Chemistry. — Osmosis in systems in which also liquids with constant
composition. V. By F. A. H. SCHREINEMAKERS.

(Communicated at the meeting of June 27, 1931.)

In Comm. IV we have seen: when there is still only a very small
difference (& and #) between the variable liquid z of the osmotic system :

LG |ino. LG . . . . . . . . . ()

and the composition (x and y) of the invariant liquid i, we can represent
a, f and y (viz. the quantities of X, Y and W, diffusing per second) and

the total quantity u (u=a + g+ y) by:
a=At+ Ay ﬂ:BE-%B';]Q
y=C&+ Cy p=pk4 'y
The path along which the variable liquid proceeds, is then determined in

the vicinity of the invariant point i by :

@_mé-{—nn } 9)
df_——p£+q1]' e e e

(2)

in which:
m=B—yD; n=B—yD'; p=A—xD; q=A'—xD" (4

All paths of the bundle are determined then in the vicinity of point i by :

p—u &)t =K@mp—u&)=te . . . . . . (5
in which u; and u, are the roots of the equation :
qu+(p—n)u—m=0 . . . . . . . (6

This bundle has two axes, the direction of which is determined by u; and
u,; an infinite number of paths touches the principal axis, only two paths
touch the secondary axis. We now shall discuss some special cases.

1. First we take the osmotic system:
L(z) | inv. (water) . . . . . . . . (7)

in which the invariant liquid consists of pure water only, so that it is
represented in fig. 5 (Comm. III) by point W ; so we now have to put in
(4) x=0 and y=0.

We now begin by supposing the variable liquid z in a point r on side
WX ; then we have =0 while £ has a positive value. We now imagine
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this point r in the immediate vicinity of W so that f (viz. the diffusing
quantity of Y) is now defined by = B¢, as follows from (2). As, however,
the two liquids contain water and X only, so that no Y can diffuse, § must
be =0; from this follows B=0.

If we imagine the variable liquid in a point s on side WY so that no
X can diffuse now, we find in a corresponding way A’=—0.

In the special case that the invariant liquid consists of water only we
have, therefore:

x=0; y=0; A'=0; B=0. . . . . . (8
It now follows from (4) :

m—0; n=B": p=A; q=0 . . . . . (9
Instead of (3) we now have:

dn_n om0

in which n and p are determined by (9). From this follows:
P KE & & & s = » u = » (L1)

in which, as we have seen previously, the two exponents must have the
same sign. It now follows from (11) that the lines =0 and £==0 (viz. the
sides WX and WY) are the axes of this bundle. We now can distinguish

three cases
a. £ > 1. Now we write (11) in the form:
n

P

q":KE.(lZ)

so that the exponent of 7 is greater than 1. Then all paths are parabolical
in the vicinity of point W and touch the line £ =0 viz. side WY, as has
been drawn in fig. 5 (Comm. III). This appears besides among other things
also in the following way; from (12) namely follows:

P

3

Pk (13)

As the exponent of » is positive here, it follows that gz becomes
infinitely large for small values of #; so the paths touch WY, as has
been said already before. Consequently this side WY is the principal axis
of the bundle, whereas WX is the secondary axis.

In this special case there is no path touching the secondary axis, but

this secondary axis WX is a path itself.



825

b. B< 1. Now we write (11) in the form:
n

n=Ke& . . . . . . . . . (149

so that now the exponent of ¢ is greater than 1. We now find that all
paths touch the line =0 viz. side WX. Now side WX is the principal
axis and WY the secondary axis.

c. © ==1.1In this very special case, which will occur only accidentally
n
and which represents the transition from a towards b, (11) passes into :

n=K¢&. . . . . . . . . . (15

In this very special case all paths now are in the vicinity of point W
straight lines, meeting in point W.

Before we have seen that the shape of the paths in the vicinity of the
invariant point W is determined by the value of #/ . In order to deduce
this value we suppose the variable liquid z in point r of fig. 5 (Comm. III) ;
when this point is situated in the immediate vicinity of W, the diffusing
quantity of X is determined by a = A¢&. From (9) now also follows a = pé&.

If we imagine the variable liquid in point r, we find f=B'y=—ny,.

If we now put &=y viz. the X-amount of the liquid r equal to the
Y-amount of the liquid s, then follows:

p _(l
We now may say: when a > g viz. when towards the end of the osmosis
X diffuses more quickly than Y, then all paths touch the Y-axis; when
a < B viz. when the substance X diffuses more slowly than Y, then all
paths touch the X-axis; in the transition-case «=pf viz. when the two
substances diffuse with the same rapidity, then all paths are straight lines,
meeting from all directions in point W.

2. We now take the osmotic system :
L(2) | inv. L (i) [water+ Y] . . . . . . (17)

in which the invariant liquid consists of water and the substance Y only;
we imagine this liquid represented in fig. 4 (Comm. III) by point i,.

If we now suppose the variable liquid on side WY in the vicinity of
point i,, we find in a similar way as in 1. that A" must be = 0. As in poin*

io, x=0 also, it follows from (4) g==0 also. Equation (3) now passes
into :
dyp _mé&—+ny
= . . . . .. .. (18
d¢ pé 18)
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If here we put y=u &, we find after conversion:

pdu
= 19
+( —plutm 1)
from which we find by integration :

_r

E=K[(n—p)u+m]"=, . . . . . . . (20
If here we again put u=—1:¢, we find:
» :

E=K[n—p)yp+mé&l~ . . . . . . . (21)

by which the paths of the bundle in the vicinity of point i, are defined.
From (21) it follows that line £ = 0 (viz. side WY') and the line :

(n—p)p+ms&+0. . . . . . . . (22

which has been indicated in fig. 4 (Comm. IIl) by i, h, are the axes of this
bundle.

Of course it depends again upon the value of P whlch of these two axes

is the principal axis and which the secondary axis; if we take P >1, then
n

it follows from (21) that an infinite number of paths touches line §=0;
line iy h then is touched by one path only, which has been represented in
fig. 4 by fio. Then side WY is the principal axis and line i, h the secondary
axis of this bundle.

3. In the osmotic system:
L(z)|inv. L (i) [water+X] . . . . . . (23)

the invariable liquid consists of wa"er and X only; we imagine this liquid
represented in fig. 4 (Comm. III) vy poin: i;.

We now find B=0 and because in pnint i; also y =0, it now follows
from (4) : m=0. Equation (3) now passes into: '

dp__  nyg

L (- 24
dé pétqn (24)
If we again put y—u & here. we find after conversion:
d& du du
(p—n)?—{—q;—nqs—m—o. & & (25)

If we integrate this equation and il we then again put u=1:£, we find:

nrKlan+me—me . . . . . . . (26
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by which the paths of the bundle are determined in the vicinity of point i;.
From this it follows that line =0 (viz. side WX) and line:

qn+pP—n)é=0. . . . . . . . (27)

which has been indicated by i, k in fig. 4 (Comm. III), are the axes of this
bundle.

Here again it will depend once more upon the value of P which of these
n
axes is the principal axis and which the secondary axis. If we again take

P > 1, then it follows from (26) that an infinite number of paths touches the
n

line, determined by (27) ; so the line i; k is the principal axis of the bundle
and the side WX the secondary axis. In this special case there is no path
touching the secondary axis; this secondary axis WX, however, consists
of the two straight-lineal paths Wi; and Xi.
We now take the osmotic system :
M, M,
inv.L(i) | L(z) | inv. LG) . . . . . . (28)
in which a variable liquid z between the two invariant liquids i; and i.
During the osmosis, in which the substances W, X and Y will run through
the two membranes with different velocities and in different directions, the
variable liquid z changes its composition, until at last a stationary state
sets in, which we represent by :
M, M,
inv. L (i) | stat. L(w) | inv. L(i) . . . . . (29)
As we have seen in the Comm. II and III, the osmosis is not done in
this state, but W, X and Y will go on diffusing continuously through the
two membranes; then, however, the stationary liquid u does not change
jits composition any more, but it does change its quantity.
We now represent the composition of the variable liquid z at a moment
t by:

x'mol X+ y mol Y4+ (1—x'—y')ymol W . . . . (30)

and its quantity by n. If as in the preceding Comm. we now represent the -
quantity, taken in per second by the variable liquid, by :

amol X+ fmolY+ymodlW. . . . . . (31)

then the changes dx’ and dy’ of its X- and Y-amount and the change dn
of its quantity in the time dt, are determined by :

dx’:%"—‘.dt; dy’:ﬂ—_n—yﬁdt; dn=npdt. . . (32
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in which, just as previously, =« -+ - y. It appears from (32) thar the
variable liquid does not change its composition any more, when
a—x'u=0 and pf—y'u=0. . . . . . (33)
Then the osmotic system (28) has passed into the stationary state (29).
We can also find (33) easily in the following way. When namely the
composition of the variable liquid z does not change any more, then «, f
and y (viz. the quantities of X, Y and W, taken in or given off) must be
proportionate to the concentrations x’, y* and 1-x’-y’ of the liquid z; then
we must have:

A AL ol i i Y

x :g—;'-:l~x’——yi—— 1 1

in which the 4th and 5th term follow at once from the three first terms.
With the aid of the first and the last term and the second and the last term
we find (33) at once.

In order to define these results more precisely, we imagine that per second
in system (28)

aymol X+ pymol Y+ y mol W . . . . . (35

diffuse through 1 cM2 of the membrane M, towards the left, namely from

the variable liquid z towards the invariant liquid i{;. [So in (35) a; is

positive, when the substance X runs towards the left and negative when

this substance runs towards the right; the same obtains for f#; and y{].
Further we imagine that in (28) per second:

aymol X + fmol Y +y,mol W . . . . . (36)

diffuse towards the left through 1 ¢cM2 of the membrane. If we represent
the surfaces of the two membranes by w; and w,, then we have, therefore :

a=—w a + wya, ﬂ:_(olﬂl+(02ﬂ2§ 37)
y=—oy oy, p=— oyt opp,
If we now represent the composition of the stationary liquid u by x and

y, so that in (33) we must put x’=x and y’=y, then follows from (33)
and (37):

:—wlal‘i‘wzal :—wlﬂ|+w2ﬂz (38)
— Wy py 0y 1y — 0y iy + @y py

by which, as we shall see further on, the composition of the stationary

liquid u has been determined.

The quantities a; and a, [viz. the quantities of X, diffusing towards the
left in system (28) per second through 1 cM?2 of the membrane M, and
M,] are determined by :

o=@ (x'y") and a;=¢,("y). . . . . (39
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in which x* and y’ indicate the composition of the variable liquid z. The
function ¢, however, contains besides the composition of the invariant liquid
i; and the magnitudes, determining the nature of the membrane. The same
obtains for ¢, with respect to the invariant liquid i» and the membrane M.

Of course corresponding functions obtain for f;, 82, 7; and yo. When
the variable liquid z of system (28) passes into the stationary liquid u of
(29), then in (39) we must put xX’—=x and y’—=y. We now see that we
may write the two equations (38) in the form:

Filxy) == and F(xy)==L. . . . . (40)
W, 10F)

so that x and y and the ratio w; : w, must satisfy two equations. From this
it appears that the composition (xy) of the stationary liquid u depends
upon :

a. the composition of the two invariant liquids iy and is.

b. the nature of the two membranes and the ratio of their surfaces.

So with every definite ratio w; : w, the stationary liquid u has a definite
composition, which is determined by (40).

‘We now imagine the invariant liquids i, and is and the stationai liquid u
of the systems (28) and (29) in fig. 1 (Comm. II) represented by the points
1, 2 and u. If we now imagine a variable liquid in the point a (b, ¢ or d),
then this proceeds along the path au (bu, cu or du) ; so we have a bundle
of paths, all meeting and terminating in point u. The direction of the
tangent to an arbitrary point of a path, is determined by :

dy’ _f—y'n
e DU ()

as follows from (32).
If we now imagine the variable liquid z in the vicinity of the stationary
point u, then we may put:

xX=x+¢ and y=y+94 . . . . . . (42

in which £ and 5 are very small. Instead of (41) we then may write :

dé a—(x+&u’

dn_F—Wt+wp 4

When x" and y’ approach x and y, then as the osmosis in the stationary
point still continues all the time, a; =, (¥’ y’) and ag=@, (x'y’) will
not approach zero, but definite values, which we shall call a; o and asy.
For small values of & and # we then have:

a1:a1.0+A1£+Al177; 02202.0+A25+A,2n

, , (44)
o= — W, 01.o+w202.0+(—wl A, +502A2)5+(“‘w1A1+w2A2)7]
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In a corresponding way we have:

B==—w, fro+ w3 fr0+ (—w; By +w; By)é+ (—w, By + w, BY)n
n=—w; 10+ w20+ (—w; Dy +w, D)+ (—w, D', +w, D) g

If we substitute these values in (43) and if we take into consideration that
all magnitudes with the index 0 (viz. a;, azo etc.) now must satisfy (38),
we find :

(45)

dy_m no,
4= p £+ = o)
in which terms of higher order have been omitted. Herein is :
m=— w, (B, — yD,) + ®, (B, —yD,)
n=—w (B)y—yD")+ w0, (By—yD) —n (47)
p=—w, (A —xD,) + 0, (A;— xD;) — n
q—=— o, (A'}— xD')) + w, (A',—xD")
in whicn u represents the total quantity :
p=—aw ot w20 « . . . . . . (48)

per second taken in or given off by the stationary liquid u.

In a corresponding way as in Comm. IV it now appears from (46) that
the bundle of all paths, meeting in a stationary point, has two axes; namely
a principal axis, touched by an infinite number of paths, and a secondary
axis, touched only by two paths. The position of these axes depends upon:

a. the composition of the two invariant liquids i; and i.

b. the nature of the two membranes and the ratio of their surfaces.

Although, as appears from (47), n and p contain the term u, the position
of the axes of the bundle is yet dependent on u. The position namely is
determined by the roots of equation (6), which contains, however, only the
difference p—n, so that in this equation u does not occur; so the term
w will only influence the shape of the paths at some distance from the sta-
tionary point.

In an other discussion of experimental determinations in some of these
systems and in considerations on membranes, I shall refer to this once more.

(To be continued.)

Leiden, Lab. of Inorg. Chemistry.



