω_{1} by the magnitudes $z^{\prime \prime}{ }_{2}$ and $\omega^{\prime \prime}{ }_{1}$ determined by \mathbf{N}, and reconstruct the formulae K , using those adjusted values $z^{\prime \prime}{ }_{2}, \omega^{\prime \prime}{ }_{1}$ and the average $\bar{\omega}^{\prime \prime}{ }_{1}$. Then the arcs $p_{a}, \psi_{a}(a=1,2,3)$ must first be computed from $\omega^{\prime \prime}{ }_{1}, \omega_{2}, \omega_{3}$, and their averages $\overline{\varphi_{a}}, \overline{\psi_{a}}$ from $\bar{\omega}^{\prime \prime}, \omega_{2}, \bar{\omega}_{3}$.

[^0]: ${ }^{1}$) The limiting agreement that $t\{x\}$ shall be monotone (increasing) is not necessary, but only desirable from a practical point of view and can in certain cases be dropped. (See: M. J. van Uven, Scheeve Frequentiekrommen, Versl. K. A. v. W. 25, p. 709, Skew Frequency Curves, Proceed. K, Ak. v. Wet. Amsterdam, Vol. 19, p. 670).

[^1]: ${ }^{1}$) See the footnote further on, preceding equat. J in the treatment of n variables.

[^2]: ${ }^{1}$) We shall preferably keep that magnitude $Z_{\mathbf{c}}$. which satisfies $\mathbf{l b}$ best

