
553 

Le coefficient critique est: 
RTk 

K4d = --= 3.395. 
Pk Vk 

Tk = température critique absolue. 
Pk = pression critique en atmosphères internationales. voir 34.529 atm. 
Vk = volume critique. 
R = constante des gaz. 

4. Les déviations du diamètre ne sont pas aussi petites que celles 
pour I'hydrogène et pour Ie néon, car elles sont quelquefois de l' ordre de 
grandeur de 1 pour 100, comme nous les avons trouvé antérieurement 
pour l'azote et pour I'éthylène par exemple. Cependant on peut dire que 
I'oxyde de carbone obéit sensiblement à la loi du diamètre rectiligne. 

Les déviations ont Ie caractère systématique, que' nous avons déjà 
rencontré dans d'autres substances, par exemple I'argon et l'éthylène: 
c' est-à-dire que Ie diamètre expérimen tal est légèremen t concave vers 
I' axe des températures au voisinage du point critique et légèrement 
convexe, au contraire, aux températures les plus basses. 

Sommaire. 

Les auteurs ont d'abord préparé une quantité suffisante de CO très 
pur. Puis iJs ont mesuré les densités du liquide et de la vapeur saturée 
entre Je point triple et Ie point critique. A l'aide de ces valeurs ils ont 
pu calculer Ie diamètre rectiligne de CAILLETET et MATHIAS et la densité 
critique. 

Astronomy. - On the structure and internal motion of the gaseaus disc 
canstituting the ariginal state of the planetary system. By H . P. 
BERLAGE Jr ., Meteorological Observatory, Batavia. (Communicated 
by Prof. H . A. KRAMERS.) 

(Communicated at the meeting of April 30, 1932.) 

In this paper I endeavour to show not only that a thin gaseous disc, 
rotating with variabIe angular velocity about the sun, constitutes a possible 
embryo of the planetary system, but also that some present features of the 
system leave hardly any doubt that it really once evolved from such a 
gaseous disCo 

Consider a perfectly gaseous atmosphere rotating non uniformly about 
an axis through the sun. Because the distribution of mass in the solar 
system is such that only one part in 700 is concentrated in the planets, 
ROCHE's model of a nucleous surrounded by a massless envelope is 

36* 
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applicabie. sa that the potential at any point of the atmosphere is 
Newtonian. 

Let r denote the distance of a volume .element from the axis of rotation. 
hits height above or below the equatorial plane. pand egaspressure and 
density. M the mass of the sun. f the constant of gravitation. w the angular 
'velocityof an ele~ent of the nebuia. then the two fundamental equations 
of equilibrium become ' 

(Mh lop_ 
(r2 + h2)"!. + (! ah - 0 . (1) 

(Mr 1 op _ 2 

(r2 + h2)'/, + e ar - w r. . (2) 

Introducing the gasequation 

p=ReT . (3) 

and integrating (1). we obtain provisionally 

h (MJ' hdh 
19 p = 19 pe - R T(r2 + h2)'J, • (4) 

o 

A suffix e refers to the equatorial plane. From (2) and (3) follows 

(Mr alg p_ 2 

(r2 + h2)'/~ + RT a~ - w r. (5) 

Differentiating (4) with respect to rand substituting the resulting 
expression in (5). we get 

In order to simplify the problem. let us first suppose the temperature in 
the solar nebuia to be a function of the distance from the centre only. In 
this case the third term on the left si de of (6) reduces to O. so that we 
remain with 

T fM J- RT d 19~ _ 2 

T 2 ' d -w r . 
e r r 

(7) 

This is a rather general case. Without sacrificing the most important 

aspects of the problem. we may examine the case of isothermy T = T = Ti. 
In this case we have. af ter elimination of Pe 

(8) 
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From the equations (7) and (8) we learn that only in the case of 
isothermy our nebuIa possesses the weIl known property of freely rotating 
masses, that the angular velaeity w is a funetian of the distanee r fram the 
axis of rotatian anI!}. From (4) we th en get 

P = pe e - ~~ n -l/r,I+h '] (9) 

So we also have 

(10) 

Considering (10) and its finite limiting value 

FM 
(J = (Je e - RTjr (h = (0) (11) 

it is exceedingly interesting to rem ark that our solar nebuIa behaves 
morphologically like a whirl in infinite space filled with matter, as 
D ESCARTES conceived it. Yet, KANT was perfectly right. when he believed 
his nebuIa , after concentration, to be shaped like a thin flat disco To prove 
this , let us follow the indirect way, which is the simpIer, and assume that 
we are practically free to take into account only that part of the mass, 
which is contained within very narrow limits of hand ignore the remaining 
part , although it is not negligible, but even infinite. 

For h < < r (10) reduces to 

FM h' 
{J = (Je e - 2 RT j ;:;- . (12) 

T 0 fi x the ideas, let us suppase our nebuIa to consist of air at a 

temperature T j = 23.2° absolute. Then, with R = 2.87 X 106 , f = 6.67 X 
X 10-S, M = 2.00 X 1033 c.g.s ., we get 

h' 
- 10" -

(J = (J . e <,I (13) 

Whether we are allowed to speak of a disc depends upon the drop of 
density in a xial direction, that is, upon what fraction is represented by the 
exponential factor. The latter increases with increasing r. Let us therefore 
substitute in (13) the distance of Neptune from the sun , or r = 4.5 X 1014 

CD . We then obtain 

_ 2220 ( ~)2 _ 1000 ( ~)2 
(J = (Je e r = (J e • lOr (14) 

The density represented by (14) drops to a value of only 10-10 times 
the density in the equatorial plane, at a distance as small as h = 0.1 r. In 
other wards, if asolar nebuia has ever existed. it has been a th in disc 
in deed at least as far as Neptune. Ignoring (10) and applying (12) 
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throughout is a procedure comparable with neglecting the totality of inter
stellar matter. when discussing the ma ss distribution in the solar system. 
Even wh en computing with the aid of (12) the total mass of the nebuIa 

~ JO> FM h' 

m = 4 n J r e. dl' e - 2 RT j iï dh. (15) 

o 0 

and its moment of momentum 

(16) 

we do not commit any fundamental error. On the contrary. we obtain the 
advantage of skimming oH the mass of the solar nebuIa proper from an 
infinite material interstellar background . which practically exists. but does 
not interest us in planetary questions. 

Integrating (15) and (16) . we get 

m = (2 n)I', (1[; ) I'f r'" e. dl' . 
o 

and 

As the pressure gradient in our gaseous disc is slight. 

l ', w = (fM)'" . 

approximately and (18) becomes 

B = (2n)'" (RTi )" 2J~3 e. dl' 

o 

(17) 

(18) 

(19) 

(20) 

A curious property of this relation is. that the solar mass M has dropped 
out. There is nothing trivial in this fact. It proves that on the basis of 
equilibrium alone no relation can be established between the solar mass 
and the moment of momentum of the planetary system. The puzzling 
problem. why the ratio of the planetary and solar masses does not in the 
least conform to the distribution of the moments of momentum. must find 
its solution along other lines. which I do not intend to pursue here. 

Since the density distribution in the equatorial plane must be known. if 
we want to obtain a complete solution of our problem of the structure and 
motion of the disco let us try to get. if possible. some general information 
about this distribution. If any relation exists between density and solar 
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distance, it may be derived from the influence of viscocity. Viscosity acts 
on an infinitesimal ring, in the plane of symmetry, of radius rand density 

ee with a tangential force proportional to 

(21) 

Since the di sc must be looked upon as the product of a secular condensation 
process, it na tu rally tends to a configuration continually recreating its 
fundamental properties, as contraction progresses. As this seems best war
ranted by homologous contraction in the plane of symmetry, we arrive at 
the question, when viscosity generates homologous contraction. This occurs 
only if (21) is proportional to the momentum of the ringmatter. ·Conse
quently, we may anticipate the approximate validity of a relation of the form 

d (2 dW) _ ~ dl' l' ee dl' - y ae. w l' • (22) 

a factor t being added to the constant of proportionality a, because it 
simplifies the following formulae. As (19) also holds approximately, we get 

(23) 

or 

(Je = c r' l, e- a, • (24) 

c being a constant. Let us label this case, for identification purposes, with 
the name of approximate case. It is characterized by the fact that the 
density in the equatorial plane of the disc does not decrease monotonously 
with increasing l', as we might have superficially expected, but increases 
first and only decreases asymptotically to zero after having passed through 
a maximum. 

Substituting (24) in (17) and (18) , we obtain 

, (RT.)' /' Joo m = (2ll) I, {M c l'3 e- a, dr. (25) 

o 

00 

I} = (2ll)' /, (RT; )'/, c J 1'3'1, e- ar dr. (26) 

o 

or 

_ 'I, I - -'I (RT)
' f.. 

m - (2ll) {M c . 6a . . (27) 

() = (2ll)' /, (RT;}'/. c. 1.(1'; ll '/, a- '1' /, . (28) 



558 

Since mand (J are given quantities . we might determine both c and a if 

we knew Rand Ti . However. we may determine at least a without knowing 

either R or Ti . for 

() _ 105 (f M 7T.)' t, 
~-% - a- . (29) 

The empirical value of this quotient. derived from the actual planetary 
system. is 

1.02 X 107 (f M)'t, . (30) 

from which 

a = 3.63 X 10-H (31) 

follows. 
A very suggestive consequence is. that the highest density in the disc 

occurred at a distance 

1 
r= 2a = 1.38 X 1013 cm (32) 

from the sun. This corresponds to 0.93 or nearly 1 astronomical unit. This 
means that the highest density was found along a circle coinciding almost 
with the actual orbit of the earth. 50 the question arises. whether it is a 
result of pure chance that the earth actually possesses the highest density 
among all planets. Let us therefore compare the following sequence of 
planetary densities 1) with the density distribution in our approximate case 
more thoroughly. 

Mercury 3.58 
Venus 5.02 
Earth 5.53 
Mars 4.09 
Jupiter 1.34 
Saturn 0.67 
Uranus 1.47 
Neptune 1.33 

These values have been plotted against solar distance in figure 1 and 
joined by a smooth curve. which will be called the planetary density curve. 
The dotted curve represents (24) in arbitrary units. There is a striking 
parallelism between the two curves. It is true that the planetary density 
curve. af ter passing through a minimum. rises to a secondary maximum. 
But we know that (24) could not reveal anything more than the general 
trend of the density distribution and this it does with unexpected fidelity. 
Therefore. reversing the argumentation. it seems rational to assume that 
the actual density curve of the planets is very nearly representative of the 
original density distribution in the gaseous disco 

I) C. A.. VAN DEN BOSCH. Dissertation Utrecht. 1926. 
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Since the atomie weight is the only variabie which enters into the density 
of solid bodies as weil as into the density of gases , this relation may be 
due to a variability of the chemical composition of the disc with solar 
distance, but. for the moment, I prefer to avoid the resulting complications 
of the above theory. For, assuming a variability of mean atomie weight, we 
would be obliged to assume a variability of R, the gas constant. Moreover 
it would almost certainly imply a variability of the temperature too, whieh 
we supposed constant and perhaps even a variability of. say, the constant 
of gravitation , because some elements are and some are not notably aHected 
by radiation pressure. Surely th ere are so many variables at hand that it 
would be an easy matter to suit them into a consistent scheme explaining 
a definite relation between the actual density of the plan ets and the original 
density of the gaseous disco But I doubt, whether this relation would not 
remain too weakly founded, if it did not prove remarkably success[ul, 
when applied to the interpretation of two outstandingJ features of the 
actual system. 

In the first place, (8) shows us that, wh ere Q. increases with r, the 

angular velocity is larger than the Keplerian velocity, whereas, where Qe 

decreases with r, the angular velocity is smaller than the Keplerian velocity. 
Where the density attains a maximum or minimum the velocity is Keplerian. 
The cosmogonic consequences of th is fact are evident. Each planet will. 
during its condensation, adjust its orbit to the moment of momentum, whieh 
its matter possessed, when it was still part of the disco A plan et bom within 
a zone of outward increasing density will draw away from the sun, a 
planet bom within a zone of outward decreasing density will draw nearer 
to the sun . But graphical interpolation of the planetary density curve of 
fjgure I , revealed a first maximum at the proper distance of the earth, iI 
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minimum between Saturn and Uranus, a second maximum between Uranus 
and Neptune. Thus, postulating that the distances [rom the sun where the 
planets were bom, strictly obey some law, we should find that Mercury, 
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Venus and Uranus revolve too far away from the sun, Mars, Jupiter , 
Saturn nnd Neptune too near , whereas the distance Sun-Earth, in which 
the other distances are expressed as a unit , remains constant. 

Let us express the law of the planetary distances by a simp Ie exponential 
function , r = ropn (n = 0, I, 2, etc. ) , which is BODE'S law, omitting the 
irrelevant additative constant. Then , nearest agreement is obtained with 
the ratio p = 1.79, as may be shown by the following tabie, which contains 
the distances of the plan ets from the sun in astronomical units . 

M V E M J S U N 
observed 0.39 0 .72 1.52 5.20 9.55 19.22 30.11 

computed 0.31 0.56 1.79 5.73 10.24 18.33 32.77 

quotient 1.26 1.29 0 .85 0.91 0.93 1.05 0 .92 

The last row contains the quotients of the observed and computed values. 
It shows us that as a matter of fact Mercury, Venus and Uranus are 
placed too far away, whereas Mars, Jupiter , Saturn and Neptune are 
placed too near. 

On the one hand, this confirms our supposition that an exponential law 
has ruled the distances of the planets from the sun . I even dare say, in 
contradiction to suggestions from several sides, that an exponential law is 
much more strictly obeyed, than has ever been believed. It requires careful 
consideration , because it surely touches the root of the problem of the 
evolution of the solar system and may lead us to the solution of the 
fundamental question , as to which agency once transformed KANT'S disc 
into the rings of LAPLACE 1). On the other hand, we could hardly conceive 
of any stronger evidence of a gaseous disc having constituted the embryo 
of the planetary system . 

The second question, which arises, is the question of stability. What is 
the condition that a gaseous equilibrium configuration , represented by 

(8) 

be stabie ? This is of course too complicated a problem to be solved in its 
integral form. M y impression is that the most general criterion is the 
following . The gradient of angular velocity in radial direction should be 
less steep than the gradient , which follows from the formula 

wr2 = constant, 

expressing the preservation of moment of momenturn. For, in this case 
only, every mass element, which, after some arbitrary radial displacement, 

1) Versuch einer EDtwicklungsgeschichte der Planeten. Ergänzungshef[ zu Gerlands 
Beiträge zur Geophysik. 17. 1927 ; On the e1ectros[atic field of the sun due to its 
corpuscular rays, Proceedings Amsterdam. 33, 1930. p. 614; On [he electrostatic field 
of the sun as a factor in the evolution of the planets. Proceedings Amsterdam 33, 1930, 

p. 719. 
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takes up a new circular orbit, will move with such a velocity that it tends 
to return to its former position. 

Multiplying (8) by r3 , we get 

(Mr+ RTi ~ c!2~ = w2ri. 
e ~ dr 

Differentiating (33) with respect to r, the condition of stability 

{ M + R Ti !i (~ dee) > 0 . 
dr e~ dr 

(33) 

(34) 

immediately follows. The stability of the solar disc depends upon the radial 
density distribution in the equatorial plane. If the equation 

{ M + RTi !i (!~- c!(!~) = 0 . 
dr e. dr 

(35) 

has rea I positive roots , they represent the radii of the boundaries of zones 
ot stability and instability . Within the former zones the motion of the gas 
is laminar, within the latter zones it is turbulent. 

For a first orientation in th is matter of stability and instability, let us 
return to our approximate case (24) . Substituting (24) in (8) . we get 

{M + r (t - ar) RTi = w 2 r 3 

whereas the limit of stability follows from (35) 

(M + r(l -3ar)RTi =0 

(37) has always one real positive root. The radius 

1 + V 1+1 i a ({M)(RT:"P 
r= 6a . 

(36) 

(37) 

(38) 

divides the disc into an inner stabie zone and an outer instabie zone. We 
could localize the boundary, if we knew Rand Ti. This being not the case, 
let us draw a conclusion, which is independant of these data. 

Denoting the value of the angular velocity at the boundary by W b, the 

Keplerian value at the same distance by W k ' we find by elimination of 
RTi from (36) and (37) 

Suppose aplanet 

w~ 2 ar- i
wZ-3 ar - 1 

(39) 

to be bom at the boundary. With the generation of a 

planet from the disc it automatically adjusts its actual distance ra to the 

value w
b

' wh.ereas we shall call rt the theoretical distance corresponding 

with the Keplervalue W k' We then get evidently 

r. _ 2 ar- i
rt - 3 ar - 1 . (40) 

Suppose, instability sets in on the descending branch of the density curve. 
Then 2ar > 1 and the quotient (40) is limited between 1 and '2 / 3' We then 
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may observe our planet down to two thirds of its theoretical distance from 
the sun at most, but if sa, irregularities in the behaviour of the plan ets 
beyond this hypothetical one are to be expected. 

Fortunately, an example of this approximate case immediately presents 
itself . The g-reat bulk of planetoids between Mars and Jupiter, on the first 
descending branch of the density curve, sets in at about 2.0 A. U ., that is 
at 0.63 of their theoretica I distance 3.20 A . U . This strongly suggests that 
the riddle of their origin can be solved in a remarkably simple manner. The 
planetoids we re barn within a zone of instability and turbulence in the 
gaseaus disco This fact explains their not being united in one body, as weil 
as their puzzling dispersity and excentricity. 

The inner radius of this zone of instability must have been smaller than 
3.20 A. U. If the equatorial density had rigorously followed the function 
(24), with its one maximum, the disc would have been unstable fr om the 
inner limit up to infinity. The planetary density curve, however, rises a 
second time beyond Saturn . Consequently an outer limit to the zone of 
instability might have been anticipated. The outer radius has evidently 
exceeded 3.20 A .U ., but it must have been smaller than 5.73 A .U. the 
theoretical distance of Jupiter. 

As instability occurred on the first descending branch of the density 
curve, we may expect it to occur once more on the second descending 
branch of the density curve, beyond the density maximum between Uranus 
and Neptune, and it evidently did occur. For, does not the recent discovery 
of the excentric Pluto make it extremely probable that astronomers have 
got hold of the first member of a new family of planetoids, which might be 
weil called plutoids? 

The mean distance of Pluto from the sun is 39.9 A . U ., that is 0.68 of its 
theoretical distance 58.7 A.U., again strikingly near to the theoreticallimit 
of two thirds. It is dubious , whether or not the density of the planets 
increases a third time in outward direction. It is therefore dubious, whether 
the second zone of instability, where the plutoids originated, extends to 
infinite distance, or that there is a chance for some more regular planets to 
pursue still larger orbits (See figure 1) . 

I think it rather improbable that big transneptunian planets should exist. 
It is far more probable that we have to look at the cornets as messengers 
descending to the sun from the outmost instabIe and turbulent portions of 
the solar nebuIa , where it merged into the interstellar medium. 

Concluding th is paper I should like to emphasize that we have found 
such convincing evidence of a gaseous disc having constituted the original 
state of our planetary system that I feel obliged to express doubt, wh ether 
the Tidal Theory of the origin of this system wil! remain any longer a 
serious competitor besides some other theory, which follows the line of 
thought of D ES CARTES, KANT and LAPLAC E. 

The Hague, March 1932. 


