Physics. - Measurements about the Velocity of Sound in Nitrogen Gas. By W. H. Keesom and J. A. v. Lammeren. (Communication N^{0}. 221c from the Kamerlingh Onnes-Laboratory at Leiden).
(Communicated at the meeting of June 25, 1932).
§ 1. Introduction. In Comm. Nos. 209a and c and $213 b^{\text {1 }}$) W. H. Keesom and A. v. Itterbeek reported on an apparatus suitable for the determination of the velocity of sound in gases at low temperatures. This apparatus we now used to make measurements in nitrogen gas at temperatures extending from $0^{\circ} \mathrm{C}$. down to the liquid nitrogen range. As shown by the authors mentioned it is possible, by measuring the velocity of sound in dependence on the pressure, to calculate the ratio c_{p} / c_{v} and the second virial coefficient B as a function of the temperature.

In these experiments we considered more closely the influence of the resonator, this influence being of high importance when extrapolating the velocity of sound to a pressure $p=0$.
§ 2. Experimental methods. For the methods we refer to Comm. N^{o}. 213b. The temperature was determined by means of two platinum resistance thermometers. We used four resonators indicated by $R_{I}, R_{I I}$, $R_{I I I}$ (brass tube) and $R_{I V}$ (copper tube), the dimensions of which are given in table 1 .

TABLE I.

Resonator	Diameter mm	Length mm $0^{\circ} \mathrm{C}$.
R_{I} brass	62	297.7
$R_{I I} \quad$.	36	804.8
$R_{I I I} \quad "$	35	2990
$R_{I V}$ copper	35	801.4

$R_{I V}$ was made of copper in order to obtain a more uniform temperature in the long cryostat needed.

In view of the influence of the end-openings in the resonator we have always given these openings exactly the same diameter (1 mm). The nitrogen was obtained by heating sodium azide NaN_{3}, spread out in a horizontal glass tube. The gas was liquefied in a condenser cooled with liquid air boiling under reduced pressure. After fractional evaporation it was led into the resonator. This method guarantees a sufficient degree of purity.

[^0]§ 3. Experimental results. a. Measurements at $0^{\circ} \mathrm{C}$., summarized in table II.

TABLE II.

Velocity of sound in nitrogen at $0^{\circ} \mathrm{C}$. ResonatorPressure at			
R_{I}	0.9844	$W_{\text {obs. }}$ $\mathrm{m} / \mathrm{sec}$	W $\mathrm{~m} / \mathrm{sec}$
$R_{I I}$	0.9937	336.55	337.0_{6}
$R_{\text {III }}$	0.9842	336.7	337.1

In this and following tables $W_{\text {obs. }}$ means the average value obtained from several observations and W the velocity of sound corrected for the influence of the wall. To calculate this correction we used the formula of Kirchhoff-Helmholtz ${ }^{1}$).

From table II it appears that the influence of the end-openings of the resonator $R_{I I I}$ is considerably greater than is the case for R_{I} and $R_{I I}$, for which this influence is much diminished by the large diameter resp. length. Furtheron the correction in these resonators will prove to be very small.

The agreement between the results in R_{I} and $R_{I I}$, when the formula of Kirchhoff-Helmholtz is applied, is very satisfactory. Our value of the velocity of sound at $0^{\circ} \mathrm{C}$. agrees rather well with that found by other observers ${ }^{2}$).
b. Measurements at temperatures of liquid ethylene. The results are communicated in table III.

TABLE III. Resonator R_{I}.

Velocity of sound in nitrogen at liquid ethylene temperatures.			
\boldsymbol{T}, Pressure at $W_{\text {obs. }}$ $\mathrm{m} / \mathrm{sec}$ W $\mathrm{~m} / \mathrm{sec}$ 166.03 1.0090 262.0 262.2 161.14 0.9925 257.9 258.1 156.53 0.9786 254.1 254.3 146.04 0.9506 245.8 246.0			

[^1]H. B. Dixon, C. Campbell and A. Parker, Proc. Roy. Soc. London (A) 100, 1, 1921.
c. Temperatures of liquid oxygen and nitrogen, tables IV, V and VI.

TABLE IV. Resonator R_{I}.

Velocity of sound in nitrogen gas.			
$\begin{gathered} T \\ { }^{\circ} \mathrm{K} . \end{gathered}$	Pressure at	$W_{\text {ob, }}$ $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} W \\ \mathrm{~m} / \mathrm{sec} \end{gathered}$
90.37	0.9299	190.98	191.08
	0.7293	191.67	191.7_{8}
	0.5541	192.11	192.24
	0.4380	192.53	192.67
	0.3207	192.7_{7}	192.94
	0.1973	193.11	193.32
	0.1176	193.09	193.37
82.95	1.0146	181.79	181.87
	0.7957	182.72	182.81
	0.5953	183.32	183.42
	0.4179	183.97	184.09
	0.2923	184.48	184.63
	0.1921	184.82	185.08
	0.1022	185.28	185.53
77.95	0.9026	175.98	176.06
	0.7122	176.88	176.96
	0.5789	177.49	177.58
	0.4380	177.94	178.05
	0.3029	178.65	178.78
	0.2025	179.08	179.24
	0.1183	179.5	179.76
71.92	0.3879	170.81	$170.9{ }_{1}$
	0.3382	171.02	171.13
	0.2627	171.51	171.63
	0.1931	171.92	$172.0{ }_{6}$
	0.1188	172.44	172.63

TABLE V. Resonator $R_{I I I}$.

T ${ }^{\circ} \mathrm{K}$.	Pressure at	$W_{\text {obs. }}$ $\mathrm{m} / \mathrm{sec}$	W $\mathrm{~m} / \mathrm{sec}$
79.17	0.9633	177.2_{8}	177.4_{0}
	0.6410	178.7_{1}	178.8_{7}
	0.4515	179.4_{2}	179.6_{1}
	0.2921	180.0_{6}	180.3_{0}
	0.1560	180.8_{9}	181.2_{2}

TABLE VI. Resonator $R_{I V}$.

T ${ }^{T} \mathrm{~K}$.	Pressure at	$W_{\text {obs. }}$ $\mathrm{m} / \mathrm{sec}$	W $\mathrm{~m} / \mathrm{sec}$
78.36	0.9088	176.4_{4}	176.5_{8}
	0.7083	177.3_{4}	177.5_{0}
	0.5270	178.0_{8}	178.2_{6}
	0.3692	178.7_{0}	178.9_{2}

The results of the tables IV, V and VI are compared in § $4 c$.

§ 4. Calculations ${ }^{1}$).

a. $0^{\circ} \mathrm{C}$ and temperatures of liquid ethylene.

With the formulas deduced in Comm. $\mathrm{N}^{0} .209 \mathrm{c}^{2}$) we calculated c_{p} / c_{v}, $\left(c_{p} / c_{v}\right)_{p=0}, c_{v}$ and c_{p} from W (tables II and III). For that purpose through three values of B, derived by $\mathrm{N}_{\text {IJHOFF }}{ }^{3}$) from the measurements of Kamerlingh Onnes and van Urk ${ }^{4}$) in the corresponding temperature range, we laid a curve of the second degree in $1 / T$, with which we could calculate the values of $B, d B / d T$ and $d^{2} B / d T^{2}$.

The results of these calculations are given in tables VII and VIII.
TABLE VII. Resonator $R_{I}, 0^{\circ} \mathrm{C}$.

Presssure at	c_{p} cal $/$ mole	c_{v} cal/mole	c_{p} / c_{v}	$\left(c_{p} / c_{v}\right)_{p=0}$
0.9844	6.97	4.97	1.402	1.400

From the value of $\left(c_{p} / c_{v}\right)_{p=0}$ it appears that the influence of the endopenings in Resonator R_{I} may be supposed to be negligible. Our value 1.402 for c_{p} / c_{v} agrees with 1.4018 found by BRINKWORTH ${ }^{5}$) at $17^{\circ} \mathrm{C}$.
${ }^{1}$) Mol. weight $\mathrm{M}=28.016$.
${ }^{2}$) loc. cit.
${ }^{3}$) G. P. Nijhoff, Diss. Leiden 1928. Comm. Leiden Suppl. No. $64 f$.
${ }^{4}$) H. Kamerlingh Onnes and A. Th. van Urk. Comm. Leiden No. 169d.
5) J. H. Brinkworth, Proc. Roy. Soc. London (A) 111, 124, 1926.

TABLE VIII. Resonator R_{I}.

Temperatures of liquid ethylene.					
T ${ }^{\circ} \mathrm{K}$.	Pressure at	c_{p} cal/mole	c_{v} $\mathrm{cal} / \mathrm{mole}$	c_{p} / c_{v}	$\left(c_{p} / c_{v}\right)_{p=0}$
166.03	1.0090	7.00	4.97	1.407	1.400
161.14	0.9925	7.01	4.98	1.407	1.400
156.53	0.9786	7.03	5.00	1.406	1.398
146.04	0.9506	6.97	4.93	1.413	1.403

The small deviations of $\left(c_{p} / c_{c}\right)_{p=0}$ from the value 1.400 may be due to the fact that the temperature has not been very constant during the measurements.
b. Temperatures of liquid oxygen and nitrogen.

1. Resonator R_{I}. In Fig. 1 we plotted W as a function of the pressure.

Fig. 1

It follows from Comm. $\mathrm{N}^{0} .209 \mathrm{c} \S 2$ that it is possible to calculate a formula representing the change of the second virial coefficient B with T from the dependence of $\left(\frac{\partial W^{2}}{\partial p}\right)_{p=0}$ on the temperature.

We have tried to determine this function by representing the dependence of W^{2} on the pressure by a quadratic formula in p with three coefficients. These coefficients were calculated by the method of least squares. We observe, however, that it is not possible to obtain certainty about the coefficient of p^{2}, on account of the comparatively small range of pressures. We therefore then determined only two coefficients by representing the dependence of W on the pressure by a linear formula. Thus we still obtain a quadratic dependence of W^{2} on p.

So we postulated finally:

$$
W=W_{0}(1+s p)
$$

The coefficients W_{0} and s were calculated from the data in table IV by means of the method of least squares.

From the coefficient W_{0} the value $\left(c_{p} / c_{v}\right)_{p=0}$ can be derived by the relation:

$$
\begin{equation*}
\left(\frac{c_{p}}{c_{v}}\right)_{p=0}=\frac{M W_{0}^{2}}{R T} . \tag{1}
\end{equation*}
$$

S is calculated from :
$S=\frac{R T}{2 W_{0}^{2}}\left(\frac{\partial W^{2}}{\partial p}\right)_{p=0}=R T . s=B+\frac{T}{\lambda} \cdot \frac{d B}{d T}+\frac{T^{2}}{2 \lambda(\lambda+1)} \cdot \frac{d^{2} B}{d T^{2}}$,
where $\lambda=\frac{\left(c_{v}\right)_{p=0}}{R}$.
The results of these calculations are shown in table IX and plotted in Fig. 2 (indicated by \odot).

TABLE IX.

T ${ }^{T} \mathrm{~K}$.	W_{0} $\mathrm{~m} / \mathrm{sec}$	s $\mathrm{at}-1$	$S .10^{3}$	$\left(c_{p} / c_{\nu}\right)_{p=0}$
90.37	193.8_{4}	-0.01486	-4.919	1.400_{7}
82.95	185.7_{0}	-0.01979	-6.013	1.400_{5}
77.95	180.2_{0}	-0.02554	-7.291	1.403_{4}
71.92	173.3_{4}	-0.03705	-9.757	1.407_{5}

2. Resonators $R_{I I I}$ and $R_{I V}$.

In view of the correction on the velocity of sound due to the

resonator, we have controlled the measurements, mentioned in 1, using the resonators $R_{I I I}$ and $R_{I V}$ (table V and VI, indicated in Fig. 1 by ∇ resp. $\Delta)$. To be able to compare the results with those found in R_{I} we have also extrapolated to a pressure zero, but now with a coefficient s derived from the first measurements. See § 5 .

The coefficient W_{0} has been calculated by the method of least squares.
TABLE X .

Resonator	T ${ }^{\circ} \mathrm{K}$.	s at -1	W_{0} $\mathrm{~m} / \mathrm{sec}$	$\left(c_{p} / c_{\nu}\right)_{p=0}$
$R_{I I I}$	79.17	-0.02505	181.67	1.404_{4}
$R_{I V}$	78.36	-0.02409	180.66	1.403_{2}

At these temperatures the influence of the end-openings proves to be perceptible in resonator $R_{I I I}$, although this influence is much smaller than at $0^{\circ} \mathrm{C}$.

Here also we obtain a good agreement by applying the formula of Kirchhoff-Helniholtz.
3. We observe (tables IX and X), that $\left(c_{p} / c\right)_{p=0}$ slightly exceeds the value 1.400 , the more so as the temperature is lower. If, however, we calculate ${ }^{1}$) theoretically the part of c_{v} corresponding to the rotational movement of the molecules, deriving the moment of inertia of the nitrogen molecule from RaSETTI ${ }^{2}$), we find that the rotational energy must have already reached the classical value.

At 90.37 and $82.95^{\circ} \mathrm{K}$. the agreement with the theoretical value is very satisfactory. For the temperatures 77.95 and $71.92^{\circ} \mathrm{K}$. there is a

[^2]discrepancy of which we cannot find, what experimental error could have caused it. We observe that for oxygen a similar discrepancy was found ${ }^{1}$).

In Fig. 1 we also plotted the velocity of sound in the ideal gas, with $\left(c_{p} / c_{v}\right)_{p=0}=1.400$ (indicated by \odot).
§ 5. Calculation of the dependence of the second virial coefficient B on the temperature.

We calculated a curve $B=f(1 / T)$ of the fourth degree in $1 / T$ from the following data on B and S (comp. equation (2)):

$$
\left.\left.\begin{array}{ll}
T=77.95^{\circ} \mathrm{K} \cdot & 10^{3} \cdot S=-7.291 \\
T=90.37 & 10^{3} \cdot S=-4.919 \\
T=126.77 & 10^{3} \cdot B=-4.542 \\
T=140.00 & 10^{3} \cdot S=-1.726 \\
T=151.90 & 10^{3} \cdot B=-3.117
\end{array}\right\}^{2}\right)
$$

We found:
$10^{3} B=-4.090+\frac{24.627}{T} 10^{2}-\frac{57.319}{T^{2}} 10^{4}+\frac{41.159}{T^{3}} 10^{6}-\frac{11.403}{T^{4}} 10^{8}$.
We took $\lambda=5 / 2$ also at the lowest temperatures. From this formula we calculated values of S and B (table XI). The first have been plotted in Fig. 2 (indicated by X).

TABLE XI.

T ${ }^{\circ} \mathrm{K}$.	$10^{3} . S$	$10^{3} . B$
70	-9.961	-13.382
80	-6.787	-10.319
90	-4.971	-8.411
100	-3.813	-7.026
110	-3.022	-5.937
120	-2.455	-5.052
130	-2.038	-4.322
140	-1.727	3.711
150	-3.204	

[^3]In Fig. 3 the B-points following from our formula are indicated by \triangle.

Fig. 3
§6. Calculation of the ratio c_{p} / c_{v} and the specific heats themselves.
Deriving B and $d B / d T$ from the formula (3) mentioned above and the third virial coefficient C by means of "the average empirical reduced equation of state ${ }^{\prime \prime}{ }^{1}$) we calculated $c_{p} / c_{v}, c_{p}$ and c_{v} at the temperatures 90.37 and $82.95^{\circ} \mathrm{K} . W$ was calculated from the coefficients W_{0} and s (§4). The formulas used have been published by A. van Itterbeek ${ }^{2}$).

The results are shown in table XII.
TABLE XII.

T ${ }^{\circ} \mathrm{K}$.	Pressure at	$c_{\boldsymbol{p}}$ $\mathrm{cal} / \mathrm{mole}$	$\boldsymbol{c}_{\boldsymbol{v}}$ $\mathrm{cal} / \mathrm{mole}$	c_{p} / c_{v}
90.37	0.0	6.94	4.96	1.400_{7}
	0.3	7.01	4.97	1.409_{7}
82.95	0.6	7.08	4.99	1.419_{1}
	0.9	7.15	5.00	1.428_{9}
	0.0	6.94	4.96	1.400_{5}
	0.3	7.05	5.00	1.411_{0}
	0.6	7.15	5.03	1.422_{1}
	0.9	7.2 S	5.08	1.433_{9}

[^4]For comparison we refer to the value of c_{p} found by Scheel and HeUse ${ }^{1}$) being 7.162 at the temperature $92^{\circ} \mathrm{K}$. and a pressure of about one atmosphere.

We gladly record our thanks to Mr. W. Bevelander, phil. nat. cand., for his assistance in this investigation.

Summary.

The velocity of sound in nitrogen gas has been measured in the temperature range extending from $0^{\circ} \mathrm{C}$. down to liquid nitrogen temperatures, in dependence on the pressure. Four resonators are used to get an idea of the validity of the formula of Kirchhoff-Helmholtz. This formula proves to give good results. A curve $B=f(1 / T)$ (B being the second virial coefficient) has been calculated holding from 150 down to $80^{\circ} \mathrm{K}$. Also the ratio c_{p} / c_{v} and the specific heats c_{p} and c_{v} were calculated.
${ }^{1}$) K. Scheel and W. Heuse, Ann. d. Phys. (4) 40, 473, 1913.

Physics. - On the Anomaly in the Specific Heat of Liquid Helium. By W. H. Keesom and Miss A. P. Keesom. Communication N ${ }^{0}$. 221 d from the Kamerlingh Onnes Laboratory at Leiden.
(Communicated at the meeting of June 25, 1932).
§ 1. Introduction. The investigation on the specific heat of liquid helium made by one of us with Dr. Clusius 1) gave rise to some questions which made a nearer investigation of the anomaly of the specific heat of that substance, revealed by the investigation mentioned, desirable.

So it seemed important to see whether the curve of the specific heats obtained should undergo some change if a better heat conduction in the liquid was provided for. In this connection the course of the curve of the specific heats above $2.19^{\circ} \mathrm{K}$ attracted special attention. Although we have not yet been able to make experiments in which the conditions of heat supply and heat conduction were the most ideal ones, we could make some measurements with improved heat conduction in the liquid in such a way that we can draw at least a preliminary conclusion concerning this question.

[^5]
[^0]: ${ }^{1}$) W. H. Keesom and A. van Itterbeek. These Proceedings 33, 440, 1930; 34, 204, 1931: Comm. Leiden Nos. 209a and 213b. A. van Itterbeek and W. H. Keesom, Wisen Natuurk. Tijdschrift 5, 69, 1930; Comm. Leiden No. 209c.

[^1]: ${ }^{1}$) Compare Comm. No. 209a.
 ${ }^{2}$) G. Schweikert. Ann. d. Phys. (4) 48, 593, 1915.

[^2]: ${ }^{1}$) S. DÅumichen, Zs. f. Phys. 62, 414, 1930.
 ${ }^{2}$) F. Rasetti, Proc. Nat. Acad. Amer. 15, 515, 1929.

[^3]: 1) W. H. Keesom, A. van Itterbeek and J. A. van Lammeren. These Proceedings 34, 1001, 1931. Comm. Leiden No. 216 d.
 ${ }^{2}$) The values of B were derived from measurements of Kamerlingh Onnes and van URк. loc. cit. We calculated the value of S at $T=140^{\circ} \mathrm{K}$. from B-values in this temperature range.
[^4]: ${ }^{1}$) H. Kamerlingh Onnes and W. H. Keesom, Encycl. d. Math. Wiss. V 10, 615, 1912. Comm. Leiden Suppl. No. 23, 117, 1908.
 ${ }^{2}$) A. van Itterbeek, Wis- en Nat. Tijdschr. 5, 192, 1932. Comm. Leiden Suppl. N${ }^{0} .70 b$.

[^5]: ${ }^{1}$) W. H. Keesom and K. Clusius. These Proceedings, 35, 306. 1932; Comm. Leiden No. 219e.

