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According to the theory of dispersion the index of refraction n of an 
isotropic substance for an electromagnetic wave of frequency v is deter
mined by the relation between the e1ectric polarisation per unit volume P 
due to the wave and the macroscopic e1ectric field E of the wave , entering 
into MAXWELL:S equations, n being given by 

(1) 

In order to apply this formula it is necessary to know the relationship 
between Pand E. 

In the case of an insulator the customary procedure to obtain PIE is the 
following. For a particular atom of the substance the electric moment 
induced by the wave will be 

p=aEo . (2) 

where Eo is the electrie field of frequency v acting on the atom and a the 
polarisability of the atom at that frequency. If we take as atom the harmo
nie oscillator usually employed in classieal dispersion theory, i.e. an 
electron of charge -e and mass m attached elastieally to the electrical center 
of a fixed constellation of positive e1ectricity with an equal total charge, 
then a is given by 

(3) 

Vo being the natural frequency of vibration of the electron. Eo may in 
general not be identified with E. It can most easily be calculated by 
imagining a sphere constructed around the center of the atom under 
consideration , the radius being chosen small compared to the wavelength 
of the radiation but still so large that the sphere contains many atoms. 
Then 

Eo = E + E' + Eli, . (4) 

where E' and E" denote respectively the electric fields produced at the 
center of the atom considered by the polarisation of the atoms with centers 
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outside the sphere and by the polarisation of the other atoms with centers 
inside the sphere 1). As LORENTZ 2) showed , E' for an isotropic substance 
is given by 

(5) 

In order to compute E", the arrangement of the atoms has to be known. 
For a simple cubical arrangement LORENTZ 3) could prove that 

(6) 

The same holds rigorously for a gas composed of independent atoms 
that can approach each other only up to a minimum distance 4) and pro
bably approximately for most isotropic substances. By combining eqs. (2) , 
(4), (5) and (6) we get 

P = Np = Na ( E + ~ P ). 

where N is the number of atoms per unit volume. Solving for PfE and 
substituting in eq. (I) leads to the CLAUSIUS-MosOTTI equation 

n 2 - 1 
3 n 2 + 2 = 4 n Na. (7) 

This equation differs from the equation 

n 2 -1 =4nNa. (8) 

which we would have obtained if we had neglected the LORENTZ-LoRENZ 

correction, i.e. if we had identified E with Eo . Only wh en 4nNa is small 
compared to unity is the difference between eqs. (7) and (8) inappreciable. 

The question naturally arises as to how these considerations are altered 
when we are dealing with a metallic conductor. In order to illustrate the 
essential points we shall use as model of such a conductor a positive Huid 
of uniform charge density in which the electrons are situated at the corner 
points of a simple cubical lattice with a lattice constant a , so chosen that 
on the average the conductor is neutra!. On the one hand it would seem 
as if the index of refraction ought now to be calculated in the following 
way: For a free electron in an electric field Eo oscillating with frequency 

1) H. A. LORENTZ, The Theory of Electrons. Teubner 1909; p . 137 et seq. 
2) H. A. LORENTz. I . c. ; p. 303 et seq . 
3) H. A . LORENTZ.I. c. ; p . 306. 
i) R. LUNDBLAD, Ann. d. Phys. 57. 183. 1918. 
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I' the product of its charge and its displacement from the original position 
of rest has the form 

p=f3Eo 

with 

quite analogous to the relation (2) for an electron bound in an atom, so 
that replacing a by f3 in the CLAUSIUS-MoSOTTI equation (7) will give 
us n. On the other hand one can argue that no LOR ENTZ-LoRENZ correction 
should be made in this case, or, expressing it differently, that eq. (8) with 
f3 instead of a should be applied, since all the electrons inside a reg ion of 
linear dimensions small compared with the wave leng th suffer the same 
displacem ent , with the consequence that there are no electric forces of 
frequency ~, acting on the electrons excepting the field E of the wave itself. 
In trying to decide between these two viewpoints it must be remembered 
that in the derivation of L ORENTZ previously described it is essentiaI that 
the substance be regarded as composed of neutral atoms in which the 
electrons are bound . By an artifice it is possible to look at our model of a 
metallic conductor in the same way, and it then appears that the force E', 
giving rise to the LORENTZ-LoRENZ correction , just balances the elastic 
restoring force. In treating the electrons as free, the LORENTZ-LoRENZ 

correction hence has already been taken into account so that the second 
method of calculating n proposed above is the correct one 1). 

We may imagine the positive fluid of our model subdivided into equal 
cubes by th ree mutually perpendicular sets of parallel planes. In particular 
we can chose these planes in such a way that in every cube there is one 
electron in the center. The length of the edge of the cubes will then be 
equal to the lattice constant a of the cubical lattice at the corner points of 
which we assumed the electrons to be Iocated. If now, keeping the centers 
of the cubes, i.e. the positions of the electrons, fixed while letting the size 
of the cubes diminish (always retaining the positive charge with uniform 
density inside the cuoes), we get a cubical lattice of "atoms " separated by 
finite intervals without any charge. The individual "atom", a cube filled 
with positive charge of uniform density and with an electron at its center, 
is such that we may apply eq. (3). Indeed, as will be shown in the note at 
the end of the paper, the electron for small displacements suffers an elastic 

I) Prof. DARWIN first suggested to one of us in connection with a paper on the quantum 
theory of dispersion in metallic conductors (R . DE L. KRONlG, Proc. Roy. Soc. A. 12., i09, 
1929 ; see especially the footnoote on p . 419) that n should be computed according to 
the first method. The discrepancy bet ween theory and experiment resulting in this way 
immediately led to serious doubts regarding this suggestion and to a more thorough in
vestigation of the whole problem. The choice of the model employed here to elucidate 
the relation to the case of an insulator Is the result of a discussion with Prof. KRAMERS. 
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restoring force directed toward the center of its cube, the natural frequency 
of vibration being given by 

(9) 

where b is the edge of the cube reduced in size as described above, while 
the other symbols have their old meaning . On the basis of what has been 
said in the beg inning of this paper we may apply to our model the equation 
( 7) , obtaining 

Now if b becomes equal to a, i.e. if the positive cubes touch . forming 
one continuous positive fIuid, then this reduces to 

n 2 
- 1 = 4 7lN . ( - 4 :~) = 4 7l NfJ· 7l ml' 

We can summarize our result as follows : T he index of refraction of 
ollr simple model of a metallic conductor may be calculated as if the elec
tron s were free while the LORENTz-LoRENZ correction is omitted. 

There is in this argument still one point requiring prooL viz. that the 
value of 'J'o , given for the isolated "atom" by eq . (9) , is not altered by the 
close proximity of the neighbouring atoms. The proof is given in the no te 
at the end. One will also inquire how the foregoing considerations are to 
be modified when the electrons combine the properties both of free and 
bound electrons as they do in the quantum theoretica! treatment of metallic 
conduction developed by BLOCH. A discussion of this question wiII be 
reserved for a la ter investigation . 

Note. We imagine a charge distribution in space, symmetrical with 
respect to the three coordinate planes, the density e being continuous at 
the origin and having there the value eo. We wish to determine the electric 
field in the neighbourhood of the origin. 

Let ;, 17, C be the coordinates of a point in the charge distribution, x, y, z 

the coordinates of a point near the origin , where the field is to be 
determined. If r denotes the length of the line joining the two points, then 
the x-component of the electric field due to the charge distribution is 
given by 

where 

àV 
Ex=- àx' 

v Je (t
r 
'1·11 d; dt} de. 
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For small values of x, g, z we may develop E in a power series in 
x, g, z, obtaining 

the derivatives to be taken at the origin. On account of the symmetry of the 
charge distribution Ex vanishes at the origin. For the same reason the 
coefficients of g and z vanish. We retain 

E __ (lVV) - _ J·e.(3~2-rÖ)dl:d d~-
x- À 2 x- X. -5 ç 1] ~-

vX 0 ra 

= - x f~ 6 (:o)d~d1] de. 

ra being the value of r when x, g and z are zero. Taking a little sphere 
around the origin and splitting the integral into the contributions from 
outside and from inside this sphere, we get naught for the first and 
-4nea/3 for the second part, where ea is the charge density at the origin. 
We thus have 

for small displacements from the origin. In other words an electron will be 
elastically bound to the origin, the freguency of vibration being given by 

A 2 2 '1 n eo e 
""In m Vo= 3 (10) 

In our model of a system of e1ectrons situated at the points of a simple 
cubical lattice with lattice constant a, each electron being at the center of 
a cube with edge b, in which the positive charge e is uniformly distributed 

a3 

eo= b3 Ne. 

Substitution in eg. (10) gives us eg. (9), and we also see now that the 
va lue Va is the same wh ether we re gard an isolated "atom" or an "atom" 
symmetrically surrounded by neighbours as in our model. 
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