Mathematics. — Adjustment of N Points (in n-dimensional Space) to
the best linear (n—1)-dimensional Space. 1. By Prof. M. ]. VAN
UVEN. (Communicated by Prof. A. A. NIJLAND).

(Communicated at the meeting of February 22, 1930).

The present paper deals with the problem: to fit a linear space z of
n—1 dimensions (hyperplane) through a certain number (N) of pointsin
a linear space of n dimensions, or, expressed analytically, to determine
the constants of that equation p, + p; x; + p; X, +. ..+ ps x» = 0 which

agrees best with the N sets of coordinates xi, x5, ... Xn.
We shall distinguish the given points S from one another by an index
in brackets. So the point S (m) has the coordinates x:(m); i—=1,...n;

m=1,...N. A summation over the n coordinates will be indicated by
n
2, or, if no misunderstanding is to be feared, by X, or, more simply,
+»=1 A
by 3. On the other hand a summation over the N points will be
designated by [].

We want then to determine the ratios of the constants pg, py,pa ...+ Pn
of the equation

Po + P xl+P2x2+~~-+ann:—:Po+)£lPAxA:O

in such a way, that the given coordinates x;(m) satisfy this equation as
well as possible.

Instead of operating with the ratios of the constants (parameters)
Po» P1» P2+ - - -+ Pn» We may normalize them in some way, either by
considering py, ps ....p. as the direction-cosines of the normal of
1(2 p?=1), or by some other method.

§ 1. Solution of the problem.

As a rule the best hyperplane v will not pass exactly through any of
the given points. Thus we shall be obliged to shift the points S(m) to
other points T (m) (with coordinates X;(m)) which do lie in v and
therefore really satisfy

Po+PlX1+92X2+~--+Pan:Po+é‘lPAXA:0~~ (1)

—_—
The deviations T (m)S(m) of the given or “observed” points S (m)
from the “adjusted” points T (m) have the projections
& (m) = x: (m) — X (m) m=1,....,.N ; i=1....,.n . (2)
10
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In the observed point S(m) the expression p, + = p; x, assumes the
value

%M:m+émmm).......@

This value is, if not equal, at least proportional to the distance of
the point S (m) from the hyperplane .
Now we have, by (1) and (2),

CIo(m):Po+§p>.XA(m)+%pAEA(m):§pA§A(m). . @

We consider the observed point S as that position of T, which is
most probable a priori.

—_
The projections —& of the displacements ST are supposed to be
subject to the general n-dimensional probability-law :

Fl 1/2
dW:(;)xJZﬁpﬁynﬁm

where

n n

Fe=X JF, k&,

2=1 u=l

is a positive-definite homogeneous quadratic form, and F’ the determinant
Fres | fwl the minor (algebraic complement) of f, being denoted by F, .

We assume that the above .n-dimensional probability-formula is the
same for all the points of the n-dimensional space. This formula indicates
as it were the movability in the different directions. Since we can only
make suppositions about the relative movability in the different
directions, we cannot prescribe beforehand the coefficients f;. but only
their ratios.

Thus, putting

we may give the quantities f;;, leaving the value of the constant
unsettled for the present.
Putting
non

=2 268 . F=|fi.| (with minors F;;). . . (5)
w=1

=1
we have

{'=6.f , FF=6.F , F,=6"".F;.

So the probability-formula for the deviation (&, &,, . . .&,) becomes:

o F

"

s
dW:( ).e_efdfl.dsz..-dfn § F; G & 5 (6)
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This probability-formula shows that the extremities of equally probable
displacements lie on a hyper-ellipsoid

=2 X fi. & .= const.
N

around the centre S.

In order to facilitate the study of the conditions in the given aniso-
tropic space, we shall transform it into an isotropic space. For this
purpose we put firstly :

fi=h . fi=g,hh (whence gi:=1) . . . (7)

Since [ must be positive-definite, the coefficients g;; must lie between
—1 and + 1.
Further, putting
hi&:m, .(8)

the form f passes into
g=2 2 gl
A
Interpreting #:(i=1,2,...n) as coordinates in a skew rectilinear

system of reference (the axes of 7; and 7; including an angle the cosine
of which is g;;), the equation

g=23 Sgnmn=r?(=const) . . . . . (9
A op

represents a hypersphere with radius r.
In the system (i) the hyperplane 7z obtains the equation

EPAEA:Z (—ZA—)WA:CIO.
A

=1 A=1

or, putting

b _

Al R (10)
Sy =qy - .« - « « « .« « . (11)
A=1

We next consider the distance of the point S(7,=0) from this hyper-
plane, or, in other words, the radius r of that hypersphere (9) which
touches the hyperplane (11).

Denoting by 7, the coordinates of the point T’ of contact, we have
for the tangent hyperplane of T’

(2 grem,)m= .
“

Comparing this equation with (11), we obtain

2
Sgun,=—.q k=L2...n . . . . (12
[U.

9o
10*
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Putting

we derive from (12)

So the condition, that the point T (3’) lies on the hypersphere, furnishes
the relation

ZZgwi—5r 7 G2 2‘ 2 G Gege=r® . = » « (13
Introducing, for the sake of brevity, the symbol 4;;, defined by
6“:1 ’ (s.'j:O for ]?l, R T (1‘1')
we have
2 g‘oa' G}T” = 6)_, » G, & ¥ W ™ . . . . (15)
F

whereby (13) is transformed into

Z 2 Z Oe G q) G.u.a' qu=— 1,

2G2 >
or
r
'é ZA' { G}.Iu. q,. qu— q(2)'
or
2
r? == 6.
22 G
e G qi qn

So we find for the square of the distance r (m) between the point S (m)
and the hyperplane
2
£ (m) = 9 (m) R ¢ (4]

y G/‘\‘u .
$2 G v

It is now easy to formulate the most natural principle of adjustment:
In isotropic space we postulate, that the mean square of
the distance r(m) shall be a minimum, or

_[Em] L an

Q@ = N minimum .

In order to interpret this condition in the original data, we must
return to the coordinates x; (resp. &) and the coefficients fi;. From (7)
follows

h2h2...h?
F:hfhg...h:.G » F,‘j:—l—i—-ﬂ'Gif'
h; h;
whence
Gij . Fy
G =h; h F
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Thus, by (10),
Gy; F;;
EJQI q; :—I_TLP. Di « « « o < . (18)

Moreover we have, by (3),
qo=po + %'Pk 2
Putting finally

W llence
l ajn i == A p— ~ Wlth minors A = 41 .
g F‘ i t"‘

we find for ¢

ILV[(PO'JFP: Xy 4 p2 X2+ ...+ pa Xn)?]

- . . . (20
P 22 aap Pa Pu ( )
A @

Our problem may therefore be formulated as follows:

To determine the parameters py, p1. pa, - - - . p~ of the hyperplane 7 in
such a way, that the function ¢ be a minimum.
Putting
[%]:;,, X =xi + u (whence [ui]=0)i=1,...n, . (21)

the numerator of (20) passes into
]:’[i(Po—‘—Pl -;1 +P2£+~--+Pu;ﬂ)+(91 u +pruz+ ...+ pn ) § 7] =
= (po+p1 X1 + D%+ ..+ Pa Xa)? + 2(po + Py X1 4 P2 X34+ . P Xa) X

1
X%[Pn U1+P2U2+-~+Pnun]+ﬁ[(P1 u1+P2112+~-+PnUn)2]-

or, by (21) : [u;] =0, into

— = - 1 n n
(Po+p1x1 +p2x;+ ... + paxa)? + N = Zl[u;. U] p; pu.

1= p=
We put
ILV[u.- u]=0>b; , B=|bi| (with minors B;;) . . (22)
moreover
SR Pem=0 s 4 % o % 5 % % (&3)
Ao

SZbuppp=pH . . . . . . . . (29
)
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whence we may write for ¢ (20):

'¢:(P0+P1;1+P2;2+~~+Pn-;")2+ﬂ .. . (25
a

The condition ¢ minimum requires:

O op op op
- p— :0 P & = 0 5 T = 0, KL = 0.
0po 0p: 0p; Opn

Since neither a nor § contains the parameter p,, we have

a‘P:Z(Po‘f‘Pl;l+P2;2+~~‘|'Pn;'")’

9p a
dg : :
so that — =0 is equivalent to
0po
potpixi+prxst...+pxa=0. . . . . (26)
This equation expresses that the “best”’ hyperplane v must pass through
the “mean” point (x, X3 . . .. X2).
Thus the form ¢ is reduced to
_B
tp—a........‘..(27)
where a and f are positive-definite quadratic functions of p;, py. ... pa.
From

logp =log f —loga

ensues
109 10 1 0a
@ O0p f op a Op;
so that for the condition g% —0 can be written:
0B
op: _ﬁ__
da_ o "
bp{
or, by
da i 0B &
—=23aip, v——=223 bup:,
op: = e 0p: ;.51 ‘P
2 bup
¢ == 1= 1 2 n
z a)[ p} ¢ ’ L I ’
A
or

2 (bi—e@an)pp =0 i=1,2,...,n . . . . (28)
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Putting
b,-j—tpa,vj:'c,-,-, e e e e e e e (29)
the conditions (28) run
Zapp=0 i=1,2,....n. . . . . . (30
=1
So we arrive at n homogeneous linear equations in the n coefficients
D1. P2, - - . Pn, considered as variables.
In order that they shall be soluble, it is necessary that
C=lcpu|=|bu—epawn|=0. . . . . . (31)

As a;; and b;; are the coefficients of positive-definite quadratic forms,
the equation (31), of the n™ degree in @, has n positive real roots. The
smallest of these (p,) furnishes the minimum-value of ¢.

The equations (28) which now take the form

M

(bu gvoa;_i)p;\:O i:1,2,...,ﬂ e e e (32)
1
determine the ratios of the parameters p;, ps, ..., pn while the condition
(26) furnishes the corresponding value of p.

In what follows we shall still denote b;;—¢q a;; by c¢;j, and the deter-
minant | by« — @y aip | by C.

Leaving aside one of the n equations 3 c;;p; =0 (32), for instance
=1
)2 c;pr=0, we find
=1
R Ay = R X
CU C,— " TC, . (33)

for each index j.

Hence
px ____Cx_/ Cn_cik
ij Ckl Ckk

or, taking account of the symmetry of C (C;r = C;)).
[_1-‘_‘ Z_C{i X&_Cu
Dk )_Cki Ckk—Ckk'

Bl =P — =P C e (39

— = = w,

|/C11_|/C22 T V‘Cnn

whence

and

:%' Za 7 o p/:ngZaul/Cu UJ-—CUOZZC;/.LHA,UL (35)
-

)

The form 2 E Cuarp=23Za, B@Q is the first so-called “emanant”
Ao A‘u. .
(Aronhold-

of the determmant C, with respect to the determinant A =|a;
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process). Denoting the 1,20, . k%" emanant by UC, U%C,...U*C,
we have:

u C: 2 ) C)‘u aim
]

UZC f— Z 222 C),u. , o7 aim aA:,a' (36)

U"C:n!A S

§ 2. Degree of Uncertainty of the parameters py, pi. P2, - - « Pne

Our next step is to estimate the accuracy of the solution.

An alteration of the position of the observed points will cause a
displacement of the best hyperplane 7. So we have to investigate the
oscillations to which the parameters pg, p;. pa....p. are subject. The
coefficients a;;, being given a priori, are not affected by observational
errors. So the uncertainty of the p; is merely due to that of the quanti-
ties C;;, these latter being functions of the quantities c;;. From (28)
ensues that the uncertainty of these c;; depends only on that of the
quantities b;; and ¢,. Hence we must first determine the degree of
uncertainty (error) of the quantities b; and of ¢, which in its turn
depends on the b;.

Operating with one variable only, the observed values must be ad-
justed to a *“most probable” wvalue (as a rule: the arithmetical mean).
Calling this most probable value: the “solution-value”, the difference
between the observed value and the solution-value is called the
apparent error, indistinction from the essentially unknown true error.

Likewise we shall, also in the present case, denote the coordinates
Xi(m) of the adjusted point T'(m) by: the “solution-values” of the coor-
dinates x;(m), and the differences, viz. the quantities & (m) will be called:
the “apparent errors’’ of the coordinates of S (m).

Next to these apparent errors of the coordinates xi(m) we consider
the — essentially unknown — “true errors” /\x;(m). These true errors
of the coordinates x;(m) are transmitted to the quantities u;(m) (defined

by (21)) and likewise to the quantities b;; = uj]; afterwards to ¢,

]{—, [lli
and to the quantities ¢;; and C;;.

So we first proceed to the investigation of the true errors of the b
and will, more particularly, try to determine the mean value M (Ab;; /\by))
of the product of the true errors Ab;; and A by,

As A x;(m) is the true error of x;(m), we derive from

-  —x()—xi(2—... - (N—1Dxi(m) — ... — x:(N)

u, (m)=x; (m) — x; = N

the formula

—Ax()—Ax@)—... 4+ (N=1) Axi(m)—...—A x:(N)
% :

A u; (m) = (37)
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1
From b.j:N [ti uj] ensues

NAb,=[u; Nuw] +[w Nu] . NAbu=[u A u]+ [ws Awl
whence
N2ZAb; A by=[u; Auwi] [w A w] + [u; DN wi] [ux A wi] +
A+ [wi A wi] [wr A k] + [wi A w] [ue A w). )

Considering the first term of the second member apart, we have:

[y A w] [ A wd] = [w () e () . A i (1) A uge ()] +
+ [y () i (). A wi (1) A e () 11,

where the sum [[ ]] extends to the N (NN—1) terms in which » % u.

We must now occupy ourselves with the mean values of these expres-
sions. Denoting the mean value of the quantity R by M (R), and taking
into account that the variations /\ u;(m) are independent of the quantities
ui(m) themselves (these latter were merely introduced for the purpose of
calculation), we may write:

M ([ A wi] [we A ud) = M ([u; (1) . w (w)]) X M(ADwi (). A e (1) +
+ M ([[u; () . s G)ID X M (A wi () . A ue (3).

From (21) and (22) ensues:

0= [u; ()] [t ()] = [wi () . e ()] + [[ws () . 11 )] =
=Nby+ [[w; (W) . i ()]],

M ([[u; () . i ()1])=— N. M (b)-

(38)

whence

Thus:
M([u; A w] [w A ue]) =
=N.M(bj) {M (A ui (1) . A uk («)) — M(A ai(u) . A ux (v))}
From (37) follows:
Aui(l)AUk(l):(N_—1)_Axi(l)_A;\C;(Z)_”'_Axi(N)X
N—DAxc(1) —Ax(2) —... — A x (N)
N
_(IN=1?P A x(1) A (1) + Axi(2) Axe(2) 1. ..
+ Ax(N) AxelN) + [[Row A () D]

. (39)

X

N2
and
Aw(l) A (2):(N_ 1)Axi(l)—Axi(ZI)\]-—Axi(3)—...—Axf(N)X
X—Axk(1)+(N-I)Axk(2)—~Axk(3)—...——Ax;,(N)
N

:—(N— DAxi() Axe(l) —(N—1) A x:(2) A % (2) +
+ A x(3) Axi3)+ . . +A xi (N) A xi (N)F[[Spw A i (1) A 2 (v)]]
N2
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As the law of movability is assumed to be the same for each point
of the n-dimensional space, the expressions M (A x:i(1) A xk (1)),
M(A x:(2) A\ x:(2)),... will be equal, and their common value will be
denoted by M (A x;/\ xz).

Since the points S(m) are supposed to be observed independently,
we have

M (A xi(u) A x () =0 (also for k=i).

So we obtain

M () Au() =TI v (A A )= M4 A .
M(Bu (1) Ay (@)= INZ2 p A o) =— & M0 ),
or, in general,
N—I
M(A ui (,u) A ug (,u)): —]V— M(A x.‘Axk),
MO w25 () =—5p M (5, 1 ).

Hence the equation (39) passes into

M ([u; A w] [ur A w]) = N M (bi)) X (I—VNLIJrﬁ) M (A x; )\ xi),

or

M([yy Auw][w Aw])=N.Mbj) M(AxiAx) . . (40)

Therefore the equation (38) furnishes:

(A b,JA bkl) N {M b_/z) (A X; A .x'k) +M(b1k) M(Axi Axl) +
+ M (bu) M (A x5 A\ x) + M (ba) M (A x1 A x1)} )

. (41)

Since the adjustment of the IN points to the hyperplane t begins
only after the n® point, so that only N—n points require adjustment,
we have:

M(A xi A\ xi) = E\E; Ekj II\\;]XI'(E; &)

In this formula & appears as the apparent error, in distinction from
the true error A x;.

Now we find for M (£:&:) by the probability-formula (5):

6n
M (& &)= fE. Ede“( ') [ fffﬁeefdfl---d&n-

§i=—o0 §,=—o0e
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From
6 F\: ([
[dW:( = ) f....fe—ﬂ?dg,...dg:,,:l
t [ S
follows
+ oo + oo
. » n n/2
I:]. e je“"fdé', oo dE = (g) . Fk,
‘51:‘—‘” ‘En:—"’

By differentiating with respect to fix we get

"1 _, _ OF
afk J ]aﬁ 0fd£1..- nﬁ()X—EF /Exaﬁk.

Ex——"“ 5 ——

If, k=i, we have

o _, OF

— G == F,',‘ B
0fu T ofu
If k=i, we have, on account of the symmetry of f and F (fix= fi:).
of _ OF
afk 2 El eky aﬁk—“ZFlk-
So we obtain in either case:
+o +oo
I nly
f ]5, EeeSFdE, .. dén_§(0> . F-% . Fy
El——‘“’ En——°°
whence,
oYL | F
M(E:fk):( o ):J .JE,‘E}; e_gfdfl...dfnzz—é. I_-:.k
fm—o =
or, by (15),
] :aik 42
M(El Ek) 29 . ( )

We can now find the value of 6, corresponding to the data.
From
Qo= Z)‘ p &

we have

[a0’] =12 2 pipuls ful =2 2 pi py (& & ]=

ajp

:szp/puM(EIE,U) szp/p,uza
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or, by (23),

Na
w.Pi P — = * & ” . . 43
2 Za P Pr=%g (43)

ol

[qt] =

For [qs?] and a we must take bere their solution-values. Then the

equation (20) or ¢ = [}l\‘; ] considered in its solutionary state, gives
N 7
20,

So (42) gives for the solution-value of M (& &)

M(f, Ek): Po @ik o o e e o e (45)
and
M(A xi A x) = NN— Podn . .+ . . . . (46)

Replacing in (41) the unknown values M (b;) etc. by the actually
found values b; etc. we finally arrive at:

M (A bij A bu)= N('Zin (axbj + ap b+ au biy+ arsba) . . (47)
So we have obtained the general formula for the uncertainty of the
quantities b;;.
We now proceed to investigate the uncertainty of ¢,.
From C=|ciu|=|bi» — qo ain | =0 follows

DG= EZC/IAC/)'-—-ZZC/IZ\bII—ZZC/IaI,U A‘Po—o

whence
uc. A To — 22 C;III, A b}‘u e e e e e (48)
Thus: : '
UCM(A q’oAb,‘j) ZC (A b,/Ab/I)
or, by (47)

UC. M (A gy A bij)= 2 3 Ciu(@nbjy + aju bist ain baj + aa; biy)

N—n i
= N— 2 Z C/u {a;i\ (C_,r/ + Po aj’) + a',.( (CM+ Po aU‘-) +

n< oy
+ aip (caj + o ax) -+ ay (cin + @o aiu) }

or

Uuc MAgysAbij)= 3 3 Crulcjpan—tcnajutcyaitciar) +

N_n ;oom
. (49)

+ Ifl%n ZA %‘ Civ (an ajpw + aiz a;3).
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Making use of the symbol 4;;, introduced by (14):
6,-,-:1 .5,-}-:0 for J?ﬁl.

we have

P C}."I. Cju. — (5)\1' C, i o m w w® m % (50)
thus:
uc. M(A ®o VAN b,-j) = N(p—Oh;lC(%‘ (3Aj aia +21“ Oip aj,"~+2’£ dju ai//-‘f‘z; 0ir aAj) +

2 s
—f_ Nﬁ’n % % CA 2 (a.Aaju + a,#aj;)

4 2
— N—qio Hp b Nﬁ)n %‘ %‘ Coulana + aix a;),

or, on account of C=0, and 33 Cipanaj.=233 Cuaapn=

Ao ©® A
—ZEC}"A a,-‘u aj;,,
A w

uc. M(A%Ab.,)—ipLZEC,,aua,, ..

Moreover, from (48) ensues:
UC ¥ M(A (}702) — 2: ) C‘:a' M (A Po A b‘:d‘)y
or, by (51), ‘

2
UC. M(Ape) =12 .

 5C..Cuaya”. . (52
N e E T E Tl et » 2

In reducing the second member of (52) and analogous sums, we may
not make use of the particular circumstance, that C=0. On the contrary
we must start from the general formula:

Cij Cu—Cy ij =, Cij, =G le, w=1C . Cy ki» - - (53)

where C;j . means the minor of the element cy in the determinant C;;,
this latter not being symmetrical.
Applying (53), we may write:
Z 2 2 2 C.,a- C)u Aou @iz =— 2 2 Z 2 (C,u C.—C. C‘:y,).v) Ay Arr —
=% 2 C‘.’/".L aszy. 23Cra.—C2323> C‘:,"J..ﬁ a:» ans,
z u ;2 T A ouoo @
or, by (36),

2‘22‘ZC;cC;,u.a‘:/,.a;a:(UC)z—C.UZC A ]

7

In this final form, we may put C=0. Then from (52) we derive

2
M(A%Z):I%f_l;.. N 1))
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Hence the mean error of ¢, amounts to

E(q)o):VM(Aq:oZ):‘/i\;”jn. N 0

We shall now compute M (A C;i; A ).
We have first:

M (AcuApo) = M (Db Agy) — ai M (Ap?) =
2 2 Copare ay

2
:Is;ﬁn(_)_ # uc —akz). . (57)

further:

M(AC.'J‘ A(Po) =22z Cij. pa‘M(A CpaAlpo) =
F a

4 2 2222 Clj, po C),‘u Apu als
_ 1% (

o Ly P e — %‘%‘ CU-F ;apa)

2 —( . .
:Wg 222' Zgi—cﬁc%’C}.p_aP#a)a e UC. UC{js
- A ppoos

2 ‘s
:Wjﬁis%.’ %‘222 (C‘oy C.— C. Cp,u,).o') dpu. Qs —
vops
_éé'ZZZC,,(C/, Cpu— C.C)j,‘ap)app. Aale — UCUC{J g
L pop T
2 : 2
:(sz:;)uc 3C”(g C) - Clj UZC—%C ZA'UE C:’a’C/\j a).d+

_+" 22 Cia UC)J' aic — UC . UC[_,' s

_ e 3C,,-(UC)2_ Inrc—
T (N—)UC C Gl

gc ; C-UC;;a;s-—uUC.UC
== f ZI‘ZF;(CUC/.;—C.CU,)J)a).c‘jl'zl‘{ i yjais— . ij

. 2
_c,tre— Culer |

A 4CuUC)
T (N—m)UucC C

+ UC.UC,;+ 33CulCyan— UC.UC, g

— 49,’ _ 2 .
= _,,)ch C,. u*C+ f{ CiaUCAja).eg.
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Since M(AC;; A g,) must be symmetrical with respect to i and j,
we have

ZZCiz UC)ja)_a = EZCj'; UC),-a/s — ZECj}. UCclac}. = ZZC).jUC{da).u
Ja s G G 4 D]
=432 (CUCy+ C,UCy)ain =% 232 U(Ci Cy) . ais
=4U{S3(Ci;jCre—C. Cijis) ais} =3 U{C,;UC—-C.UC,;}
:%Cij. UZC—%C Uzcij
or, by C=0,
2> Ci7 UC}J aijs — 3 Clj UC

i oa

Hence we find

— 29,2 UC
M (AC,; Ny =, N_";‘: qreCa v s o » [58)
From
AUC AZZC)ua;U.———ZZa)/AC;IU
o
follows

MAUC. Agp)=2 3 ain M(A Co A\ go) =
Lop

_ 290 UC — 209 U'C

—= N'— UC %‘%‘a/uC)u— N_n.UC.UC,
thus

MM UC, A%)—J% wc .. . . . (5

We next consider M (Aci; Aew):
M (A ci; A\ cu) = M (A byy— ai; A\ o) (A bu— aw /A @)} =
=M (A bi; A\ b)) —aij M (A bu A\ 9o) — a M (A bij A\ @) + aijau M (A @?),
or, by (47), (51) and (55),

M(AC.-,- ACH) == ] ]V(p_g—n 3(bik aji 4+ bjl aix + by ag;j -+ bkj ail ) -

. (60)
_4gpoay 4ppa
or
M(Aci;Acu)= N(p (ciaji =+ cjt @+ cu an+ ciyaun ) +

+ 2o (aan + au ar;) + 4 @g ay ar — ». (60)
_ 3% " , ol B
ic (3.j ‘;‘: %‘ C;n agi akn‘*‘akl%‘ 2]; CEn ag;j aw) /

(To be continued).





