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halbierenden. Wie ich bewiesen habe 1), ergibt jedes Paar der Dreiecke
D,, D,, ..., Dg; auf diese Art zwei neue Dreiecke mit rationalen Winkel-
halbierenden. Ich erwihne hier nur sechs Beispiele, wo ¢ die Basis, h die
Hoéhe bezeichnet.

a b ¢ |V4h|cos/y Alsin /3 Alcos !/ Blsin 1/3 B| cos !/, C | sin !/, C

D,-5D;| 125 | 169| 84| 5 [12:13 | 5:13 3:5 4:5 63:65 16 : 65
Dy+5D | 125 | 169| 154 5 | 12:13 | 5:13 4:5 35 56 : 65 33:65
2D,- D3| 289 | 338| 77| 10 | 12:13 : 13 8:17 | 15:17 | 220:221 | 21:221
213 | 15:17 | 8:17 | 171:221 | 140: 221

141 8:17 | 15:17 | 672;697 | 185:697

2D,4Ds| 289 | 338| 399| 10 | 12:13
D,—3D;| 867 | 1681 |1036| 30 | 40:41

o O wn Wn

D;+4-3D3 | 867 1681|2002 | 30 | 40:41 141 | 15:17 | 8:17 | 455:697 | 528 : 697

1) Diese Proceedings, 34, S. 1394.

Mathematics. — On the Solution of the Matrix Equation AX+ XB=_C.
By D. E. RUTHERFORD. (Communicated by Prof. R, WEITZENBOCK).

(Communicated at the meeting of January 30, 1932.)

I. In this problem A, B and C are given matrices and it is required
to find X, or rather, to find the elements of X in terms of the elements
of A, B and C. A solution is possible only if A and B are square
matrices, let us say of orders n and m respectively, and when C is a
conformable matrix of n rows and m columns. It follows that X also
must have n rows and m columns.

When PX=XQ, X is called a commutant of P and Q, and is
often written X = (P, Q). It is a fundamental fact that this commutant
can only be the null matrix, unless the matrices P and Q have at least
one latent root in common. When common latent roots appear, then
the general X is nonzero and contains arbitrary parameters. (Cf. e.g.
TurNBULL and AITKEN, Canonical Matrices, (Glasgow, 1932) Chap. X).
As may be suspected, our problem presents similar features. If C =0,
then evidently X —= (A, —B) is the commutant of A and —B, two
matrices whose latent roots will be denoted by 4;, —u,;. Uniqueness or
otherwise of the solution X will depend on whether 4, is equal to —u; or
not; in the case of uniqueness (IV below) when 4 4+ 4,=—0, X will
however, not be zero.
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We shall first consider the case where A and B are in the classical
canonical form. We therefore write

A =4, and B= B,
A, B,
A, ‘B,
where A; =| 4 1 | and B; =| u; 1 .
1,’ 1 127 1
1 S
A | | A

all elements not indicated being zero, and where neither 1,, 1,,..., 4, nor
[T TP uq are necessarily all distinct. We now split up C and X
in the following manner,

X: X”, X|2 ..... qu— and C: —C”. Clz,...,ClqA|

X Xpah ... Xoq | G Ciagei 20 G
where the submatrices X;; and C,; have the same number of rows as
A,, and the same number of columns as B;.

II. The submatrix X,; is now given by the equation
A‘X.'j'f—)(;j B_/:C1j.
Let A, and B; be of orders s and ¢ respectively; then we write

,X[j: X110 X120 ¢« o9 Xls and Clj: C11s C124 + « 4 C1s
Xitly X249+ o9 Xta €1y Ce24« o oy Cos

The equations for the elements x are easily shown to be

A xi1 + X+ X— F 4 xeo=crr, (k< t;1> 1)
At Xiq + X114 Xt = Cras (k<9
Ai xer + Xer—y + M Xe1= Cer, (>1)

A Xey + My Xe1 = Cea.

(1)
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These may be rewritten as

2] ==
A -+ I
Xet = C';i;x;;—‘ , (1> 1),
P Ck;;;;” , (k< o),
g TP BT o s 1)

A 4 p

III. We shall first consider the case where 4, + w; # 0. In this case
every element of X;; is exactly determined from the last equations.
Indeed any element x is equal to the corresponding ¢, minus the x
element immediately on the left, minus the x element immediately below,
all divided by 4 4 u;. Hence any letter cx; will appear in the klth
place in X;; and also in every place to the right of, and above the kI th
place; also the coefficient of cx; in the uvth place of Xi; (u<k,v>1) is

(— 1)uto—k—t (" t+v—k— I) (A + )ttt
u—k

IV. Let us now consider the case were 4 -+ u; = 0. If c,; 70, then
x.1 and every other element x of X;; can easily be shown to be infinite.
Similarly, if any x.. of X;; be infinite, every element above and to the
right of x.. must be infinite. If, however, ¢,1 = 0 a finite solution may
exist, for then will x., be arbitrary; but x,, will be infinite unless
ci2— xiy =0, so that if we take x.; = c;2, then x, is arbitrary.

Now if t<s, we may proceed in this manner and obtain x,, arbitrary
by putting x.; = c.i+1 where [ <s. If x,1, be not infinite, then must

Ce—11 — X1 = C—11 — C—12 =0,
and, proceeding as before, we have x,_;, arbitrary by putting
Xe—1,0 = Ct—1.1+1 = Xt l+1+
In the same way, if x;_,, be not infinite then must
Ceht — C—ht12+ Cont23— o . () cennn =0 (A<t<s). . (2
Also we have x.,, arbitrary by taking

Xt—h! — Ct—hI4+1 — Xe—h+1.1+1 (l <s).
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In this way we can obtain every element x in terms of the c¢;; and
of t arbitrary parameters.

If ¢>5s then we proceed in a similar manner, but we take the s
arbitrary elements x1,1, x1.2,..., X1, instead of X1, X25,..., Xes.

The same relations between the elements ¢ will hold, but in equation
(2) the values of h are given by h < s < t. The equations for the ele-
ments x in this case will be

Xkl — Ck—1,1 Xk — Ck—1,1 — Xk—1,1—1 (k >1;1>1).

Thus, if 4 + u; =0, a finite solution exists if, and only if, the
following relations hold for the elements c;

Ct1 — O:
Ce—11 — Ce2 — 0,

Ct—21 — Ce—12 + c3=0,

3)
the last equation of this series being
cu—c2teos—.. . () ee=0, if s>
or
Ct—s41,1 — Ct—s422 — « .« (_)S_l Cts — 0. lf S < t. }
The solution is then of the form
aa—Cs+ ... ()1 h Clami—Cos + @2 CQs—a, a
C22—C331 ... (—)t'2 Cet  vovvy Coe—1—C3s+ a3, Cos—ar-2, Ar—1
Ct—1.2—Ce3 veeer C—1.5—1Ces Ct—1.s—a;, 4az
Ct2 T Ct,s—1 ’ Cts o ap
or
_ B 4
bl ’ b2 ICRRE] b,._] » b,
Cia C1,2—b| vever Cre—1—bs 2 . Cs—bsy
€21 »C22—C11 eees C2o—1—Cls—2+ bs—3, Cas—Cre—1+bs—2
—2
Ce—1.1, Ctr127—Ct—21 40 0es Ct—,s—17ou. (—):—Hm, Ct—1,s—Ct—2,5—1 +
s—1
) + oo (=" e

according as s is greater or less than f, where the elements a and b
are arbitrary parameters.
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V. We have now obtained a solution of the equation
A X, + X,; B =Ci;.

Solving this equation for all values of i and j we obtain every sub-
matrix X;; and building these together we arrive at the solution of
AX -+ XB—=C, where A and B are in the classical form. If A and B be
not already in the classical canonical form, then let A= H—'R H and
let B=K'SK, where H and K are nonsingular and where R and S
are in the classical form, so that HA H'—R and KBK—'=S.

But we can find a solution Yof RY+YS=D

orof HAH'Y+ YKBK'=D
orof AH'YK+H'YKB=H"'DK.

Hence if we choose H'DK—=C or D=HCK~!, then X=H'YK
is solution of AX + X B—=C. Thus a finite solution to this equation
always exists provided that no latent root of A is equal to the negative
of a latent root of B; or if this be so, provided that the relations (3)
hold. In particular, no finite solution will exist if both the matrices A
and B be singular.

VI. If every element of C;; is zero, then so is every element of
Xi; unless 4 + u, = 0. If this be the case then all the equations (2) are
satisfied and hence a finite solution exists. By deleting all the elements ¢
from the matrices (4), we obtain the solution of

A X+ Xi;Bi=0 (4 +p; =0).

Building up the submatrices Xj; in the same way as before, we have

the solution of
AX+XB=0.

VII. We shall conclude by giving a simple illustration of the foregoing
methods. We wish to find the value of X for which A X+ XB=C

where

A=|1 0—1 0| B= 1 1 0 0l andC=[1 0 0 0
1 2 00 01 00 01 00
1 0 30 -3 0 0 0010
00 0 2 s - 0 00 1

Now A—HRH!' and B— K S K-! where

H=[0 1 0 0|, R=|2 1 0. 0|, K=|1 0 0
1 0 0 0 021 0 0 1 0
D=1 B 00 2 0 0 0 0
0 0 0 1 00 0 2 4 3 2 1
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and S=|1 1 0 0|; also H'CK=|
01 00
00 2 1
00 0 2

—

Here the latent roots of A are 2,2,2,2 and those of —B are
—2,—2,—1,—1. Hence none are common and X is therefore unique.
The matrices R, S and D are now partitioned into submatrices

in

the appropriate manner, as is shown by means of the dotted lines:

and we proceed to solve the equation RY +YS—=D. Let Y be

Yll YlZ

[_

J, then we must have

YZI Y22
Ya=[_1_11_ 2 3] Yo=[
32 333 +33+3"
1 1 1 2
3t T3
1 1
~ 5 Ty .
Yy = l _1_ o 1 Y, =
hoi-n]
Hence the solution is X—=H Y K—! or
X= 1,1 2 1 2 .6
3tete 3Tt
1 1 3 1 1 9 1
Ty e 3Tpta Tp
1 2 2 3 6
—rte - ptaTe
4 1 4 3 6
372 ltmTate

1 37
—p Tty

1 2
Tt T

1 1
i Te

1 1 1].
”?2—2?}

2 2]

2 P

6 3

i 7

1 1 2

T Tt

1 1_2

4’ 4 42|






