Physics. - The use of the effect of pressure on the electrical resistance of manganin as a method of measuring pressure. By A. Michels and M. H. Lenssen. (25th Communication of the "van der Waals-Fund".) (Communicated by Prof. J. D. van der Waals Jr.)
(Communicated at the meeting of December 21, 1929).

Introduction.

As a result of work on the influence of pressure on the electrical resistance of gold and platinum ${ }^{1}$) it was decided to investigate the accuracy that could be obtained in measuring pressure by means of this effect. Following Bridgman 2), manganin was chosen because of its small temperature coefficient.

It was first necessary to investigate the treatment required by this material in order to ensure its constancy.

Apparatus.

As with the measurements with gold 1), the actual resistance of the wire under pressure was not measured but a differential method was used. In this, the ratio of the resistances of the wire under pressure and of a similar wire at the same temperature but not under pressure was determined. No advantage could be gained by measuring the actual resistance of the wire owing to the uncertainty of the composition of manganin.

To obtain equality of temperature the method previously described ${ }^{1}$) was modified in that the wires were placed in two symmetrical holes drilled in the same steel block which was placed in a thermostat. Connection was made from one of these holes to the pressure apparatus. A diagram of the pressure vessel is shown in Figure 1.

As the temperature coefficients of the wires differed only very slightly. the effect of small fluctuations in temperature was eliminated and the accuracy of the measurements thereby increased. The absolute values of these coefficients are not obtained, but, on the other hand, the value of the difference between them is, and this latter alone can affect the accuracy of the method for purposes of pressure measurement.

The manner of suspending the wires was changed in order to be more certain that they were free from strain. They were not wound on glass

[^0]but in rectangular grooves, 0.9 mm deep and 0.8 mm wide, cut on porcelain tubes in which the 0.2 mm wires could lie without strain. Thin glass tubes

Fig. 1.

Fig. 2.
were slipped over the porcelain tubes to prevent the wires from slipping out of the grooves. The suspension of the wires is shown in Fig. 2.
"Orca" ${ }^{1) \text {) was used as the insulating material for the leads through the }}$ steel vessel.
${ }^{1}$) We are greatly indebted for this to the late Prof. Moireu of Paris.

The electrical circuit used was the same as that described in Communication $\mathrm{N}^{0} .18$ (loc. cit.).

Method.

The wire to be subjected to pressure was of hard drawn manganin while the other was first heated at ca. $140^{\circ} \mathrm{C}$. for one hour. The ratio of the resistance of the wires, and, therefore, the resistance of the first one, was found to decrease slowly with time, the rate of this decrease being greater at higher temperatures. In order to make correction for this effect the rate was determined before or after each set of measurements. (See Table I.)

TABLE I.
Change per hr. of Ratio of Resistance of wire under pressure to that of comparison wire $\times 10^{7}$.

	$70^{\circ} \mathrm{C}$.	$51^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{C}$	$31^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$.
					-35
				-175	-2^{5}
			-70^{5}	-16^{5}	-1^{5}
		- 445	-47	-10	-1
	-1592	-84	-315	-7	-15
After heating at $100^{\circ} \mathrm{C}$.	-51	- 6	-4	-1	-
After heating at $148^{\circ} \mathrm{C}$.	- 5	-	$+3$	-	-

Measurements were first made at a temperature of ca. $20^{\circ} \mathrm{C}$. and at pressures increasing by about 200 atms up to $\pm 1000 \mathrm{atms}$ and then decreasing by the same amounts back to 1 atm .

The wires were then heated at ca. $30^{\circ} \mathrm{C}$. for some time and measurements made at this temperature in a similar way. The measurements at $20^{\circ} \mathrm{C}$. were then repeated and were found to give somewhat different results.

The following scheme of measurements was therefore carried out : Wires heated to ca. 40°, Measurements made at ca.
(In the last case the wire to be put under pressure was removed and this alone was heated.)

Results and Conclusions.
Table II shows the values of the ratio at the various pressures obtained at $20^{\circ} \mathrm{C}$. and at the highest temperatures after different heat treatments. It

TABLE II. Ratio of Resistance of wire under pressure to that of comparison wire.

Pressure in $\mathrm{Kg} / \mathrm{cm}^{2}$	Time h m	Pressure increasing	Time h m	Pressure decreasing		Time h m	Pressure increasing		Time h m	Pressure decreasing	
							19°.				
1.0						0.00	0.97	9994	4.30	0.979	9988
189.1						0.45	0.98	4292	4.05	0.980	4281
419.6						1.15	0.98	9526	3.40	0.980	9520
650.3						1.35	0.98	4767	3.15	0.981	4765
881.1						2.00	0.98	0003	2.50	0.982	0003
1062.8						2.20	0.98	4126			
		$31^{\circ} .0 \mathrm{C}$.					$19^{\circ} .9$	C.			
1.0	0.00	0.9799179	3.15	0.979	9135	0.00	0.97	8833	3.20	0.979	8829
189.1	0.20	0.9803468	2.55	0.980	3423	0.20	0.98	3114	2.55	0.980	3113
419.6	0.40	0.9808701	2.35	0.980	8675	0.40	0.98	8353	2.35	0.980	8350
650.3	1.05	0.9813951	2.20	0.981	3932	1.00	0.98	3591	2.15	0.981	3590
881.1	1.25	0.9819189	2.00	0.981	9170	1.15	0.98	8828	1.55	0.981	8828
1062.8	1.40	0.9823313				1.35	0.98	2950			
		$40^{\circ} .8 \mathrm{C}$.					$19^{\circ} .9$	C.			
1.0	0.00	0.9798223	3.50	0.979	7957	0.00	0.97	6917	3.15	0.979	6913
189.1	0.30	0.9802476	3.25	0.980	2275	0.20	0.98	1192	2.55	0.980	1191
419.6	1.20	0.9807667	3.05	0.980	7559	0.40	0.98	6431	2.35	0.980	6427
650.3	1.35	0.9812913	2.45	0.981	2828	1.00	0.98	1664	2.15	0.981	1666
881.1	1.50	0.9818141	2.25	0.981	8107	1.20	0.98	6904	1.55	0.981	6898
1062.8	2.05	0.9822259				1.35	0.98	1020			
		$51^{\circ} .5 \mathrm{C}$.					$19^{\circ} .9$	C.			
1.0	0.00	0.9795121	3.195	0.979	4318	0.00	0.97	1610	4.15	0.979	1612
189.1	0.19	0.9799319	2.585	0.979	8700	0.30	0.97	5881	3.50	0.979	5885
419.6	0.38	0.9804500	2.385	0.980	4036	1.30	0.98	1116	3.30	0.980	1116
650.3	1.01	0.9809664	2.21	0.980	9355	1.50	0.98	6349	3.10	0.980	6349
881.1	1.19	0.9814849	1.58	0.981	4694	2.10	0.98	1582	2.50	0.981	1579
1062.8	1.38	0.9818909				2.30	0.98	5695			

TABLE II (Continued).

Pressure in $\mathrm{Kg} / \mathrm{cm}^{2}$	$\begin{aligned} & \text { Time } \\ & \mathrm{h} \mathrm{~m} \end{aligned}$	Pressure increasing	Time h m	Pressure decreasing	Time h m	Pressure increasing	Time h m	Pressure decreasing	
		$70^{\circ} .0 \mathrm{C}$.				$19^{\circ} .9 \mathrm{C}$,			
1.0	0.00	0.9789081	3.205	0.9784045	0.00	0.9778046	3.25	0.977	8048
189.1	0.205	0.9792735	3.005	0.9788783	0.30	0.9782301	3.05	0.978	2307
419.6	0.46	0.9797274	2.42	0.9794467	0.50	0.9787518	2.45	0.978	7520
650.3	0.595	0.9802156	2.205	0.9800218	1.05	0.9792742	2.25	0.979	2734
881.1	1.21	0.9806861	4.015	0.9895918	1.25	0.9797952	2.05	0.979	7951
1062.8	1.41	0.9810523			1.45	0.9802062			
		$70^{\circ} .0 \mathrm{C}$.				$19^{\circ} .9 \mathrm{C}$.			
1.0	0.00	0.9728144	3.01	0.9728036	0.00	0.9727522	3.20	0.972	7524
189.1	0.22	0.9732369	2.41	0.9732291	0.20	0.9731740	3.00	0.973	1739
419.6	0.37	0.9737573	2.22	0.9737503	0.40	0.9736908	2.40	0.973	6911
650.3	0.55	0.9742764	2.04	0.9742717	1.00	0.9742075	2.20	0.974	2077
881.1	1.14	0.9747957	1.48	0.9747933	1.20	0.9747243	2.00	0.974	7246
1062.8	1.31	0.9752045			1.40	0.9751316			
		$70^{\circ} .0 \mathrm{C}$.				$19^{\circ} .9 \mathrm{C}$.			
1.0	0.00	0.9653366	3.20	0.9653355	0.00	0.9653609	3.20	0.965	3608
189.1	0.20	0.9657559	3.00	0.9657548	0.20	0.9657772	3.00	0.965	7777
419.6	0.50	0.9662695	2.40	0.9662688	0.40	0.9662884	2.40	0.966	2883
650.3	1.05	0.9667834	2.20	0.9667830	1.00	0.9667992	2.20	0.966	7992
881.1	1.25	0.9672970	2.00	0.9672971	1.20	0.9673097	2.00	0.967	3098
1062.8	1.40	0.9677016			1.40	0.9677119			

can be seen from the figures that, after heat treatment, the variation of the resistance of manganin with pressure for lower temperatures was sufficientiy reproducible to make it possible to use this effect to measure pressure. This may be more clearly seen when the figures are taken in conjunction with the values of the corresponding pressure coefficients for the different ranges of pressure. (Table III.) The accuracy of the method depends only on the constancy of the pressure coefficient over the whole pressure range and not on its actual value.

The greatest difference between the pressure coefficients, after the final heat treatment, is $3 / 2300$ which, over a pressure range of 200 atms.

TABLE III.
Pressure coefficient $\times 10^{9}$.

Pressure range in $\mathrm{Kg} / \mathrm{cm}^{2}$		$19^{\circ} .9 \mathrm{C}$.	(Continued)		
$\begin{array}{r} 1.0-189.1 \\ 189.1-419.6 \\ 419.6-650.3 \\ 650.3-881.1 \\ 881.1-1062.8 \end{array}$		2331 2318 2318 2316 2315	Pressure range in $\mathrm{Kg} / \mathrm{cm}^{2}$	$51^{\circ} .5 \mathrm{C}$	$19^{\circ} .9 \mathrm{C}$.
			650.3-881.1	2320	2315
			881.1-1062.8	2322	2313
				$70^{\circ} .0 \mathrm{C}$	$19^{\circ} .9 \mathrm{C}$
	$31^{\circ} .0 \mathrm{C}$.	$19^{\circ} .9 \mathrm{C}$	$1.0-189.1$	2283	2315
$1.0-189.1$	2327		189.1 - 419.6	2349	2314
$1.0-189.1$		2324	419.6 - 650.3	2309	2313
189.1 - 419.6	2321	2319	650 3-881.1	2318	2310
419.6 - 650.3	2323	2317	881.1-1062.8	2321	2313
650.3-881.1	2316	2316			
881.1-1062.8	2321	2315		$70^{\circ} .0 \mathrm{C}$.	$19^{\circ} .9 \mathrm{C}$
	$40^{\circ} .8 \mathrm{C}$.	$19^{\circ} .9 \mathrm{C}$.	$1.0-189.1$	2317	2305
$1.0-189.1$	2327	2321	189.1 - 419.6	2322	2305
			419.6 - 650.3	2318	2302
189.1 - 419.6	2326	2319	650.3 - 881.1	2319	2303
419.6 - 650.3	2324	2316	881.1-1062.8	2318	2303
650.3 - 881.1	2322	2316			
881.1 - 1062.8	2320	2313		$70^{\circ} .0 \mathrm{C}$	$19^{\circ} .9 \mathrm{C}$.
	$51^{\circ} .5 \mathrm{C}$.	$19^{\circ} .9 \mathrm{C}$.	$1.0-189.1$	2310	2295
1.0-189.1	2324	2320	$189.1-419.6$	2309	2295
			419.6 - 650.3	2308	2294
189.1 - 419.6	2327	2318	650.3 - 881.1	2307	2292
419.6 - 650.3	2328	2316	881.1-1062.8	2306	2292

corresponds to an uncertainty of about $\pm 150 \mathrm{gms} / \mathrm{cm}^{2}$. This difference is equivalent to a change of 5 in the last figure given for the ratio. One in th? latter, however, is equivalent to $1 / 10000$ ohm in the resistance box which is of the order of the contact resistance at each plug, so that this last figure is uncertain. A greater accuracy for the measurement of pressure might be obtained by using a more sensitive electrical circuit.

Qualitative conclusions can also be drawn from the measurements that have been made.

As would be expected the resistance was lowered by the heat treatment (v. Table II).

It can be seen from Table III that the pressure coefficients increase with increasing temperature and therefore that the temperature coefficient is increased by increasing the pressure ${ }^{1}$).

Any pressure hysteresis that might have occurred was masked in the figures obtained by the change of the resistance with time. Table IV shows

TABLE IV.

$70^{\circ} \mathrm{C}$.			$51^{\circ} \mathrm{C}$.			$41^{\circ} \mathrm{C}$.			$31^{\circ} \mathrm{C}$.			$20^{\circ} \mathrm{C}$.		
1	C	$\mathrm{I}_{\text {corr }}$. 1	C	$\mathrm{t}_{\text {corr }}$	1	C	$\mathrm{I}_{\text {corr }}$	\pm	C	$d_{\text {corr }}$	1	C	$4_{\text {corr }}$
												6	16	10
									44	57	13	4	8	4
						266	270	4	28	51	23	3	5	2
			803	1480	677	135	171	36	19	37	18	- 2	4	6
5036	5319	283	280	285	5	113	104	-9	-8	23	31	-2	5	7
108	154	46	17	20	3	16	12	- 4	6	3	- 3	- 2	0	2
11	17	6	3	0	- 3	-13	-12	1	0	0	0	+1	0	-1

$1=$ Difference between the observed ratios before and after application of pressure $\times 10^{7}$.
$\mathrm{C}=$ Correction for change of ratio with time $\times 10^{7}$.
$J_{\text {corr }}=$ The corrected difference between the ratios $\times 10^{7}$.
the difference between the ratio at 1 atm before and after the application of pressure, the time correction, and the difference between the ratios corrected for time. From this it will be seen that in all cases, where the values of this final difference are greater than the experimental accuracy, they have the same sign. While this cannot be taken as a conclusive proof. it is an indication that hysteresis did occur before sufficient heat treatment had been given.

Finally from inspection of Table III and similar results obtained at the intermediate temperatures it seems possible that the pressure coefficient varied slightly with the pressure, but that this effect also disappeared after the heat treatment of the wire.

[^1]
[^0]: ${ }^{1}$) $15^{\text {th }}, 17^{\text {th }}$ and $18^{\text {th }}$ Communication of the VAN DER WaAls-Fund. These Proc. 29, 1106, 1926; 30, 47, 1927; 31, 50, 1927.
 ${ }^{2}$) P. W. Bridgman, Proc. Am. Acc. Arts and Sc. 47, 335, 1911.

[^1]: ${ }^{1}$) This follows from the fact that $\partial_{i} 3 / \partial T=\partial \alpha / \partial_{p}$ where $p_{p}=\partial R / \partial_{p}$ and $a=\partial R / \partial T$.

