
Astronomy. - On the expanding universe . By W . OE SITTER. 

(Communica ted a t the meeting of May 28. 1932.) 

The non-static solutions of the field equations of the general theory of 
relativity for an isotropic and homogeneous universe. giving a line-element 

(1) 

R being a function of t alone. and do being a line-element of three
dimensional space I) . have been investigated by FRIEDMANN 2) in 1922. 
and independently in 1927 by LEMAÎTRE 3 ). who worked out the astro
nomical consequences in great detail. These solutions have attracted much 
attention of late in connection with the observed recession of the spiral 
nebulae. The field-equations are in all these investigations supposed to 
contain the "cosmical constant" ). ; they are thus 

(2) 

The material tensor. or energy tensor. T,,, , is supposed to be given by 

T ij =- gi j P = R 2)'i jP, T i4 = T ii = O. TH = e=eO+3p, (3) 

where eo is the "proper" or "invariant" density, e the "relative" density, 
and p the "pressure" , consisting of the average irregular motions of material 
partic1es. and the pressure of radiation. The proper mass of radiation is 
zero. as weil is known . Both [! and pare supposed to be independent of 
the space co-ordinates . The assumption (3) then involves isotropic and 
homogeneous distribution of matter and radiation. We are thus abstracting 
from all complications introdllced by the condensation of matter into stars 
élnd stellar systems . We can say th at we are studying the field of pure 
inertia, neglecting gravita tion . The tensor T,,, , has been so constructed as 
to make its divergence zero in accordance with the laws of conservation 
of mass, energy and momentum. It is a consequence of these laws (i.e .. of 

the vanishing of the divergence of T,,,.) and the independence of eo and p 
of the space co-ordinates . that 944 is also independent of the space co
ordinates. and can conseqllently be taken as equal to unity, as has been 
done in (1) . 

FRIEDMANN considers the solutions of (2) for different values of À. 

1) The convent ion is made throughout th is paper that roman indices take the values 
L 2. 3 only. whilst greek indices run from 1 to 4. 

2) Zeitschr. für Physik. 10. p , 377 , 
3) Ann. Soc. Scienti{. de Bruxetles, Vol. 47. A , p. 49, also M.N. xci. p . 483. 1931. 
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positive, negative or zero , LBN\AÎTRE considers only positive values of J •• 
From the mathematical point of view the presence of }. is required in the 

equation in order to give it the highest degree of generality, G,,,. - t giL. G 
and g."" being the only tensors, containing differential quotients of the g,u' 
not higher than the second order, of which the divergence vanishes. The 
constants ;. and Y. thus have, from the mathematical point of view, entirely 
the same function , and there is no a priori restrietion on their values, they 
might be positive, negative or zero. Comparison of the first approximation 
of the solution (for sm all veloeities ) with classica 1 mechanics shows that Y. 

is to be identified with the constant of gravitation : 

- 8nG _} 860 10-27 -1 Y. - - 2- -.. gr cm. 
c 

The constant Y. is thus essentially positive: Y. = 0 would mean that we 
were investigating pure space, without anything in it, i.e. that we were 
studying geometry and not physics. The constant À. on the other hand, has 
no counterpart in classical mechanics. It was introduced into the equations 
by EINSTEIN in 1917, not from considerations of mathematical generality 
or elegance, but in order to make possible a fini te density of matter in a 
statie universe. 

This required a positive value of J.. At the same time three-dimensional 
space, having the line-element do, was found to be of constant positive 
curvature, and consequently finite , which was at the time considered to be 
a great advantage, since it avoided the necessity of boundary conditions 
at infinity. If the pressure is neglected, the curvature of three-dimensional 
space in the statie universe becomes equal to l. EOOINGTON 1) accordingly 
in 1921 interpreted the meaning of J. as providing a natural standard of 
length. The idea of a positive }, and a positive curvature of three-dimen
sional space eventually became so much a part of the accepted theory that, 
when the statie solution was replaced by the non-static ones, it was at first 
overlooked that in the non-statie solutions the sign neither of }, nor of the 
curvature is prescribed, and both may be positive, negative or zero, indepen
dently of each other. Attention was first called to this fact by Or. O. 
HECI<MANN in July 1931 2 ). 

From the equations (2) with the value (3) of the energy tensor it follows 
at once that the three-dimensional line-element do must be one of a spa ce 
of constant curvature. This curvature, however, may be either positive, 
negative or zero. If it is not zero, its numerical value can be taken equal to 
unity without any loss of generality. Thus, if k be a quantity which can 
have the values + I , 0, - I , and if we denote by s the function 

( ) 
_ sin x 

s x ---. 
x 

I) Cf. The MBtlle'''Btical Theory of Re la tiviry, §§ 65, 66. 
2) Göttinger Nachrichten . July 1931. p. 127. 

39* 
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and therefore 

(' ) sinh x 
S IX = - --, 

X 

we have 

The equations (2) th en give the further conditions, differential quotients 
dfcdt being denoted by dots : 

(k= + LO,-I) (5) 

and the equation of energy becomes 

. R 
I! + 3 R (I! + p) = 0 • (6) 

If we caB f. the instanta neous curvatul'e of three-dimensional space, thus : 

and if we denote the coefficient of expansion by h, thus : 

the equations (5) are equivalent to 

À. + x I! = 3 (E + h2) t 
x (I! + p) = 2 (I: - h) ~ . 

. (7) 

In the statie case, with h = h = 0, it is evident that , if I! and pare 
positive, both À and f. must be positive, and if p = 0 we have }, = f. = t XI!. 
as in EINST EIN'S universe. But in the non-statie case the equations (7) are 
insufficient to determine the values , or even the signs, of }. and f., since iz is 
entirely unknown . 

In the actual uni verse the pressure density p , consisting of the radiation 
pressure and the irregular motions of stars and stellar systems, is very 
small as compared to the material density I!o, the ratio pfl!o being probably 
of the order of 10- 6 . We can therefore as a good approximation neglect 
the pres su re, taking 

p=O, e= eo. 
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This will be done in the present paper, though the general conclusions 
remain the same if the pressure is not neglected. In th is case, the equation 
of energy (6) gives at once 

Rl being a (positive) constant of integration. Further we put 

The second equation (5) then becomes 

-.ll = _ _ k+ Y y2 • (d)2 1 
dl Y 

(8) 

the first giving simply the derivative of this, viz. : 

(9) 

By introducing y and l instead of Rand ct we have, of course, excluded 
from consideration the case Rl = 0, or e = 0, corresponding for À. > 0, 
k = + 1 to the weIl known "solution B" or "empty universe", and giving 
similar solutions for other values of ), and k. But these are only limiting 
cases, none of which does occur in nature, and they are of mathematical 
interest only. 

We put 

3 hl 
p= 1- ky + yy3= _ . xe 

Then (8) can be written 

(
dy )2 _ ~ 
dl - y' . (8') 

and consequently real solutions are only possible for positive values of P. 
sin ce y by its nature is necessarily positive. In Fig. I , in which the co
ordinates are y and y, the full drawn lines represent the curves P = 0 for 
the three cases k = + 1 (spherical or elliptical space), k = 0 (euclidean 
spa ce ) and k = - 1 (hyperbolical space) . P is positive above these curves 
and negative below them , the real solutions thus correspond to the part of 
the semi-plane above the curves. It is seen by inspection of the diagram 
that there are three possible types of solution , which may be called the 
oscillating universes. and the expanding universes of the first and of the 
second kind. 

In the oscillating solutions the value of y oscillates between zero and é 
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maximum value Y J' In the expanding solutions of the first kind the value 
of y increases from zero to infinity, and in those of the second kind it 
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increases from a certain minimum value Y"l. to infinity. It is clear from the 
diagram that the occurrence of the different kinds of solutions is as given 
in the following little tabIe. 

~l 
Curvature 

k = + 1 k = O k = -l 

~ O se. 
positive Exp. Exp. I Exp. I 

Exp. II 

zero O se . Exp . I Exp. 

negative O se. O se. Ose. 

Only for a positive }, and a spherical (or rather " elliptical" ) three
dimensional spa ce all three kinds of solutions are possible; for all other 
combinations of the signs of }. and k we have either only oscillating uni
verses , or only expanding universes of the first kind. 

'The general type of the variation of y with r in the different cases is 
represented in Fig . 2. For y = 0 we have P = I. therefore dyfdr = 00 : all 
solutions leave the axis of r perpendicularly: the expansion in the casz 
of the oscillating universes and the expanding universes of the first kind 
starts by an explosion. Of course for very large densities, i.e. for very small 
values of y , the simplifications made in deriving the equations are no longer 
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allowable. The actual value y = 0 is impossible in nature, and presumably 
in the actual universe , if it is of one of these two types, there will be a 
minimum value of y somewhat as shown by the dotted lines in Fig. 2. In 

Fig. 2 

the expanding solution of the second kind there is a minimum value Y:2' 
These solutions are only possible for the limited range of ), given by 
0< y < 4/27. For the limiting value y = 4/27 we have either the limiting 
member of the family of expanding universes of the second kind, viz.: 
LE'MAÎTRE 's universe, in which y varies from Y2 = 1.5 to infinity, the 
minimum radius being that of the statie universe or "EINSTEIN'S universe", 
and corresponding to t = - 00, or the limiting member of the family of 
oscillating universes , having the same value Y1 = 1.5 as a maximum, which 
is only reached at the time t = + 00 . The expanding solutions of the first 
kind have a point of inflexion. which according to (9) occurs for the value 

yi = (2,,)_1/1 . . (10) 

This curve is represented by the broken line in Fig. I. In the case J.. := 0 
th ere is no point of inflexion. The curve giving y as a function of l in the 
case k = - 1 (hyperbolical space) is of hyperbolical character (without an 
asymptote , however) , the limiting value of dy/dl for y = 00 being unity. 
In the case k = 0 (euclidean space) it is of parabolical character, thc limi
ting value of dy/dl being zero. In the case k = + 1 (elliptical space) we 
have an oscillating universe. The solutions for J.. = 0 are best expressed by 
means of an auxiliary variabIe '/P, thus: 

J.. = O. k = + 1 : l = 1jJ - t sin 21jJ 

k = 0 : l = "* 1jJ3 

k = - 1 : l = t sinh 21jJ -1jJ 

• y = sin
2 

1jJ • ~ 
. y = 1jJ2 • 

Y = sinh 2
1jJ. , 

(11) 
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The different solutions for k = + I have been given in considerable 
detail by the present writer in B . A . N . 223, using the same approximation 
as in the present paper, viz.: p = O, i.e. assuming the universe to contain 
only matter at rest, and no radiation. Dr. HECKMANN 1) has discussed the 
solutions for all values of }. and k for the case Qo = 0, i.e. for a universe 
without matter, but filled with radiation. The general character of the 
solutions, however, depends very little on the contents of the universe ; it is 
practically the same in the two extreme cases considered by Dr. HECKMANN 

and myself. 
There are no astronomical data of observation, which enable us to make 

a decision regarding the value of }" or the sign of the curvature. The only 
data that can be derived from astronomical observations are the ra te of 
expansion h, i.e . the ratio of the radial velocity and the distance of the 
spiral nebulae (h = v/cr = R/R) . ancl the density Q. It is convenient to 
express all data by quantities of the dimension of a length, thus : 

1 
h= RB 

2 
Y.Q = R2 ' 

A 

3 
À= R2 

C 

We can adopt as the most probable value of the coefficient of expansion: 

h = 500 km/sec per lor; parsecs. 

The determination of h depends on the measured redshifts in the spectra 
of nebulae, and on the scale of distances for these same nebulae. The 
first does not introduce a larger uncertainty than about 10 %. The 
second, however, is still very uncertain. There are only two or th ree of the 
larger and nearer spirals , in which cepheids or novae have been discovered. 
The adopted distances of a few others depend on the measured brightness 
and assumed absolute magnitude of the so called brightest stars in them. 
Even if it we re certain that these objects are actually stars, their assumed 
absolute magnitude is still extremely uncertain. Of the great majority of 
the nebulae the distances are derived from the total magnitudes. On the one 
hand the determination of the scale of apparent magnitudes is as yet not very 
accurate, on the other hand the adopted absolute magnitude of an average 
spiral. which is based on those of the few of which the distances have been 
determined from cepheids, novae or "brightest stars" , is also subject to 
considerable uncertainty. Taking all this into consideration I think the 
uncertainty of h is not overestimated if we take it to correspond to a factor 
of 2 both ways, and thus adopt for the limits of RB: 

(12) 

The density is still much more uncertain. HUBBLE 2) adopted in 1926 as 
a lower limit 1.5 X 10- 3 1 . To be quite safe. we shall take as the lower 

1) Göttinger Nachrichten . Febr. 1932. p. 181. 
2) Mt. Wilson Contrib. 324. 
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limit 10-3 1. An upper limit is given by assuming the whole of intergalactic 
space to be filled with gas and computing the maximum density this could 
have without giving rise to greater absorption than is reconcilabIe with 
astronomical data. Or. MENZ EL ') in this way arrived at an upper limit 
of 10-26 . corresponding to one atom of hydrogen per 100 cm3 . To these 
limits corresponds : 

(13) 

From (12) and (13) we find for the limits of the value of P = 3 h2/x fj = 
3Ri / 2R~ at the present stage in the evolution of the lIniverse: 

0.01 < P < 15000 . (14) 

If we adopted the limits sometimes given for fj . viz.: 10- 2 1'\ > (! > 10-3°. 
and took no account of the uncertainty of h. the possible range of P would 
become more restricted . viz . : 

4 < P < 400. (14*) 

but I think that (14) represents the uncertainty of our present knowledge 
better than (14"). Even if the value of P were known accurately. the 
values of y and k would still be indetermined. though the choice would be 
limited. Thlls. if we could be sure that P exceeded unity. all oscillating 
families would be excluded . with the exception of those for y < O. k = - I. 
for which P reaches a maximum amounting to Pm ... = I + (-6.75 y)-' 
for the value y = (- 3 y)-L On the other hand if P were smaller than I 
all the expanding universes of the first kind wOlild be excluded. excepting 
those for y > 4/27 . k = + I . for which P reaches a minimum of 
Pm ," = I -( 6.75 )' )-t for the value y = (3 )' )-L The expanding universe 
of the second kind . which is only possible for k = + I . 0 < y :s; 4/27. 
assumes during its course of evolution all values of P from zero to infinity. 
If we wish with EINsTEIN . to remov·e the term with }. from the field 
equations. we have the choice between the three solutions (I I ) . and we 
will have to take k=+ I . O. -I for P<I. P = I. P>I respectively. 
With a view to the great lIncertainty of P. these and similar statements are. 
however. of little practical inter-est. 

In the present state of our knowledge it is very weIl possible to assume 
that both }. and k are equal to zero. 

It would be different jf the value of i.. or the value of the curvature 
f = klR2, were known from some other source. Sir ARTHUR EDDINGTON has 
recently Pllblished 2) the formula 

l/ N mc2 

R - ---;-2- ' (15) 

m being the mass. and e the charge of an electron. N is the number of 

') Privatelv communicated. 
2) Proc. Royal Society. A. Vol. 133. p. 605 (August 1931) . 
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protons in the universe. and consequently only has a meaning for a closed 
universe. with a finite mass. i.e . in the case k = + 1. EDDINGTON further 
satisfies himself that for R the value denoted above by Re must be taken. 
by reasonings based on the assumption that the actual universe is 
LEMAÎTRE's one. the limiting case of the expanding series of the second 
kind. y = 4/27. k = + 1. If this. or a similar. formula could be proved to 
hold independent of a priori assumptions about À and the curvature. this 
would give an independent determination of either À or E. and we would be 
able to determine the other. as weIl as h. from (7) as soon as the deter
mination of Q (and p) and h from astronomical observations would be 
sufficiently accurate. and thus the whole problem of the grand scale model 
of the universe would be solved. An important remark should. however. be 
made. The whole theory of relativity. including the equations for the 
expanding universe. is a pure abstraction or generalisation from obser
vations. after NEWTON 'S own heart . without any hypotheses. But (15) is 
based on considerations belonging to the quantum theory and wave 
mechanics. and introduces the hypothesis. Also in my opinion the "universe" 
itself is an hypothesis. Our observations cover only a very limited part of 
space and time. which I have been in the habit of calling "our neighbour
hood" . The " universe " is an hypothetical concept. arrived at by extrapolatioi1 
beyond th is neighbourhood involving the applicability of the values (3) of 
the energy tensor to all space and time. A complete theory of the universe 
is not possible without hypotheses. Consequently. as has been explained 
by DINGLE in his recent book 1) we must be prepared in the theory of the 
universe to meet with paradoxical results. The universe. like the atom. may 
do things that would be impossible for a finite mechanical system. 

A weIl known paradox. which however I think is only apparent . con
nected with the theory of the expanding universe is the shortness of the 
time scale. The differential coefficient dy/di. or dR/cdt. being finite. it is 
evident that the time i -iO elapsed since the minimum of y. the time 
required for y to double its value. and similar intervals of time. must be 
roughly of the same order :! ) as y itself. 

The order of magnitude is given by the observed value of h-l = RB. 
which is 2.1 OD lightyears. The interval t-to elapsed since the beg inning of 
the expansion is th us of the order of a few thousand million years. Now 
a thousand million lightyears is a very large di stance indeed. but a 
thousand million years is a short time. The interval t-to is of the order 
of the age of the earth. Astronomers have been in the habit lately. 
and I think on good grounds. of reckoning the ages of the stars. and of 
stellar systems such as double and multiple stars. or star clusters. in periods 
which are at least a thousand times longer. The paradox arises from the 
identification of the beginning of the expansion with the beg inning of this 

I) Science and Human Experience. 1931. 
2) Two quantities may still be considered to be of the same order of magnitude if they 

difIer by a factor of 10. but not of 1000. 
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evolution. This identification, however , is entirdy gratuitous. We will have 
to accustom ourselves to the idea that the evolution of the stars and stellar 
systems on the one hand , and the expansion of the universe on the other 
hand , a re two processes going on side by side , but independent of each 
other, apart from possible interaction at critica! epochs, e.g. when y is so 
small that the simplified equations of the expanding universe are no longer 
applicable. 

The line-element is 

The space co-ordinates in natura! measure are , however , not ~i' but 

XI =R'~i. 

(1) 

An observer , in interpreting his observations, refers them to a system of 
co-ordinates which is galilean for his particular position in space and time. 
He will naturally choose th is point for his origin of co-ordinates. and 
count his spatial radius vector and his time from th ere. A transformation to 
galilean co-ordinates is always possible, but the differentials dr and du of 
the galilea n radius vector and time will as a rule not be total differentials. 
Since we wish to investigate not on!y the immediate neighbourhood of the 
observer, but the whole universe, we must introduce new variables rand u 

so chosen that dr and du will be total differentials, co-inciding with the 
galilean dr and du for r = 0 , u = O. It is convenient to make the trans
formation in two steps, first transforming the radius vector alone by putting 

r=R· e R de = dr - hr. c dt. 

This transforms the line-element to 

showing its essential non-statie character. The term with dr c dt can always 
be removed by introducing a new time u making the line-element : 

ds2 = - a dr2 + be2 (d1jJ2 + sin 21jJ dfP) + f . du2• . (1 **) 

wh ere a , band f now are functions of both rand u. The variabIe u can 
always be so chosen that a and f become equal to unity for r = O. u = O. 
The factor b in (I *) and (I **) is not essential. it only serves to take care 
of the (eventual) curvature of three-dimensional space, and becomes unity 
for r = O. It depends on y, whieh is now also a function of both rand u. 
changing not only with the time u, but also with the radius vector r . This 
second transformation from (1 *) to (1 **) is , however , not essential. since 
( 1 *) already is galilean for r = O. 

We have now to consider the motion of material particles, or galactie 
systems , i.e. the geodesics in the space-time (1 *) . In the case of the line
element (1) the track of the particIe is a geodesie in the three-dimensionaJ 
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space (e . 'p. 8) . but this track is not described with constant velocity. The 
velocity and its radial component are 1) : 

(
dO)2 cP~ (de )2 cp~-r~/e2 

c dt = Ri + R2 CP~ • c dl = Ri + R2 CP~' • (16) 

where CPo and ril are constants. A special case is . of course. CPo = o. r 0 = O. 
the particIe being at rest in the space ( e. '/J. 8) . The actual values of CPo 

and roof course are not exactly zero. but they are presumably small and 
different for each individual spiral. 

In the case (I *) the track of the particIe in ~he three-dimensional space 
(r. lp. 8) is a curve of hyperbolic character . approaching the origin to a 
certain minimum distance . which is reached at a time t differing from the 
time to corresponding to the minimum of R by a quantity of the order of 
Cf10 and r o. The radial component of the velocity in th is curve is 

dr _ V cP~ - R2 r~/r2 
- d - R2 + 2 + rh . c t CPa 

(16*) 

and consequently for large distances r. and not too small va lues of R, is 
practically proportional to the distance. as observed. All the spirals have 
th us passed very near to the origin of co-ordinates . and consequently to 
each other. at a time which is a few thousand million years ago. If we 
assume the actual universe to be one of the expanding family of the second 
kind. their minimum distances were probably still considerably larger than 
their diameters. if it is of the oscillating type or of the expanding type of 
the first kind. the minimum distances were probably much smaller. and they 
may have partly penetrated each other. It should be remarked that the si ze 
of the galaxies themselves is not influenced by the change of R 2). at least 
not sa long as the equations for the expanding universe remain applicabIe. 

T 'his near approach was. however , not the "beginning of the world". The 
galactic systems and the stars existed before that time. Still it is to be 
expected that it has not been entirely without influence on their develop
ment . I think the effects of th is influence can still be traced. 

The spirals and our own galactic system are all rotating . with periods of 
the order of a few hundred million years. They are all very inhomogeneous 
in structure. consisting of condensations. or star clouds. separated by 
regions of smaller density . If the rotation had been going on undisturbed 
for a great many revolutions, th is inhomogeneity could not subsist. But if 
onlya sm all number of revolutions (of the order of ten) has been completed 
since astrong perturbation occurred , the inhomogeneity is of comparatively 
recent date. and has not yet had time to be smoothed out. Also the spiral 
structure itself is most readily explained as an effect of tidal forces resulting 
from a near approach . H. however. we compute the frequency of near 
approaches of spira1 nebulae on the basis of their average peculiar random 

I) Cf. B. A. N. 193. p . 217. 
2) Cf. B. A. N. 223. p . 146. 
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motions, and average distances apart at the present time, taking no account 
of the change of size of the universe, we find that they should be very 
rare, the time between encounters being more nearly of the order .of lOl :! 
years , instead of 109 or 1010. 

Also it is a significant co-incidence that the minimum value of R occurred 
about at the date of the birth of the planetary system. Modern theories 
ascribe the origin of the plan ets to a near approach, or even a collision, of 
the sun and another star. Evidently the chances that such a colli sion should 
occur were very much larger at the epoch of minimum size of the universe 
than they are now. 

The time used in our theories of the evolution of stars, of the planetary 
\lystem and of double stars and stellar systems, is, of course, the ti,me u of 
the line-element (1 * *) co-inciding with the galilean co-ordinates here and 
now. It is easy to choose this time so as to relegate the epoch of the minimum 
of y to the in fini te past, where it is already in LEMAÎTRE's universe for the 
time t of the line-element (1) . Of course the infinity is only logarithmic, 
and it does not make the time during which anything really happens any 
longer. This introduction of another time is only a mathematical trick, 
providing no solution for the paradox of the time scale. But the fact that 
it is possible in all cases is another illustration of the fact that our present 
knowledge does not contain the necessary data to choose between the 
different families of expanding universes. 

Physics. - La courbe de fusion de l'hydrogène jusqu'à 610 kg/cm 2 . Par 
MM. W. H. KEESOM et J. H. C. LISMAN. (Communication N0 . 221a 
from the KAM ERLINGH ONNES Laboratory at Leiden. ) 

(Communicated at the meeting of May 28, 1932.) 

§ 1. lntroduction. Les déterminations de la courbe de fusion de 
l'hydrogène, déjà faites dans ce laboratoire jusqu'à une pression de 
450 kg/cm 2 et jusqu'à une température de 24 .67° K. 1 ) , ont été continuées 
jusqu'à 610 kg/cm:.! et jusqu 'à 27.65° K., celle-ci étant la température 
maximale réalisable avec Ie cryostat employé 2). 

§ 2. Méthode et appareils. La méthode est la même que celle décrite 
dans la Comm. N0. 184a 3). Avant Ie commencement des observations Ie 

thermomètre à résistance Pt-64 était tombé hors de service par suite d'un 
dérangement: il fallut donc mesurer les températures à l'aide de Pt-24': 
les températures mesurées correspondent d'une manière très satisfaisante 

I) W . H. KEESOM and J. H. C. LISMAN, These Proceedings, 34, 598, 1931. Comm. 
Leiden NO. 213e. 

2) W . H. KEESOM and J. H. C. LISMAN, These Proceedings .3:t, 602, 1931. Comm. 
Leiden NO. 213f. 

3) H. KAMERLlNGH ONNES and W. VAN GULlK, These Proceedings 29, 1184. 1926. 
Comm. Leiden NO. 1848. 




