halbierenden. Wie ich bewiesen habe ${ }^{1}$), ergibt jedes Paar der Dreiecke $D_{1}, D_{2}, \ldots, D_{63}$ auf diese Art zwei neue Dreiecke mit rationalen Winkelhalbierenden. Ich erwähne hier nur sechs Beispiele, wo c die Basis, h die Höhe bezeichnet.

	a	b	c	$1 / 24 h$	$\cos 1 / 2 A$	$\sin 1 / 2 A$	$\cos 1 / 2 B$	$\sin 1 / 2 B$	$\cos 1 / 2 C$	$\sin 1 / 2 \mathrm{C}$
$\mathrm{D}_{2}-5 \mathrm{D}_{1}$	125	169	84	5	$12: 13$	$5: 13$	$3: 5$	$4: 5$	$63: 65$	$16: 65$
$\mathrm{D}_{2}+5 \mathrm{D}_{1}$	125	169	154	5	$12: 13$	$5: 13$	$4: 5$	$3: 5$	$56: 65$	$33: 65$
$\mathbf{2 D}_{2}-\mathrm{D}_{3}$	289	338	77	10	$12: 13$	$5: 13$	$8: 17$	$15: 17$	$220: 221$	$21: 221$
$2 \mathrm{D}_{2}+\mathrm{D}_{3}$	289	338	399	10	$12: 13$	$5: 13$	$15: 17$	$8: 17$	$171: 221$	$140: 221$
$\mathrm{D}_{7}-3 \mathrm{D}_{3}$	867	1681	1036	30	$40: 41$	$9: 41$	$8: 17$	$15: 17$	$672: 697$	$185: 697$
$\mathrm{D}_{7}+\mathrm{CD}_{3}$	867	1681	2002	30	$40: 41$	$9: 41$	$15: 17$	$8: 17$	$455: 697$	$528: 697$

${ }^{1}$) Diese Proceedings, 34, S. 1394.

Mathematics. - On the Solution of the Matrix Equation $A X+X B=C$. By D. E. Rutherford. (Communicated by Prof. R. Weitzenböck).
(Communicated at the meeting of January 30, 1932.)
I. In this problem A, B and C are given matrices and it is required to find X, or rather, to find the elements of X in terms of the elements of A, B and C. A solution is possible only if A and B are square matrices, let us say of orders n and m respectively, and when C is a conformable matrix of n rows and m columns. It follows that X also must have n rows and m columns.

When $P X=X Q, X$ is called a commutant of P and Q, and is often written $X=(P, Q)$. It is a fundamental fact that this commutant can only be the null matrix, unless the matrices P and Q have at least one latent root in common. When common latent roots appear, then the general X is nonzero and contains arbitrary parameters. (Cf. e. g. Turnbull and Aitken, Canonical Matrices, (Glasgow, 1932) Chap. X). As may be suspected, our problem presents similar features. If $C=0$, then evidently $X=(A,-B)$ is the commutant of A and $-B$, two matrices whose latent roots will be denoted by $\lambda_{i},-\mu_{j}$. Uniqueness or otherwise of the solution X will depend on whether λ_{t} is equal to $-\mu_{j}$ or not; in the case of uniqueness (IV below) when $\lambda_{i}+\mu_{j}=0, X$ will however, not be zero.

We shall first consider the case where A and B are in the classical canonical form. We therefore write
$A=\left[\begin{array}{lllll}A_{1} & & & \\ & A_{2} & & \\ & & \ddots & \\ & & & A_{p}\end{array}\right]$ and $B=\left[\begin{array}{lllll}B_{1} & & & \\ & & & & \\ & & B_{2} & & \\ & & \ddots & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{array}\right.$

$$
\text { where } A_{i}=\left[\begin{array}{lll}
\lambda_{i} & 1 & \\
& \lambda_{i} & 1 \\
& & \\
& &
\end{array}\right.
$$

all elements not indicated being zero, and where neither $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ nor $\mu_{1}, \mu_{2}, \ldots, \mu_{q}$ are necessarily all distinct. We now split up C and X in the following manner,
where the submatrices $X_{i j}$ and $C_{i j}$ have the same number of rows as A_{i}, and the same number of columns as B_{j}.
II. The submatrix $X_{i j}$ is now given by the equation

$$
A_{i} X_{i j}+X_{i j} B_{j}=C_{i j}
$$

Let A_{i} and B_{j} be of orders s and t respectively; then we write

$$
X_{i j}=\left[\begin{array}{c}
x_{11}, x_{12}, \ldots, x_{1 s} \\
\cdot \\
\cdot \\
\cdot \\
x_{t 1}, x_{t 2}, \ldots, \\
x_{t s}
\end{array}\right] \text { and } C_{i j}=\left[\begin{array}{c}
c_{11}, c_{12}, \ldots, c_{1 s} \\
\cdot \\
\cdot \\
c_{t 1}, c_{t 2}, \ldots, c_{t s}
\end{array}\right]
$$

The equations for the elements x are easily shown to be

$$
\left.\begin{array}{ll}
\lambda_{i} x_{k, l}+x_{k+1, l}+x_{k, l-1}+\mu_{j} x_{k, l}=c_{k, l,} & (k<t ; l \gg 1) \tag{1}\\
\lambda_{i} x_{k, 1}+x_{k+1,1}+\mu_{j} x_{k, 1}=c_{k, 1}, & (k<t) \\
\lambda_{i} x_{t, l}+x_{t, l-1}+\mu_{j} x_{t, l}=c_{t, l}, & (l>1) \\
\lambda_{t} x_{t, 1}+\mu_{j} x_{t, 1}=c_{t, 1} &
\end{array}\right\}
$$

These may be rewritten as

$$
\begin{aligned}
& x_{t, 1}=\frac{c_{t, 1}}{\lambda_{i}+\mu_{j}} \\
& x_{t, l}=\frac{c_{t, l}-x_{t, l-1}}{\lambda_{i}+\mu_{j}}, \quad(l>1) \\
& x_{k, 1}=\frac{c_{k, 1}-x_{k+1,1}}{\lambda_{i}+\mu_{j}}, \quad(k<t) \\
& x_{k, l}=\frac{c_{k, l}-x_{k+1, l}-x_{k, l-1}}{\lambda_{i}+\mu_{j}},(k<t ; l>1)
\end{aligned}
$$

III. We shall first consider the case where $\lambda_{i}+\mu_{j} \neq 0$. In this case every element of $X_{i j}$ is exactly determined from the last equations. Indeed any element x is equal to the corresponding c, minus the x element immediately on the left, minus the x element immediately below, all divided by $\lambda_{i}+\mu_{j}$. Hence any letter $c_{k, l}$ will appear in the $k l$ th place in $X_{i j}$ and also in every place to the right of, and above the $k l$ th place; also the coefficient of $c_{k, l}$ in the $u v$ th place of $X_{i j}(u<k, v>l)$ is

$$
(-1)^{u+v-k-l}\binom{u+v-k-l}{u-k}\left(\lambda_{i}+\mu_{j}\right)^{k+l-u-v-1}
$$

IV. Let us now consider the case were $\lambda_{i}+\mu_{j}=0$. If $c_{t, 1} \neq 0$, then $x_{t, 1}$ and every other element x of $X_{i j}$ can easily be shown to be infinite. Similarly, if any $x_{r, w}$ of $X_{i j}$ be infinite, every element above and to the right of $x_{r, w}$ must be infinite. If, however, $c_{t, 1}=0$ a finite solution may exist, for then will $x_{t, 1}$ be arbitrary; but $x_{t, 2}$ will be infinite unless $c_{t, 2}-x_{t, 1}=0$, so that if we take $x_{t, 1}=c_{t, 2}$, then $x_{t, 2}$ is arbitrary.

Now if $t<s$, we may proceed in this manner and obtain $x_{t, s}$ arbitrary by putting $x_{t, l}=c_{t, l+1}$ where $l<s$. If $x_{t-1,1}$ be not infinite, then must

$$
c_{t-1.1}-x_{t, 1}=c_{t-1.1}-c_{t-1.2}=0
$$

and, proceeding as before, we have $x_{t-1, s}$ arbitrary by putting

$$
x_{t-1, l}=c_{t-1, l+1}-x_{t, l+1}
$$

In the same way, if $x_{t-h, 1}$ be not infinite then must

$$
\begin{equation*}
c_{t-h, 1}-c_{t-h+1.2}+c_{t-h+2,3}-\ldots(-)^{h} c_{t, h+1}=0 \quad(h<t<s) \tag{2}
\end{equation*}
$$

Also we have $x_{t-h . s}$ arbitrary by taking

$$
x_{t-h . l}=c_{t-h . l+1}-x_{t-h+1 . l+1} \quad(l<s)
$$

In this way we can obtain every element x in terms of the $c_{i j}$ and of t arbitrary parameters.

If $t>s$ then we proceed in a similar manner, but we take the s arbitrary elements $x_{1,1}, x_{1,2}, \ldots, x_{1, s}$ instead of $x_{1, s}, x_{2, s}, \ldots, x_{t, s}$.

The same relations between the elements c will hold, but in equation (2) the values of h are given by $h<s<t$. The equations for the elements x in this case will be

$$
x_{k .1}=\mathbf{c}_{k-1,1} ; \quad x_{k, l}=c_{k-1, l}-x_{k-1, l-1} \quad(k>1 ; l>1) .
$$

Thus, if $\lambda_{i}+\mu_{j}=0$, a finite solution exists if, and only if, the following relations hold for the elements c;

$$
\begin{aligned}
& c_{t, 1}=0 \\
& c_{t-1.1}-c_{t, 2}=0 \\
& c_{t-2,1}-c_{t-1,2}+c_{t, 3}=0
\end{aligned}
$$

the last equation of this series being

$$
c_{1,1}-c_{2,2}+c_{3,3}-\ldots(-)^{t-1} c_{t t}=0, \text { if } s>t
$$

or

$$
c_{t-s+1.1}-c_{t-s+2.2}-\ldots(-)^{s-1} c_{t, s}=0, \text { if } s<t
$$

The solution is then of the form

according as s is greater or less than t, where the elements a and b are arbitrary parameters.
V. We have now obtained a solution of the equation

$$
A_{i} X_{i j}+X_{i j} B_{j}=C_{i j}
$$

Solving this equation for all values of i and j we obtain every sub matrix $X_{i j}$; and building these together we arrive at the solution of $A X+X B=C$, where A and B are in the classical form. If A and B be not already in the classical canonical form, then let $A=H^{-1} R H$ and let $B=K^{-1} S K$, where H and K are nonsingular and where R and S are in the classical form, so that $H A H^{-1}=R$ and $K B K^{-1}=S$.

But we can find a solution Y of $R Y+Y S=D$

$$
\begin{aligned}
& \text { or of } H A H^{-1} Y+Y K B K^{-1}=D \\
& \text { or of } A H^{-1} Y K+H^{-1} Y K B=H^{-1} D K .
\end{aligned}
$$

Hence if we choose $H^{-1} D K=C$ or $D=H C K^{-1}$, then $X=H^{-1} Y K$ is solution of $A X+X B=C$. Thus a finite solution to this equation always exists provided that no latent root of A is equal to the negative of a latent root of B; or if this be so, provided that the relations (3) hold. In particular, no finite solution will exist if both the matrices A and B be singular.
VI. If every element of $C_{i j}$ is zero, then so is every element of $X_{i j}$ unless $\lambda_{i}+\mu_{j}=0$. If this be the case then all the equations (2) are satisfied and hence a finite solution exists. By deleting all the elements c from the matrices (4), we obtain the solution of

$$
A_{i} X_{i j}+X_{i j} B_{j}=0 \quad\left(\lambda_{i}+\mu_{j}=0\right)
$$

Building up the submatrices $X_{i j}$ in the same way as before, we have the solution of

$$
A X+X B=0
$$

VII. We shall conclude by giving a simple illustration of the foregoing methods. We wish to find the value of X for which $A X+X B=C$ where

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], B=\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-4 & -3 & 0 & 0 \\
-12 & -5 & -4 & 4
\end{array}\right], \text { and } C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now $A=H R H^{-1}$ and $B=K S K^{-1}$ where

$$
H=\left[\begin{array} { r r r r }
{ 0 } & { 1 } & { 0 } & { 0 } \\
{ 1 } & { 0 } & { 0 } & { 0 } \\
{ 0 } & { - 1 } & { - 1 } & { 0 } \\
{ 0 } & { 0 } & { 0 } & { 1 }
\end{array} \left|, \quad R=\left|\begin{array}{lll:l}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right| . K=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 3 & 2 & 1
\end{array}\right],\right.\right.
$$

$$
\text { and } S=\left|\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right| \text {; also } H^{-1} C K=\left|\begin{array}{rr:rr}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 \\
4 & 3 & 2 & 1
\end{array}\right|=D
$$

Here the latent roots of A are 2,2,2,2 and those of $-B$ are $-2,-2,-1,-1$. Hence none are common and X is therefore unique.

The matrices R, S and D are now partitioned into submatrices in the appropriate manner, as is shown by means of the dotted lines: and we proceed to solve the equation $R Y+Y S=D$. Let Y be $\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right]$, then we must have

$$
\begin{aligned}
& Y_{11}=\left[\begin{array}{cc}
-\frac{1}{3^{2}}-\frac{1}{3^{3}} \cdot \frac{1}{3}+\frac{2}{3^{3}}+\frac{3}{3^{4}} \\
\frac{1}{3}+\frac{1}{3^{2}}, & -\frac{1}{3^{2}}-\frac{2}{3^{3}} \\
-\frac{1}{3}, & Y_{12}=\frac{1}{3^{2}}
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{4^{3}}, & +\frac{3}{4^{4}} \\
+\frac{1}{4^{2}}, & -\frac{2}{4^{3}} \\
-\frac{1}{4}, & +\frac{1}{4^{2}}
\end{array}\right] \\
& Y_{21}=\left[4 \frac{1}{3}, 3 \frac{1}{3}-4 \frac{1}{3^{2}}\right],
\end{aligned} Y_{22}=\left[2 \frac{1}{4}, \frac{1}{4}-2 \frac{1}{4^{2}}\right] . . ~ . ~ . ~\left[\begin{array}{cc}
\end{array}\right] .
$$

Hence the solution is $X=H Y K^{-1}$ or

$$
X=\left[\begin{array}{cccr}
\frac{1}{3}+\frac{1}{3^{2}}+\frac{2}{4^{2}}, & -\frac{1}{3^{2}}-\frac{2}{3^{3}}+\frac{6}{4^{3}}, & \frac{2}{4^{2}}, & -\frac{2}{4^{3}} \\
-\frac{1}{3^{2}}-\frac{1}{3^{3}}-\frac{3}{4^{3}}, & \frac{1}{3}+\frac{1}{3^{2}}+\frac{9}{4^{4}}, & -\frac{1}{4^{3}}-\frac{6}{4^{4}}, & \frac{3}{4^{4}} \\
-\frac{1}{3^{2}}+\frac{2}{4^{2}} & , & \frac{2}{3^{3}}+\frac{3}{4^{2}}-\frac{6}{4^{3}}, & \frac{1}{4},-\frac{1}{4^{2}}+\frac{2}{4^{3}} \\
\frac{4}{3}-\frac{1}{2} & , 1-\frac{4}{3^{2}}-\frac{3}{4}+\frac{6}{4^{2}}, & \frac{1}{4}, & \frac{1}{4}-\frac{2}{4^{2}}
\end{array}\right]
$$

